
Preliminary Specification
Supersedes PNX1300 data of 2001 Oct 12
File under INTEGRATED CIRCUITS, TR1

2002 Feb 15

 INTEGRATED CIRCUITS

PNX1300 Series
Media Processors

2002 Feb 15

Philips Semiconductors Preliminary Specification

Media Processors PNX1300 Series

PNX1300 Series Data Book
Foreword

Table of Contents

1 Pin List

2 Overview

3 DSPCPU Architecture

4 Custom Operations for Multimedia

5 Cache Architecture

6 Video In

7 Enhanced Video Out

8 Audio In

9 Audio Out

10 SPDIF Out

11 PCI Interface

12 SDRAM Memory System

13 System Boot

14 Image Coprocessor

15 Variable Length Decoder

16 I2C Interface

17 Synchronous Serial Interface

18 JTAG Functional Specification

19 On-Chip Semaphore Assist Device

20 Arbiter

21 Power Management

22 PCI-XIO Bus Functional Specification

A DSPCPU Operations

B MMIO Register Summary

C Endian-ness

Index

Preliminary Specification

 2001 Philips Electronics North America Corporation
All rights reserved.

See Terms and Conditions on the next page.

2002 Feb 15

TERMS AND CONDITIONS

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes,
without notice, in the products, including circuits, standard cells, and/or software, described or contained
herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or
liability for the use of any of these products, conveys no license or title under any patent, copyright, or most
work right to these products, and makes no representations or warranties that these products are free from
patent, copyright, or most work right infringement, unless otherwise specified. Applications that are described
herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no
representation or warranty that such applications will be suitable for the specified use without further testing
or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation products are not designed for use
in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips
Electronics North America Corporation product can reasonably be expected to result in a personal injury.
Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips
Semiconductors and Philips Electronics North America Corporation products for use in such applications do
so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America
Corporation for any damages resulting from improper use or sale.

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the
Semiconductor Chips Protection Act.

 2001, 2002 Philips Electronics North America Corporation

All rights reserved.

Printed in U.S.A.

Business Line Media Processing, 811 E. Arques Avenue, Sunnyvale, CA 94088

DEFINITIONS

Data Sheet
Identification Product Status Definition

Objective
Specification

Formative or in
Design

This data sheet contains the design target or goal specifications for product
development. Specifications may change in any manner without notice.

Preliminary
Specification

Preproduction
Product

This data sheet contains preliminary data, and supplementary data will be pub-
lished at a later date. Philips Semiconductors reserves the right to make
changes at any time without notice in order to improve design and supply the
best possible product.

Product
Specification

Full
Production

This data sheet contains Final Specifications. Philips Semiconductors reserves
the right to make changes at any time without notice, in order to improve the
design and supply the best possible product.

Terms and Conditions

Foreword

The TriMedia PNX1300 Series is an enhanced version
of the TM-1300 family of media processor.

The PNX1300 Series contains an ultra-high performance
Very Long Instruction Word processor, as well as a com-
plete intelligent video and audio input/output subsystem.
The processor has an instruction set that is optimized for
processing audio, video and graphics. It includes power-
ful SIMD multimedia operators for eight- and 16-bit signal
datatypes as well as a full complement of 32-bit IEEE
compatible floating point operations.

The PNX1300 Series is intended as a multi-standard
programmable video, audio and graphics processor. It
can either be used standalone, or as an accelerator to a
general purpose processor.

The architecture of the TriMedia family came about as
the result of many years of effort of many dedicated indi-
viduals. Going back in history, the origin of TriMedia was
laid by the LIFE-1 VLIW processor, designed by Junien
Labrousse and myself in 1987. Work continued after-
wards in Philips Research Labs, Palo Alto. My special
thanks go to the entire Palo Alto research team: Mike
Ang, Uzi Bar-Gadda, Peter Donovan, Martin Freeman,
Eino Jacobs, Beomsup Kim, Bob Law, Yen Lee, Vijay
Mehra, Pieter van der Meulen, Ross Morley, Mariette
Parekh, Bill Sommer, Artur Sorkin and Pierre Uszynski.

The Palo Alto period matured the architecture—we port-
ed all video and audio algorithms that we could find to the
compiler/simulator and refined the operation set. In addi-
tion, we learned how to give the architecture a market di-
rection. In May 1994, Philips management—in particular
Cees-Jan Koomen, Eddy Odijk, Theo Claasen and Doug
Dunn—decided to develop TriMedia into a major Philips
Semiconductors product line.

Under the guidance of Keith Flagler, the TriMedia team
was built. All of them contributed to take this from a set
of interesting ideas to a reliable and competitive product
in a short period of time. The initial TriMedia team includ-
ed Fuad Abu Nofal, Karel Allen, Mike Ang, Robert Aqui-
no, Manju Asthana, Patrick de Bakker, Shiv Balakrish-
nan, Jai Bannur, Marc Berger, Sunil Bhandari, Rusty
Biesele, Ahmet Bindal, David Blakely, Hans Bouw-
meester, Steve Bowden, Robert Bradfield, Nancy
Breede, Shawn Brown, Sujay Chari, Catherine Chen,
Howen Chen, Yan-ming Chen, Yong Cho, Scott Clapper,
Matthew Clayson, Paul Coelho, Richard Dodds, Marc
Duranton, Darcia Eding, Aaron Emigh, Li Chi Feng, Keith
Flagler, Jean Gobert, Sergio Golombek, Mike Grimwood,
Yudi Halim, Hari Hampapuram, Carl Hartshorn, Judy
Heider, Laura Hrenko, Jim Hsu, Eino Jacobs, Marcel
Janssens, Patricia Jones, Hann-Hwan Ju, Jayne Keith,
Bhushan Kerur, Ayub Khan, Keith Knowles, Mike Kong,
Ashok Krishnamurti, Yen Lee, Patrick Leong, Bill Lin,
Laura Ling, Chialun Lu, Naeem Maan, Nahid Mansipur,

Mike Maynard, Vijay Mehra, Jun Mejia, Derek Meyer,
Prabir Mohanty, Saed Muhssin, Chris Nelson, Stephen
Ness, Keith Ngo, Francis Nguyen, Kathleen Nguyen,
Derek Noonburg, Ciaran O’Donnel, Sang-Ju Park,
Charles Peplinski, Gene Pinkston, Maryam Pirayou, Par-
dha Potana, Bill Price, Victor Ramamoorthy, Babu Rao
Kandamilla, Ehsan Rashid, Selliah Rathnam, Margaret
Redmond, Donna Richardson, Alan Rodgers, Tilakray
Roychoudhury, Hani Salloum, Chris Salzmann, Bob
Seltzer, Ravi Selvaraj, Jim Shimandle, Deepak Singh,
Bill Sommer, Juul van der Spek, Manoj Srivastava, Ren-
ga Sundararajan, Ken-Sue Tan, Ray Ton, Steve Tran,
Cynthia Tripp, Ching-Yih Tseng, Allan Tzeng, Barbara
Vendelin, John Vivit, Rudy Wang, Rogier Wester, Wayne
Wonchoba, Anthony Wong, Sara Wu, David Wyland,
Ken Xie, Vincent Xie, Bettina Yeung, Robert Yin, Charles
Young, Grace Yun, Elena Zelayeta and Vivian Zhu.

Expert help and feedback was received from many. In
particular, I’d like to mention Kees van Zon of Philips
Eindhoven for the help with filtering-related issues, and
Craig Clapp of PictureTel for excellent feedback on all
aspects of the architecture.

My special thanks go to Joe Kostelec. He made me un-
derstand that my ambitions could better be realized in
California than in Europe. Furthermore, his vision and his
wisdom are credited with keeping this project alive and
growing until the ‘investment decision.’

The vision of a universal media accelerator is credited to
Jaap de Hoog. Jaap, I wish you were here to see it come
to fruition.

–Gerrit Slavenburg

After the initial TM-1000 product, the TM-1100, TM-1300
and now PNX1300 Series chips have been successfully
integrated in many video and audio products. It has been
my pleasure to have been involved in these designs and
would like to thank the people involved in TM-1300 and
PNX1300 Series projects under the guidande of Cees
Hartgring and Simon Wegerif. The team included Karel
Allen, Tien-Cheng Bau, Jim Campbell, Anitamk Chan,
John Chang, Roel Coppoolse, Taufik Dakhil, Mitch Dani-
il, Nam Dao, Patrick Debaumarche, Thuy Duong, Tor-
sten Fink, Jan Grotenbreg, Mohammad Hafeez, Feng
Hao, Farah Jubran, Babu Rao Kandamalla, Aki Kaniel,
Yan-Ling Li, Ying-Chao Liu, Naeem Maan, Don Marshal,
Thomas Meyer, Javed Mukarram, Long Nguyen, Tu
Nghiem, Elaine Outler, Charles Peplinski, Duc T. Pham,
Thorwald Rabeler, Raquel Ruiz, Ensieh Saffari, Hani
Salloum, Wenyi Song, Stephen Tomasello, Tran Tung,
Maria F. Wangsahamidjaja, Chang-Ming Yang, Moham-
med I. Yousuf, Hui Zhang and Gerrit Slavenburg.

- Luis Lucas
PRELIMINARY INFORMATION 1

PNX1300/01/02/11 Data Book Philips Semiconductors
2 PRELIMINARY INFORMATION

Table of Contents

Foreword

1 Pin List
1.1 PNX1300 Series versus TM-1300 . 1-1

1.2 Boundary Scan Notice . 1-1

1.3 I/O Circuit Summary . 1-1

1.4 Signal Pin List . 1-2

1.5 Power Pin List . 1-8

1.6 Pin Reference Voltage . 1-9

1.7 Package . 1-10

1.8 Ordering Information . 1-10

1.9 Parametric Characteristics . 1-11

1.9.1 PNX1300/01/02/11 Absolute Maximum Ratings . 1-11

1.9.2 PNX1300/01/02 Operating Range and Thermal Characteristics . 1-11

1.9.3 PNX1311 Operating Range and Thermal Characteristics . 1-11

1.9.4 PNX1300/01/02/11 Power Supply Sequencing . 1-11

1.9.5 PNX1300/01/02 DC/AC Characteristics . 1-12

1.9.6 PNX1311 DC/AC Characteristics . 1-12

1.9.7 PNX1300 Series Power Consumption . 1-13

1.9.7.1 Power Consumption for Applications on PNX1300 Series . 1-13

1.9.7.2 PNX1300/01/02 DSPCPU Core Current and Power Consumption 1-14

1.9.7.3 PNX1311 DSPCPU Core Current and Power Consumption Details 1-14

1.9.7.4 PNX1300/01/02 Current Consumption For On-Chip Peripherals 1-15

1.9.7.5 PNX1311 Current Consumption For On-Chip Peripherals . 1-16

1.9.7.6 STRG3, STRG5 type I/O circuit . 1-17

1.9.7.7 NORM3 type I/O circuit . 1-17

1.9.7.8 WEAK5 type I/O circuit . 1-17

1.9.7.9 IICOD (I2c) type I/O circuit . 1-17

1.9.7.10 SDRAM interface timing for PNX1300/01/02/11 speed grades. 1-18

1.9.7.11 PCI Bus timing . 1-18

1.9.7.12 JTAG I/O timing . 1-19

1.9.7.13 I2C I/O timing . 1-19

1.9.7.14 Video In I/O Timing . 1-19

1.9.7.15 Video Out I/O Timing . 1-19

1.9.7.16 AudioIn I/O timing . 1-20

1.9.7.17 Audio Out I/O timing . 1-20

1.9.7.18 SSI I/O timing . 1-20
PRELIMINARY SPECIFICATION 3

PNX1300/01/02/11 Data Book Philips Semiconductors
2 Overview
2.1 Introduction . 2-1

2.2 PNX1300 Fundamentals . 2-1

2.3 PNX1300 Chip Overview . 2-1

2.4 Brief Examples of Operation . 2-3

2.4.1 Video Decompression in a PC . 2-3

2.4.2 Video Compression . 2-3

2.5 Introduction to PNX1300 Blocks . 2-3

2.5.1 Internal ‘Data Highway’ Bus . 2-3

2.5.2 VLIW Processor Core . 2-4

2.5.3 Video In Unit . 2-4

2.5.4 Enhanced Video Out Unit . 2-4

2.5.5 Image Coprocessor . 2-4

2.5.6 Variable-Length Decoder (VLD) . 2-5

2.5.7 Audio In and Audio Out Units . 2-6

2.5.8 S/PDIF Out Unit . 2-6

2.5.9 Synchronous Serial Interface . 2-6

2.5.10 I2C Interface . 2-6

2.6 New In PNX1300 (Versus TM-1300) . 2-6

2.7 New In PNX1300 (Versus TM-1100) . 2-6

2.8 New In PNX1300 (Versus TM-1000) . 2-6

3 DSPCPU Architecture
3.1 Basic Architecture Concepts . 3-1

3.1.1 Register Model . 3-1

3.1.2 Basic DSPCPU Execution Model . 3-2

3.1.3 PCSW Overview . 3-2

3.1.4 SPC and DPC—Source and Destination Program Counter . 3-3

3.1.5 CCCOUNT—Clock Cycle Counter . 3-3

3.1.6 Boolean Representation . 3-3

3.1.7 Integer Representation . 3-4

3.1.8 Floating Point Representation . 3-4

3.1.9 Addressing Modes . 3-4

3.1.10 Software Compatibility . 3-4

3.2 Instruction Set Overview . 3-5

3.2.1 Guarding (Conditional Execution) . 3-5

3.2.2 Load and Store Operations . 3-5

3.2.3 Compute Operations . 3-6

3.2.4 Special-Register Operations . 3-6

3.2.5 Control-Flow Operations . 3-6
4 PRELIMINARY SPECIFICATION

Philips Semiconductors
3.3 PNX1300 Instruction Issue Rules . 3-6

3.4 Memory and MMIO . 3-7

3.4.1 Memory Map . 3-7

3.4.2 The Memory Hole . 3-7

3.4.3 MMIO Memory Map . 3-7

3.5 Special Event Handling . 3-8

3.5.1 RESET . 3-9

3.5.2 EXC (Exceptions) . 3-9

3.5.3 INT and NMI (Maskable and Non-Maskable Interrupts) . 3-9

3.5.3.1 Interrupt vectors . 3-9

3.5.3.2 Interrupt modes . 3-10

3.5.3.3 Device interrupt acknowledge . 3-10

3.5.3.4 Interrupt priorities . 3-10

3.5.3.5 Interrupt masking . 3-10

3.5.3.6 Software interrupts and acknowledgment . 3-11

3.5.3.7 NMI sequentialization . 3-11

3.5.3.8 Interrupt source assignment . 3-11

3.6 PNX1300 to Host Interrupts . 3-11

3.7 Host to PNX1300 Interrupts . 3-12

3.8 Timers . 3-12

3.9 Debug Support . 3-13

3.9.1 Instruction Breakpoints . 3-13

3.9.2 Data Breakpoints . 3-14

4 Custom Operations for Multimedia
4.1 Custom OperationS Overview . 4-1

4.1.1 Custom Operation Motivation . 4-1

4.1.2 Introduction to Custom Operations . 4-1

4.1.3 Example Uses of Custom Ops . 4-3

4.2 Example 1: Byte-Matrix Transposition . 4-3

4.3 Example 2: MPEG Image Reconstruction . 4-4

4.4 Example 3: Motion-Estimation Kernel . 4-7

4.4.1 A Simple Transformation . 4-8

4.4.2 More Unrolling . 4-10

5 Cache Architecture
5.1 Memory System Overview . 5-1

5.2 DRAM Aperture . 5-2

5.3 Data Cache . 5-3

5.3.1 General Cache Parameters . 5-3

5.3.2 Address Mapping . 5-3
PRELIMINARY SPECIFICATION 5

PNX1300/01/02/11 Data Book Philips Semiconductors
5.3.3 Miss Processing Order . 5-4

5.3.4 Replacement Policies, Coherency . 5-4

5.3.5 Alignment, Partial-Word Transfers, Endian-ness . 5-4

5.3.6 Dual Ports . 5-4

5.3.7 Cache Locking . 5-4

5.3.8 Memory Hole and PCI Aperture Disable . 5-5

5.3.9 Non-cacheable Region . 5-5

5.3.10 Special Data Cache Operations . 5-6

5.3.10.1 Copyback and invalidate operations . 5-6

5.3.10.2 Data cache tag and status operations . 5-6

5.3.10.3 Data cache allocation operation . 5-7

5.3.10.4 Data cache prefetch operation . 5-7

5.3.11 Memory Operation Ordering . 5-7

5.3.12 Operation Latency . 5-8

5.3.13 MMIO Register References . 5-8

5.3.14 PCI Bus References . 5-8

5.3.15 CPU Stall Conditions . 5-8

5.3.16 Data Cache Initialization . 5-8

5.4 Instruction Cache . 5-8

5.4.1 General Cache Parameters . 5-8

5.4.2 Address Mapping . 5-8

5.4.3 Miss Processing Order . 5-9

5.4.4 Replacement Policy . 5-9

5.4.5 Location of Program Code . 5-9

5.4.6 Branch Units . 5-9

5.4.7 Coherency: Special iclr Operation . 5-9

5.4.8 Reading Tags and Cache Status . 5-9

5.4.9 Cache Locking . 5-10

5.4.10 Instruction Cache Initialization and Boot Sequence . 5-10

5.5 LRU Algorithm . 5-11

5.5.1 Two-Way Algorithm . 5-11

5.6 Cache Coherency . 5-11

5.6.1 Example 1: Data-Cache/Input-Unit Coherency . 5-11

5.6.2 Example 2: Data-Cache/Output-Unit Coherency . 5-11

5.6.3 Example 3: Instruction-Cache/Data-Cache Coherency . 5-11

5.6.4 Example 4: Instruction-Cache/Input-Unit Coherency . 5-11

5.6.5 Four-Way Algorithm . 5-11

5.6.6 LRU Initialization . 5-12

5.6.7 LRU Bit Definitions . 5-12

5.6.8 LRU for the Dual-Ported Cache . 5-12
6 PRELIMINARY SPECIFICATION

Philips Semiconductors
5.7 Performance Evaluation Support . 5-12

5.8 MMIO Register Summary . 5-13

6 Video In
6.1 video in overview . 6-1

6.1.1 Interface . 6-1

6.1.2 Diagnostic Mode . 6-2

6.1.3 Power Down and Sleepless . 6-2

6.1.4 Hardware and Software Reset . 6-2

6.2 Clock Generator . 6-4

6.3 Fullres Capture Mode . 6-4

6.4 Halfres Capture Mode . 6-9

6.5 Raw Capture Modes . 6-10

6.6 Message-Passing Mode . 6-11

6.6.1 VI_DVALID in Message Passing Mode . 6-12

6.7 Highway Latency and HBE . 6-13

7 Enhanced Video Out
7.1 Enhanced Video Out Summary . 7-1

7.2 About This Document . 7-1

7.3 Backward Compatibility . 7-1

7.4 Function summary . 7-1

7.4.1 Detailed Feature Descriptions . 7-2

7.4.2 Summary of Operation . 7-2

7.5 Interface . 7-2

7.6 Block Diagram . 7-3

7.7 Clock System . 7-3

7.8 Image Timing . 7-4

7.8.1 CCIR 656 Pixel Timing . 7-4

7.8.2 CCIR 656 Line Timing . 7-4

7.8.3 SAV and EAV Codes . 7-5

7.8.4 Video Clipping . 7-6

7.8.5 CCIR 656 Frame Timing . 7-6

7.9 Enhanced Video Out Timing Generation . 7-6

7.9.1 Active Video Area . 7-6

7.9.2 SAV and EAV Overlap Period . 7-7

7.9.3 Control of Frame and Image Counters . 7-7

7.9.4 Horizontal and Frame Timing Signals . 7-7

7.10 Genlock Mode . 7-8

7.11 Data Transfer Timing . 7-9

7.12 Image Data Memory Formats . 7-9
PRELIMINARY SPECIFICATION 7

PNX1300/01/02/11 Data Book Philips Semiconductors
7.12.1 Video Image Formats . 7-9

7.12.2 Planar Storage of Video Image Data in Memory . 7-10

7.12.3 Graphics Overlay Image Format . 7-10

7.13 Video Image Conversion Algorithms . 7-10

7.13.1 YUV 4:2:2 Interspersed to YUV 4:2:2 Co-sited Conversion . 7-11

7.13.2 YUV 4:2:0 to YUV 4:2:2 Co-sited Conversion . 7-11

7.13.3 YUV-2x Upscaling . 7-11

7.13.4 Pixel Mirroring for Four-tap Filters . 7-11

7.14 EVO Operating Modes . 7-13

7.15 Video Processing . 7-13

7.15.1 Alpha Blending . 7-13

7.15.2 Chroma Keying . 7-14

7.15.3 Programmable Clipping . 7-14

7.16 MMIO Registers . 7-14

7.16.1 VO Status Register (VO_STATUS) . 7-16

7.16.2 VO Control Register (VO_CTL) . 7-17

7.16.3 VO-Related Registers . 7-18

7.16.4 EVO Control Register (EVO_CTL) . 7-20

7.16.5 EVO-Related Registers . 7-21

7.17 Enhanced Video Out Operation . 7-21

7.17.1 Video Refresh Modes . 7-21

7.18 Frame and field timing control . 7-23

7.18.1 Recommended values for timing registers . 7-23

7.18.2 Data-transfer Modes . 7-23

7.18.3 Interrupts and Error Conditions . 7-23

7.18.4 Latency and Bandwidth Requirements . 7-24

7.18.5 Power Down and Sleepless . 7-24

7.19 DDS and PLL Filter Details . 7-25

8 Audio In
8.1 Audio In Overview . 8-1

8.2 External Interface . 8-1

8.3 Clock System . 8-2

8.3.1 PNX1300 Improved Mode . 8-2

8.3.2 TM-1000 Compatibility Mode . 8-2

8.4 Clock System Operation . 8-2

8.5 Serial Data Framing . 8-3

8.6 Memory Data Formats . 8-4

8.7 Audio In Operation . 8-6

8.8 Power Down and Sleepless . 8-7

8.9 Highway Latency and HBE . 8-7
8 PRELIMINARY SPECIFICATION

Philips Semiconductors
8.10 Error Behavior . 8-7

8.11 Diagnostic Mode . 8-7

9 Audio Out
9.1 Audio Out Overview . 9-1

9.2 External Interface . 9-1

9.3 Summary of Operation . 9-2

9.4 Internal Clock Source . 9-2

9.4.1 PNX1300 Standard Improved Mode . 9-3

9.4.2 TM-1000 Compatibility Mode . 9-4

9.5 Clock System Operation . 9-4

9.6 Serial Data Framing . 9-4

9.6.1 Serial Frame Limitations . 9-5

9.6.2 I2S Serial Framing Example . 9-6

9.7 Codec Control . 9-6

9.8 Memory Data Formats . 9-7

9.9 Audio Out Operation . 9-8

9.10 Interrupts . 9-9

9.11 Timestamp . 9-10

9.12 powerdown and Sleepless . 9-10

9.13 Highway Latency and HBE . 9-10

9.14 Error Behavior . 9-11

10 SPDIF Out
10.1 SPDIF Out Overview . 10-1

10.2 External Interface . 10-1

10.3 Summary of Operation . 10-1

10.3.1 SPDIF Mode . 10-1

10.3.2 Transparent DMA Mode . 10-1

10.4 IEC-958 Serial Format . 10-2

10.5 IEC-958 Bit Cell and Pre-amble . 10-2

10.6 IEC-958 Parity . 10-3

10.7 IEC-958 Memory Data Format . 10-3

10.8 Sample Rate Programming . 10-3

10.9 Transparent Mode . 10-4

10.10 DMA Operation . 10-4

10.11 DMA Error Conditions . 10-4

10.12 Interrupts . 10-4

10.13 Timestamps . 10-4

10.14 MMIO Register Description . 10-5

10.15 RESET . 10-6
PRELIMINARY SPECIFICATION 9

PNX1300/01/02/11 Data Book Philips Semiconductors
10.16 Power Down and Sleepless . 10-6

10.17 HBE and Highway Latency . 10-6

10.18 Literature References . 10-7

11 PCI Interface
11.1 PCI Overview . 11-1

11.2 PCI Interface as an Initiator . 11-2

11.2.1 DSPCPU Single-Word Loads/Stores . 11-2

11.2.2 I/O Operations . 11-2

11.2.3 Configuration Operations . 11-2

11.2.4 DMA Operations . 11-2

11.3 PCI Interface as a Target . 11-3

11.4 Transaction Concurrency, Priorities, and Ordering . 11-3

11.5 Registers Addressed in PCI Configuration Space . 11-3

11.5.1 Vendor ID Register . 11-3

11.5.2 Device ID Register . 11-3

11.5.3 Command Register . 11-3

11.5.4 Status Register . 11-5

11.5.5 Revision ID Register . 11-6

11.5.6 Class Code Register . 11-6

11.5.7 Cache Line Size Register . 11-7

11.5.8 Latency Timer Register . 11-7

11.5.9 Header Type Register . 11-7

11.5.10 Built-In Self Test Register . 11-7

11.5.11 Base Address Registers . 11-7

11.5.12 Subsystem ID, Subsystem Vendor ID Register . 11-9

11.5.13 Expansion ROM Base Address Register . 11-9

11.5.14 Interrupt Line Register . 11-9

11.5.15 Interrupt Pin Register . 11-9

11.5.16 Max_Lat, Min_Gnt Registers . 11-9

11.6 Registers in MMIO Space . 11-9

11.6.1 DRAM_BASE Register . 11-9

11.6.2 MMIO_BASE Register . 11-9

11.6.3 MMIO/DRAM_BASE updates . 11-10

11.6.4 BIU_STATUS Register . 11-11

11.6.5 BIU_CTL Register . 11-11

11.6.6 PCI_ADR Register . 11-12

11.6.7 PCI_DATA Register . 11-12

11.6.8 CONFIG_ADR Register . 11-12

11.6.9 CONFIG_DATA Register . 11-13

11.6.10 CONFIG_CTL Register . 11-13
10 PRELIMINARY SPECIFICATION

Philips Semiconductors
11.6.11 IO_ADR Register . 11-13

11.6.12 IO_DATA Register . 11-13

11.6.13 IO_CTL Register . 11-13

11.6.14 SRC_ADR Register . 11-14

11.6.15 DEST_ADR Register . 11-14

11.6.16 DMA_CTL Register . 11-14

11.6.17 INT_CTL Register . 11-15

11.7 PCI Bus Protocol Overview . 11-15

11.7.1 Single-Data-Phase Operations . 11-16

11.7.2 Multi-Data-Phase Operations . 11-16

11.8 Limitations . 11-17

11.8.1 Bus Locking . 11-17

11.8.2 No Expansion ROM . 11-17

11.8.3 No Cacheline Wrap Address Sequence . 11-17

11.8.4 No Burst for I/O or Configuration Space . 11-17

11.8.5 Word-Only MMIO Register Access . 11-17

12 SDRAM Memory System
12.1 New in PNX1300/01/02/11 . 12-1

12.2 PNX1300 Main Memory Overview . 12-1

12.3 Main-Memory Address Aperture . 12-1

12.4 Memory Devices Supported . 12-2

12.4.1 SDRAM . 12-2

12.4.2 SGRAM . 12-2

12.5 Memory Granularity and Sizes . 12-2

12.6 Memory System Programming . 12-3

12.6.1 MM_CONFIG Register . 12-3

12.6.2 PLL_RATIOS Register . 12-4

12.7 Memory Interface Pin List . 12-5

12.8 Address Mapping . 12-5

12.8.1 Address Mapping in 32-bit mode . 12-5

12.8.2 Address Mapping in 16-bit mode . 12-6

12.9 Memory Interface and SDRAM Initialization . 12-6

12.10 On-Chip SDRAM Interleaving . 12-6

12.11 Refresh . 12-6

12.12 Power-Down Mode . 12-7

12.13 Output Driver Capacity . 12-7

12.14 Signal Propagation Delay Compensation . 12-7

12.15 Circuit Board Design . 12-7

12.15.1 General Guidelines . 12-7

12.15.2 Specific Guidelines . 12-8
PRELIMINARY SPECIFICATION 11

PNX1300/01/02/11 Data Book Philips Semiconductors
12.15.3 Termination . 12-8

12.16 Timing Budget . 12-8

12.16.1 Main AC Parameter requirements . 12-9

12.17 Example Block Diagrams . 12-9

12.17.1 Block Diagrams for a 32-bit interface . 12-9

12.17.1.1 16-Mbit Devices or Less . 12-9

12.17.1.2 64-Mbit Devices . 12-10

12.17.1.3 128-Mbit Devices . 12-13

12.17.1.4 256-Mbit Devices . 12-16

12.17.2 Block Diagrams for a 16-bit interface . 12-17

13 System Boot
13.1 Boot Sequence Overview . 13-1

13.2 Boot Hardware Operation . 13-2

13.2.1 Boot Procedure Common to Both Autonomous and Host-Assisted Bootstrap 13-2

13.2.2 Initial DSPCPU Program Load for Autonomous Bootstrap . 13-5

13.3 Host-Assisted Boot Description . 13-6

13.3.1 Stage 1: PNX1300 System Boot Hardware . 13-6

13.3.2 Stage 2: Host-System PCI Configuration . 13-6

13.3.3 Stage 3: PNX1300 Driver Executing on the Host . 13-6

13.4 Detailed EEPROM Contents . 13-7

13.5 EEPROM Access Protocols . 13-9

14 Image Coprocessor
14.1 Image Coprocessor Overview . 14-1

14.2 Requirements . 14-1

14.2.1 Functions . 14-1

14.2.2 Bandwidth . 14-1

14.2.3 Image Size and Scaling . 14-3

14.3 Interface . 14-3

14.4 Data Formats . 14-3

14.4.1 Image Input Formats . 14-3

14.4.1.1 YUV 4:2:2 Co-Sited . 14-3

14.4.1.2 YUV 4:2:2 Interspersed . 14-3

14.4.1.3 YUV 4:2:0 XY Interspersed . 14-3

14.4.1.4 YUV 4:1:1 Co-Sited . 14-3

14.4.2 Image Overlay Formats . 14-5

14.4.3 Alpha Blending Codes . 14-5

14.4.4 Output Formats . 14-5

14.5 Algorithms . 14-6

14.5.1 Introduction . 14-6
12 PRELIMINARY SPECIFICATION

Philips Semiconductors
14.5.2 Filtering . 14-6

14.5.3 Scaling . 14-6

14.5.4 YUV to RGB Conversion . 14-9

14.5.5 Overlay and Alpha Blending . 14-9

14.5.6 Dithering . 14-10

14.5.7 Implementation Overview: Horizontal Scaling and Filtering . 14-11

14.5.7.1 Loading the extra pixels in the filter . 14-12

14.5.7.2 Mirroring pixels at the ends of a line . 14-12

14.5.7.3 Horizontal filter SDRAM timing . 14-12

14.5.8 Implementation Overview: Vertical Scaling and Filtering . 14-13

14.5.8.1 Mirroring lines at the ends of an image . 14-15

14.5.8.2 Vertical filter SDRAM block timing . 14-15

14.5.9 Horizontal Scaling and Filtering for RGB Output . 14-15

14.5.9.1 YUV sequence counter in YUV 4:2:2 output Mode . 14-15

14.5.9.2 PCI output block timing . 14-16

14.6 Operation and Programming . 14-16

14.6.1 ICP Register Model . 14-17

14.6.2 Power Down . 14-17

14.6.3 ICP Operation . 14-18

14.6.4 ICP Microprogram Set . 14-18

14.6.5 ICP Processing Time . 14-18

14.6.6 Priority Delay and ICP Minimum Bus Bandwidth . 14-21

14.6.7 ICP Parameter Tables . 14-22

14.6.8 Load Coefficients . 14-22

14.6.9 Horizontal Filter - SDRAM to SDRAM . 14-22

14.6.9.1 Algorithms . 14-22

14.6.9.2 Parameter table . 14-22

14.6.9.3 Control word format . 14-23

14.6.10 Vertical Filter - SDRAM to SDRAM . 14-24

14.6.10.1 Algorithms . 14-24

14.6.10.2 Parameter table . 14-24

14.6.10.3 Control word format . 14-25

14.6.11 Horizontal Filter with RGB/YUV Conversion to PCI or SDRAM . 14-25

14.6.11.1 Algorithms . 14-25

14.6.11.2 Parameter table . 14-26

14.6.11.3 Control word format . 14-27

15 Variable Length Decoder
15.1 VLD Overview . 15-1

15.2 VLD Operation . 15-1

15.3 Decoding up to A slice . 15-2
PRELIMINARY SPECIFICATION 13

PNX1300/01/02/11 Data Book Philips Semiconductors
15.4 VLD Input . 15-2

15.5 VLD Output . 15-3

15.5.1 Macroblock Header Output Data . 15-3

15.5.2 Run-Level Output Data . 15-4

15.6 VLD Time Sharing . 15-4

15.7 MMIO Registers . 15-4

15.7.1 VLD Status (VLD_STATUS) . 15-4

15.7.2 VLD Interrupt Enable (VLD_IMASK) . 15-4

15.7.3 VLD Control (VLD_CTL) . 15-5

15.8 VLD DMA Registers . 15-5

15.8.1 DMA Input . 15-5

15.8.2 Macroblock Header Output DMA . 15-5

15.8.3 Run-Level Output DMA . 15-5

15.9 VLD Operational Registers . 15-7

15.9.1 VLD Command (VLD_COMMAND) . 15-7

15.9.2 VLD Shift Register (VLD_SR) . 15-7

15.9.3 VLD Quantizer Scale (VLD_QS) . 15-7

15.9.4 VLD Picture Info (VLD_PI) . 15-8

15.10 Error Handling . 15-8

15.11 Interrupt . 15-8

15.12 RESET . 15-8

15.13 Endian-ness . 15-8

15.14 Power Down . 15-8

15.15 References . 15-8

16 I2C Interface
16.1 I2C Overview . 16-1

16.2 Compared TO TM-1000 . 16-1

16.3 External Interface . 16-1

16.4 I2C Register Set . 16-1

16.4.1 IIC_AR Register . 16-1

16.4.2 IIC_DR Register . 16-2

16.4.3 IIC_SR Register . 16-3

16.4.4 IIC_CR Register . 16-4

16.5 I2C Software Operation Mode . 16-5

16.6 I2C Hardware Operation Mode . 16-5

16.6.1 Slave NAK . 16-6

16.7 I2C Clock Rate Generation . 16-7

17 Synchronous Serial Interface
17.1 Synchronous Serial Interface Overview . 17-1
14 PRELIMINARY SPECIFICATION

Philips Semiconductors
17.2 Interface . 17-1

17.3 Block Diagram . 17-1

17.3.1 General Purpose I/O . 17-2

17.3.2 Frame Synchronization . 17-3

17.3.3 SSI Transmit . 17-3

17.3.4 SSI Receive . 17-3

17.4 SSI Transmit operation . 17-5

17.4.1 Setup SSI_CTL . 17-5

17.4.2 Operation Details . 17-5

17.4.3 Interrupt and Status . 17-5

17.5 SSI Receive Operation . 17-6

17.5.1 Setup SSI_CTL . 17-6

17.5.2 Operation Details . 17-6

17.5.3 Interrupt and Status . 17-6

17.6 Frame Timing . 17-6

17.7 Interrupt Generation . 17-7

17.8 16-bit Endian-ness and Shift Direction . 17-7

17.9 SSI Test Modes . 17-8

17.9.1 Remote Loopback . 17-8

17.9.2 Local Loopback . 17-8

17.10 MMIO Registers . 17-8

17.10.1 SSI Control Register (SSI_CTL) . 17-9

17.10.2 SSI Control/Status Register (SSI_CSR) . 17-11

17.11 Timing Diagrams . 17-12

17.12 Power Down . 17-12

18 JTAG Functional Specification
18.1 Overview . 18-1

18.2 Test Access Port (TAP) . 18-1

18.2.1 TAP Controller . 18-1

18.2.2 PNX1300 JTAG Instruction Set . 18-2

18.3 Using JTAG for PNX1300 Debug . 18-3

18.3.1 JTAG Instruction and Data Registers. . 18-4

18.3.2 JTAG Communication Protocol . 18-5

18.3.3 Example Data Transfer Via JTAG . 18-5

18.3.3.1 Transferring data to TriMedia via JTAG . 18-5

18.3.3.2 Transferring data from TriMedia via JTAG . 18-6

18.3.4 JTAG Interface Module . 18-6

19 On-Chip Semaphore Assist Device
19.1 OVERVIEW . 19-1
PRELIMINARY SPECIFICATION 15

PNX1300/01/02/11 Data Book Philips Semiconductors
19.2 SEM Device Specification . 19-1

19.3 Constructing a 12-Bit ID . 19-1

19.4 Which SEM to Use . 19-1

19.5 Usage Notes . 19-1

20 Arbiter
20.1 Arbiter Features . 20-1

20.2 Dual Priorities with Priority Raising Mechanism . 20-1

20.3 Round Robin Arbitration . 20-2

20.3.1 Weighted Round Robin Arbitration . 20-2

20.3.2 Arbitration Levels . 20-3

20.4 Arbiter Architecture . 20-4

20.5 Arbiter programming . 20-5

20.5.1 Latency Analysis . 20-5

20.5.2 Bandwidth Analysis . 20-6

20.6 Extended Behavior Analysis . 20-7

20.6.1 Extended Bandwidth Analysis . 20-7

20.6.2 Extended Latency Analysis . 20-7

20.6.3 Raising Priority . 20-8

20.6.4 Conclusion . 20-8

21 Power Management
21.1 Overview . 21-1

21.2 Entering and Exiting Global Power Down Mode . 21-1

21.3 Effect Of Global Power Down On Peripherals . 21-1

21.4 Detailed Sequence of Events For Global Power Down . 21-2

21.5 MMIO Register POWER_DOWN . 21-2

21.6 Block Power Down . 21-2

22 PCI-XIO External I/O Bus
22.1 Summary Functionality . 22-1

22.1.1 Description . 22-1

22.2 Block Diagram . 22-3

22.3 Data Formats . 22-5

22.4 Interface . 22-5

22.4.1 PCI-XIO Bus Interface Design . 22-5

22.4.1.1 Flash EEPROM . 22-6

22.4.1.2 68K Bus I/O device . 22-6

22.4.1.3 x86/ISA Bus I/O device . 22-6

22.4.1.4 Multiple Flash EEPROM . 22-6

22.5 XIO_CTL MMIO Register . 22-7
16 PRELIMINARY SPECIFICATION

Philips Semiconductors
22.5.1 PCI_CLK Bus Clock Frequency . 22-7

22.5.2 Wait State Generator . 22-8

22.6 PCI-XIO Bus Timing . 22-8

22.7 PCI-XIO Bus Controller Operation and Programming . 22-12

A PNX1300/01/02/11.
DSPCPU Operations
A.1 Alphabetic Operation List . A-1

A.2 Operation List By Function . A-2

 alloc . A-4

 allocd . A-5

 allocr . A-6

 allocx . A-7

 asl . A-8

 asli . A-9

 asr . A-10

 asri . A-11

 bitand . A-12

 bitandinv . A-13

 bitinv . A-14

 bitor . A-15

 bitxor . A-16

 borrow . A-17

 carry . A-18

 curcycles . A-19

 cycles . A-20

 dcb . A-21

 dinvalid . A-22

 dspiabs . A-23

 dspiadd . A-24

 dspidualabs . A-25

 dspidualadd . A-26

 dspidualmul . A-27

 dspidualsub . A-28

 dspimul . A-29

 dspisub . A-30

 dspuadd . A-31

 dspumul . A-32

 dspuquadaddui . A-33

 dspusub . A-34

 dualasr . A-35
PRELIMINARY SPECIFICATION 17

PNX1300/01/02/11 Data Book Philips Semiconductors
 dualiclipi . A-36

 dualuclipi . A-37

 fabsval . A-38

 fabsvalflags . A-39

 fadd . A-40

 faddflags . A-41

 fdiv . A-42

 fdivflags . A-43

 feql . A-44

 feqlflags . A-45

 fgeq . A-46

 fgeqflags . A-47

 fgtr . A-48

 fgtrflags . A-49

 fleq . A-50

 fleqflags . A-51

 fles . A-52

 flesflags . A-53

 fmul . A-54

 fmulflags . A-55

 fneq . A-56

 fneqflags . A-57

 fsign . A-58

 fsignflags . A-59

 fsqrt . A-60

 fsqrtflags . A-61

 fsub . A-62

 fsubflags . A-63

 funshift1 . A-64

 funshift2 . A-65

 funshift3 . A-66

 h_dspiabs . A-67

 h_dspidualabs . A-68

 h_iabs . A-69

 h_st16d . A-70

 h_st32d . A-71

 h_st8d . A-72

 hicycles . A-73

 iabs . A-74

 iadd . A-75
18 PRELIMINARY SPECIFICATION

Philips Semiconductors
 iaddi . A-76

 iavgonep . A-77

 ibytesel . A-78

 iclipi . A-79

 iclr . A-80

 ident . A-81

 ieql . A-82

 ieqli . A-83

 ifir16 . A-84

 ifir8ii . A-85

 ifir8ui . A-86

 ifixieee . A-87

 ifixieeeflags . A-88

 ifixrz . A-89

 ifixrzflags . A-90

 iflip . A-91

 ifloat . A-92

 ifloatflags . A-93

 ifloatrz . A-94

 ifloatrzflags . A-95

 igeq . A-96

 igeqi . A-97

 igtr . A-98

 igtri . A-99

 iimm . A-100

 ijmpf . A-101

 ijmpi . A-102

 ijmpt . A-103

 ild16 . A-104

 ild16d . A-105

 ild16r . A-106

 ild16x . A-107

 ild8 . A-108

 ild8d . A-109

 ild8r . A-110

 ileq . A-111

 ileqi . A-112

 iles . A-113

 ilesi . A-114

 imax . A-115
PRELIMINARY SPECIFICATION 19

PNX1300/01/02/11 Data Book Philips Semiconductors
 imin . A-116

 imul . A-117

 imulm . A-118

 ineg . A-119

 ineq . A-120

 ineqi . A-121

 inonzero . A-122

 isub . A-123

 isubi . A-124

 izero . A-125

 jmpf . A-126

 jmpi . A-127

 jmpt . A-128

 ld32 . A-129

 ld32d . A-130

 ld32r . A-131

 ld32x . A-132

 lsl . A-133

 lsli . A-134

 lsr . A-135

 lsri . A-136

 mergedual16lsb . A-137

 mergelsb . A-138

 mergemsb . A-139

 nop . A-140

 pack16lsb . A-141

 pack16msb . A-142

 packbytes . A-143

 pref . A-144

 pref16x . A-145

 pref32x . A-146

 prefd . A-147

 prefr . A-148

 quadavg . A-149

 quadumax . A-150

 quadumin . A-151

 quadumulmsb . A-152

 rdstatus . A-153

 rdtag . A-154

 readdpc . A-155
20 PRELIMINARY SPECIFICATION

Philips Semiconductors
 readpcsw . A-156

 readspc . A-157

 rol . A-158

 roli . A-159

 sex16 . A-160

 sex8 . A-161

 st16 . A-162

 st16d . A-163

 st32 . A-164

 st32d . A-165

 st8 . A-166

 st8d . A-167

 ubytesel . A-168

 uclipi . A-169

 uclipu . A-170

 ueql . A-171

 ueqli . A-172

 ufir16 . A-173

 ufir8uu . A-174

 ufixieee . A-175

 ufixieeeflags . A-176

 ufixrz . A-177

 ufixrzflags . A-178

 ufloat . A-179

 ufloatflags . A-180

 ufloatrz . A-181

 ufloatrzflags . A-182

 ugeq . A-183

 ugeqi . A-184

 ugtr . A-185

 ugtri . A-186

 uimm . A-187

 uld16 . A-188

 uld16d . A-189

 uld16r . A-190

 uld16x . A-191

 uld8 . A-192

 uld8d . A-193

 uld8r . A-194

 uleq . A-195
PRELIMINARY SPECIFICATION 21

PNX1300/01/02/11 Data Book Philips Semiconductors
 uleqi . A-196

 ules . A-197

 ulesi . A-198

 ume8ii . A-199

 ume8uu . A-200

 umin . A-201

 umul . A-202

 umulm . A-203

 uneq . A-204

 uneqi . A-205

 writedpc . A-206

 writepcsw . A-207

 writespc . A-208

 zex16 . A-209

 zex8 . A-210

 . A-212

B MMIO Register Summary
B.1 MMIO Registers . B-1

C Endian-ness
C.1 Purpose . C-1

C.2 Little and Big Endian Addressing Conventions . C-1

C.3 Test to Verify the Correct Operation of PNX1300 in Big and Little Endian Systems C-2

C.4 Requirement for the PNX1300 to Operate in Either Little Endian or Big Endian Mode C-2

C.4.1 Data Cache . C-2

C.4.2 Instruction Cache . C-3

C.4.3 PNX1300 PCI Interface Unit . C-3

C.4.4 Image Coprocessor (ICP) . C-3

C.4.5 Video In (VI) and Video Out (VO) Units . C-7

C.4.6 Audio In (AI), Audio-Out (AO), and SPDIF Out (SDO) Units . C-7

C.4.7 Variable Length Encoder (VLD) Unit . C-7

C.4.8 Synchronous Serial Interface (SSI) . C-8

C.4.9 Compiler . C-9

C.5 Summary . C-9

C.6 References . C-9

Index
22 PRELIMINARY SPECIFICATION

Pin List Chapter 1

by John Chang, Wenyi Song, Thorwald Rabeler, Luis Lucas

1.1 PNX1300 SERIES VERSUS TM-1300

The following summarizes differences between TM-1300 and PNX1300/01/02/11:

• Lower core voltage for PNX1311 (2.2V core voltage) and therefore lower power consumption.
• DSPCPU speed of up to 200 MHz.
• SDRAM speed of up to 183 MHz.
• Support for 256 Mbit SDRAM organized in x16. The REFRESH counter must be changed. Refer for in Chapter 12,

“SDRAM Memory System” for details.
• Support for 16- and 32-bit Main Memory Interface.
• Simplified power supplies sequencing (see Section 1.9.4).
• Additional mode where VI_DATA[9:8] in message passing mode are not affected by the VI_DVALID signal.
• Bug fixed for PCI Special Cycles. PNX1300 Series discards PCI Special Cycles issued by some PCI chipsets.
• Autonomous boot bug in non 1:1 ratio is fixed, resulting in 2KB boot EEPROM size for all CPU:SDRAM ratios.

In the document, ‘PNX1300 Series’ is used interchangebly with ‘PNX1300/01/02/11’, and it always refers to
PNX1300, PNX1301, PNX1302 and PNX1311 products. Any exception will be noted.

1.2 BOUNDARY SCAN NOTICE

PNX1300 Series implements full IEEE 1149.1 boundary scan. Any PNX1300 Series pin designated “IN” only (from a
functionality point of view) can become an output during boundary scan.

1.3 I/O CIRCUIT SUMMARY

PNX1300 Series has a total of 169 functional pins, excluding VDDQ, VSSQ, VREF_PCI and VREF_PERIPH and digital
power/ground. PNX1300 Series uses the types of I/O circuits shown in the table below.

For the pins with 5-V input capability, the special pins VREF_PCI or VREF_PERIPH determine 3.3- or 5-V input toler-
ance, as per the table in Section 1.6. The above pad types are used in the modes listed in the following table.

Unused pins may remain floating, i.e. unconnected.

All pins that drive a clock should drive a series resistor.

Pad Type Pad Type Description

PCI PCI2.1 compliant I/O, capable of using 3.3-V or 5-V PCI signaling conventions.

PCIOD PCI2.1 compliant Open Drain I/O, capable of using 3.3-V or 5-V PCI signaling conventions.

IICOD Open drain 3.3-V or 5-V I2C I/O (for I2C pins).

STRG3 3.3-V only low impedance I/O. Requires board level 27-33 ohm series terminator resistor to match 50 ohm
PCB trace.

NORM3 3.3-V only I/O circuit with regular drive strength and board trace matched drive impedance.

STRG5 3.3-V low impedance output, combined with 5-V tolerant input. If used as output, it requires a board level
27-33 ohm series terminator resistor to match 50-ohm PCB trace.

WEAK5 3.3-V regular impedance output, with slow rise/fall, combined with 5-V tolerant input.

Modes Description

IN Input only, except during boundary scan

OUT Output only, except during boundary scan

OD Open drain output - active pull low, no active drive high, requires external pull-up

I/O Output or input

I/OD Open drain output with input - active pull low, no active drive high, requires external pull-up
PRELIMINARY SPECIFICATION 1-1

PNX1300/01/02/11 Data Book Philips Semiconductors
1.4 SIGNAL PIN LIST

In the table below, a pin name ending in a ‘#’ designates an active-low signal (the active state of the signal is a low
voltage level). All other signals have active-high polarity.

Pin Name BGA
Ball

Pad
Type Mode Description

Main Clock Interface

TRI_CLKIN L20 NORM3 IN Main input clock. The SDRAM clock outputs (MM_CLK0 and MM_CLK1) can be set to
2x or 3x this frequency. The on-chip DSPCPU clock (DSPCPU_CLK) can be set to 1x,
5/4, 4/3, 3/2 or 2x the SDRAM clock frequency. Maximum recommended ppm level is
+/- 100 ppm or lower to improve jitter on generated clocks. Duty cycle should not
exceed 30/70% asymmetry.
The operating limits of the internal PLLs are:
• 27 MHz < Output of the SDRAM PLL < 200 MHz
• 33 MHz < Output of the CPU PLL < 266 MHz
These are not the speed grades of the chips, just the PLL limits.

VDDQ K20 N/A PWR Quiet VDD for the PLL subsystem. This pin should be supplied from VDD through a
low-Q series inductor. It should be bypassed for AC to VSSQ, using a dual capacitor
bypass (hi and low frequency AC bypass).

VSSQ L19 N/A GND Quiet VSS for the PLL subsystem. Should be AC bypassed to VDDQ, but should
otherwise be left DC floating. It is connected on-chip to VSS. No external coil or
other connection to board ground is needed, such connection would create a
ground loop.

Miscellaneous System Interface

TRI_RESET# G19 WEAK5 IN PNX1300/01/02/11 RESET input. This pin can be tied to the PCI RST# signal in PCI
bus systems. Upon releasing RESET, PNX1300/01/02/11 initiates its boot protocol.

BOOT_CLK T20 NORM3 IN Used for testing purposes. Must be connected to TRI_CLKIN for normal operation.

TESTMODE P19 NORM3 IN Used for testing purposes. Must be connected to VSS for normal operation.

SCANCPU D20 NORM3 IN Used for testing purposes. Must be connected to VSS for normal operation.

RESERVED1 E19 NORM3 I/O Reserved pin. Has to be left unconnected for normal operation.

RESERVED2 D19 STRG5 I/O Reserved pin. Has to be left unconnected for normal operation.

VREF_PCI F2 N/A PWR VREF_PCI determines the mode of operation of the PCI pins listed in Section 1.6.
VREF_PCI must be connected to 5V for use in a 5-V PCI signaling environment or to
VSS (0 V) for use in 3.3-V PCI signaling environment. The supply to this pin should be
AC bypassed and provide 40 mA of DC sink or source capability. Note that this pin
can not be directly connected to the PCI ‘I/O designated power pins’ in a dual
voltage PCI plug-in card. Board level conversion circuitry is required.

VREF_PERIPH C18 N/A PWR VREF_PERIPH determines the mode of operation of the I/O pins listed in Section 1.6.
VREF_PERIPH should be connected to 5V if any of the listed I/O pins provided should
be 5-V input voltage capable. VREF_PERIPH should be connected to VSS (0-V) if all
listed I/O pins are 3.3-V only inputs. The supply to this pin should be AC bypassed and
provide 40 mA of DC sink or source capability.

TRI_USERIRQ G20 WEAK5 IN General purpose level/edge interrupt input. Vectored interrupt source number 4.

TRI_TIMER_CLK H19 WEAK5 IN External general purpose clock source for timers. Max. 40 MHz.
1-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
Main Memory Interface

MM_CLK0
MM_CLK1

Y10
W10

STRG3 OUT SDRAM output clock at 2x or 3x TRI_CLKIN frequency. Two identical outputs are pro-
vided to reliably drive several small memory configurations without external glue.
A series terminating resistor close to PNX1300/01/02/11 is required to reduce ringing.
For driving a 50-ohm trace, a resistor of 27 to 33 ohm is recommended. It is recom-
mended against using higher impedance traces in the SDRAM signals.

MM_A00
MM_A01
MM_A02
MM_A03
MM_A04
MM_A05
MM_A06
MM_A07
MM_A08
MM_A09
MM_A10
MM_A11
MM_A12
MM_A13

W12
Y12
W11
Y11
Y9
W9
V9
Y8
W8
Y7
V12
Y13
W13
Y14

NORM3 OUT Main memory address bus; used for row and column addresses

WARNING: MM_A[13:11] DO NOT CONNECT DIRECTLY TO SDRAM A[13:11] pins.
Refer to Chapter 12, “SDRAM Memory System” for accurate connection diagrams.

MM_DQ00
MM_DQ01
MM_DQ02
MM_DQ03
MM_DQ04
MM_DQ05
MM_DQ06
MM_DQ07
MM_DQ08
MM_DQ09
MM_DQ10
MM_DQ11
MM_DQ12
MM_DQ13
MM_DQ14
MM_DQ15
MM_DQ16
MM_DQ17
MM_DQ18
MM_DQ19
MM_DQ20
MM_DQ21
MM_DQ22
MM_DQ23
MM_DQ24
MM_DQ25
MM_DQ26
MM_DQ27
MM_DQ28
MM_DQ29
MM_DQ30
MM_DQ31

Y20
V18
W19
W20
U18
V19
V20
T18
W18
V17
Y18
W17
Y17
W16
Y16
V15
W7
Y6
W6
V6
Y5
W5
Y4
W4
V2
V3
W1
W2
Y1
Y2
W3
Y3

NORM3 I/O 32-bit data I/O bus.
The Main Memory Interface unit also supports a 16-bit I/O interface. Refer to Chapter
12, “SDRAM Memory System.”

MM_CKE0
MM_CKE1

Y19
U1

NORM3 OUT Clock enable output to SDRAMs. Two identical outputs are provided in order to reliably
drive several small memory configurations without external glue.

MM_CS0#
MM_CS1#
MM_CS2#
MM_CS3#

U2
U20
U3
U19

NORM3 OUT Chip select for DRAM rank n; active low
In PNX1300/01/02/11 the chip selects pins may be used as address pins to support
the 256 Mbit SDRAM device organized in x16. Refer to Chapter 12, “SDRAM Memory
System.”

MM_RAS# W14 NORM3 OUT Row address strobe; active low

MM_CAS# Y15 NORM3 OUT Column address strobe; active low

MM_WE# W15 NORM3 OUT Write enable; active low

Pin Name BGA
Ball

Pad
Type Mode Description
PRELIMINARY SPECIFICATION 1-3

PNX1300/01/02/11 Data Book Philips Semiconductors
MM_DQM0
MM_DQM1
MM_DQM2
MM_DQM3

T19
R18
V1
V4

NORM3 OUT MM_DQ Mask Enable; these are byte enable signals for the 32-bit MM_DQ bus

PCI Interface (Note: current buffer design allows drive/receive from either 3.3 or 5V PCI bus)

PCI_CLK T2 PCI IN All PCI input signals are sampled with respect to the rising edge of this clock. All PCI
outputs are generated based on this clock. Clock is required for normal operation of
the PCI block.

PCI_AD00
PCI_AD01
PCI_AD02
PCI_AD03
PCI_AD04
PCI_AD05
PCI_AD06
PCI_AD07
PCI_AD08
PCI_AD09
PCI_AD10
PCI_AD11
PCI_AD12
PCI_AD13
PCI_AD14
PCI_AD15
PCI_AD16
PCI_AD17
PCI_AD18
PCI_AD19
PCI_AD20
PCI_AD21
PCI_AD22
PCI_AD23
PCI_AD24
PCI_AD25
PCI_AD26
PCI_AD27
PCI_AD28
PCI_AD29
PCI_AD30
PCI_AD31

T1
R3
R2
R1
P2
P1
N2
N1
M2
M1
L2
L1
K1
K2
J1
J2
D1
D3
C1
B2
B1
C2
C3
A1
A3
C4
B4
A4
A5
C6
B6
A6

PCI I/O Multiplexed address and data.

PCI_C/BE#0
PCI_C/BE#1
PCI_C/BE#2
PCI_C/BE#3

M3
J3
D2
B3

PCI I/O Multiplexed bus commands and byte enables. High for command, low for byte enable.

PCI_PAR H1 PCI I/O Even parity across AD and C/BE lines.

PCI_FRAME# E2 PCI I/O Sustained tri-state. Frame is driven by a master to indicate the beginning and duration
of an access.

PCI_IRDY# E1 PCI I/O Sustained tri-state. Initiator Ready indicates that the bus master is ready to complete
the current data phase.

PCI_TRDY# F3 PCI I/O Sustained tri-state. Target Ready indicates that the bus target is ready to complete the
current data phase.

PCI_STOP# G2 PCI I/O Sustained tri-state. Indicates that the target is requesting that the master stop the cur-
rent transaction.

PCI_IDSEL A2 PCI IN Used as chip select during configuration read/write cycles.

PCI_DEVSEL# F1 PCI I/O Sustained tri-state. Indicates whether any device on the bus has been selected.

PCI_REQ# B7 PCI I/O Driven by PNX1300/01/02/11 as PCI bus master to request use of the PCI bus.

PCI_GNT# B5 PCI IN Indicates to PNX1300/01/02/11 that access to the bus has been granted.

PCI_PERR# G1 PCI I/O Sustained tri-state. Parity error generated/received by PNX1300/01/02/11.

PCI_SERR# H2 PCI OD System error. This signal is asserted when operating as target and detecting an
address parity error.

Pin Name BGA
Ball

Pad
Type Mode Description
1-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
PCI_INTA#
PCI_INTB#
PCI_INTC#
PCI_INTD#

C9
A8
B8
A7

PCIOD
PCI

PCIOD
PCIOD

I/OD
I/O/OD
I/OD
I/OD

• Can operate as input (power up default) or output, as determined by direction con-
trol bits in PCI MMIO register INT_CTL.

• As input, a PCI_INT# pin can be used to receive PCI interrupt requests (normal
PCI use is active low, level sensitive mode, but the VIC can be set to treat these as
positive edge triggered mode). As input, a PCI_INT# pin can also be used as a
general interrupt request pin if not needed for PCI.

• As output, the value of a PCI_INT# can be programmed through PCI MMIO regis-
ters to generate interrupts for other PCI masters.

• Whenever XIO bus functionality is active, PCI_INTB# is a push-pull CMOS I/O pin.
When the XIO bus is not active and regular PCI bus functionality is activated, then
PCI_INTB# has a PCI compatible open drain output.

JTAG Interface (debug access port and 1149.1 boundary scan port)

JTAG_TDI F20 WEAK5 IN JTAG test data input

JTAG_TDO F18 WEAK5 I/O JTAG test data output. This pin can either drive active low, high or float.

JTAG_TCK F19 WEAK5 IN JTAG test clock input

JTAG_TMS E20 WEAK5 IN JTAG test mode select input

Video In

VI_CLK C20 STRG5 I/O • If configured as input (power up default): a positive transition on this incoming video
clock pin samples all other VI_DATA input signals below if VI_DVALID is HIGH. If
VI_DVALID is LOW, VI_DATA is ignored. Clock and data rates of up to 81 MHz are
supported. PNX1300 Series supports an additional mode where VI_DATA[9:8] in
message passing mode are not affected by the VI_DVALID signal, Section 6.6.1 on
page 6-12.

• If configured as output: programmable output clock to drive an external video A/D
converter. Can be programmed to emit integral dividers of DSPCPU_CLK.

If used as output, a board level 27-33 ohm series resistor is recommended to reduce
ringing.

VI_DVALID A17 WEAK5 IN VI_DVALID indicates that valid data is present on the VI_DATA lines. If HIGH, VI_DATA
will be accepted on the next VI_CLK positive edge. If LOW, no VI_DATA will be sam-
pled. PNX1300 Series supports an additional mode where VI_DATA[9:8] in message
passing mode are not affected by the VI_DVALID signal, Section 6.6.1 on p age6-12.

VI_DATA0
VI_DATA1
VI_DATA2
VI_DATA3
VI_DATA4
VI_DATA5
VI_DATA6
VI_DATA7

D18
C19
B20
B19
A20
A19
C17
B18

WEAK5 IN CCIR656 style YUV 4:2:2 data from a digital camera, or general purpose high speed
data input pins. Sampled on VI_CLK if VI_DVALID HIGH.

VI_DATA8
VI_DATA9

A18
B17

WEAK5 IN Extension high speed data input bits to allow use of 10 bit video A/D converters in
raw10 modes. VI_DATA[8] serves as START and VI_DATA[9] as END message input in
message passing mode. Sampled on positive transitions of VI_CLK if VI_DVALID
HIGH. PNX1300 Series supports an additional mode where VI_DATA[9:8] in message
passing mode are not affected by the VI_DVALID signal, Section 6.6.1 on p age6-12.

I2C Interface

IIC_SDA R19 IICOD I/OD I2C serial data

IIC_SCL R20 IICOD I/OD I2C clock

Video Out

VO_DATA0
VO_DATA1
VO_DATA2
VO_DATA3
VO_DATA4
VO_DATA5
VO_DATA6
VO_DATA7

P20
N19
N20
M18
M19
M20
K19
J20

WEAK5 OUT CCIR656 style YUV 4:2:2 digital output data, or general purpose high speed data out-
put channel. Output changes on positive edge of VO_CLK.

Pin Name BGA
Ball

Pad
Type Mode Description
PRELIMINARY SPECIFICATION 1-5

PNX1300/01/02/11 Data Book Philips Semiconductors
VO_IO1 J18 WEAK5 I/O This pin can function as HS output or as STMSG (Start Message) output.
• If set as HS output, it outputs the horizontal sync signal
• In message passing mode, this pin acts as STMSG output.

VO_IO2 H20 WEAK5 I/O This pin can function as FS (frame sync) input, FS output or as ENDMSG output.
• If set as FS input, it can be set to respond to positive or negative edge transitions.
• If the Video Out (VO) unit operates in external sync mode and the selected transition

occurs, the VO unit sends two fields of video data. Note: this works only once after a
reset.

• In message passing mode, this pin acts as ENDMSG output.

VO_CLK J19 STRG5 I/O The VO unit emits VO_DATA on a positive edge of VO_CLK. VO_CLK can be config-
ured as input (reset default) or output.
• If configured as input: VO_CLK is received from external display clock master cir-

cuitry.
• If configured as output, PNX1300/01/02/11 emits a programmable clock frequency.

The emitted frequency can be set between approx. 4 and 81 MHz with a sub-Hertz
resolution. The clock generated is frequency accurate and has low jitter properties
due to a combination of an on-chip DDS (Direct Digital Synthesizer) and VCO/PLL.

If used as output, a board level 27-33 ohm series resistor is recommended to reduce
ringing.

Audio In (always acts as receiver, but can be master or slave for A/D timing)

AI_OSCLK B15 STRG3 OUT Over-sampling clock. This output can be programmed to emit any frequency up to 40
MHz with a sub-Hertz resolution. It is intended for use as the 256fs or 384fs over sam-
pling clock by external A/D subsystem. A board level 27-33 ohm series resistor is rec-
ommended to reduce ringing.

AI_SCK A16 STRG5 I/O • When the Audio In (AI) unit is programmed as a serial-interface timing slave
(power-up default), AI_SCK is an input. AI_SCK receives the serial bit clock from
the external A/D subsystem. This clock is treated as fully asynchronous to the
PNX1300/01/02/11 main clock.

• When the AI unit is programmed as the serial-interface timing master, AI_SCK is an
output. AI_SCK drives the serial clock for the external A/D subsystem. The fre-
quency is a programmable integral divisors of the AI_OSCLK frequency.

AI_SCK is limited to 22 MHz. The sample rate of valid samples embedded within the
serial stream is variable. If used as output, a board level 27-33 ohm series resistor is
recommended to reduce ringing.

AI_SD C15 WEAK5 IN Serial data from external A/D subsystem. Data on this pin is sampled on positive or
negative edges of AI_SCK as determined by the CLOCK_EDGE bit in the AI_SERIAL
register.

AI_WS B16 WEAK5 I/O • When the AI unit is programmed as the serial-interface timing slave (power-up
default), AI_WS acts as an input. AI_WS is sampled on the same edge as selected
for AI_SD.

• When Audio In is programmed as the serial-interface timing master, AI_WS acts as
an output. It is asserted on the opposite edge of the AI_SD sampling edge.

AI_WS is the word-select or frame-synchronization signal from/to the external A/D
subsystem.

Pin Name BGA
Ball

Pad
Type Mode Description
1-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
Audio Out (always acts as sender, but can be master or slave for D/A timing)

AO_OSCLK B14 STRG3 OUT Over sampling clock. This output can be programmed to emit any frequency up to 40
MHz, with a sub-Hertz resolution. It is intended for use as the 256 or 384fs over sam-
pling clock by the external D/A conversion subsystem. A board level 27-33 ohm series
resistor is recommended to reduce ringing.

AO_SCK A14 STRG5 I/O • When the Audio Out (AO) unit is programmed to act as the serial interface timing
slave (power up default), AO_SCK acts as input. It receives the Serial Clock from
the external audio D/A subsystem. The clock is treated as fully asynchronous to the
PNX1300/01/02/11 main clock.

• When the AO unit is programmed to act as serial interface timing master, AO_SCK
acts as output. It drives the serial clock for the external audio D/A subsystem. The
clock frequency is a programmable integral divisor of the AO_OSCLK frequency.

AO_SCK is limited to 22 MHz. The sample rate of valid samples embedded within the
serial stream is variable. If used as output, a board level 27-33 ohm series resistor is
recommended to reduce ringing.

AO_SD1 B13 WEAK5 OUT Serial data to external stereo audio D/A subsystem for first 2 of 8 channels. The timing
of transitions on this output is determined by the CLOCK_EDGE bit in the AO_SERIAL
register, and can be on positive or negative AO_SCK edges.

AO_SD2 A13 WEAK5 OUT Serial data.

AO_SD3 C12 WEAK5 OUT Serial data.

AO_SD4 B12 WEAK5 OUT Serial data.

AO_WS A15 WEAK5 I/O • When the AO unit is programmed as the serial-interface timing slave (power-up
default), AO_WS acts as an input. AO_WS is sampled on the opposite AO_SCK
edge at which AO_SDx are asserted.

• When the AO unit is programmed as serial-interface timing master, AO_WS acts as
an output. AO_WS is asserted on the same AO_SCK edge as AO_SDx.

AO_WS is the word-select or frame-synchronization signal from/to the external D/A
subsystem. Each audio channel receives 1 sample for every WS period.

S/PDIF Output (Output)

SPDO A12 STRG3 OUT Self clocking serial data stream as per IEC958, with 1937 extensions. Note that the
low impedance output buffer requires a 27 to 33 ohm series terminator close to
PNX1300/01/02/11 in order to match the board trace impedance. This series termina-
tor can be/must be part of the voltage divider needed to create the coaxial output
through the AC isolation transformer.

Synchronous Serial Interface (SSI) to an off-chip modem front-end

SSI_CLK B11 WEAK5 IN Clock signal of the synchronous serial interface to an off-chip modem analog frontend
or ISDN terminal adapter; provided by the receive channel of an external communica-
tion device.

SSI_RXFSX A11 WEAK5 IN Receive frame sync reference of the synchronous serial interface, provided by the
receive channel of an external communication device.

SSI_RXDATA A10 WEAK5 IN Receive serial data input; provided by the receive channel of an external communica-
tion device.

SSI_TXDATA B10 WEAK5 OUT Transmit serial data output; sent to the transmit channel of the external communication
device.

SSI_IO1 A9 WEAK5 I/O General purpose programmable I/O. Set to input on power up.

SSI_IO2 B9 WEAK5 I/O General purpose programmable I/O. Set to input on power up. Can also be pro-
grammed to function as the transmit channel frame synchronization reference output.

Pin Name BGA
Ball

Pad
Type Mode Description
PRELIMINARY SPECIFICATION 1-7

PNX1300/01/02/11 Data Book Philips Semiconductors
1.5 POWER PIN LIST

VSS (ground) VCC (3.3V I/O supply) VDD (2.5V core supply)

C5
C16
D4
D5
D16
D17
E3
E4

E17
E18
T3
T4
T17
U4
U5
U16
U17
V5

V16

H8
H9

H10
H11
H12
H13
J8
J9
J10
J11
J12
J13
K8
K9
K10
K11
K12
K13
L8

L9
L10
L11
L12
L13
M8
M9
M10
M11
M12
M13
N8
N9
N10
N11
N12
N13

C7
C10
C11
C14
D6
D7
D10
D11
D14
D15
F4
F17
G3
G4

G17
G18
K3
K4
K17
K18
L3
L4
L17
L18
P3
P4
P17
P18

R4
R17
U6
U7
U10
U11
U14
U15
V7

V10
V11
V14

C8
C13
D8
D9
D12
D13
H3
H4

H17
H18
J4
J17
M4

M17
N3
N4

N17
N18
U8
U9
U12
U13
V8
V13
1-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.6 PIN REFERENCE VOLTAGE

With the exception of Open Drain mode outputs, outputs always drive to a level determined by the 3.3-V I/O voltage.
VREF_PERIPH and VREF_PCI purely determine input voltage clamping, not input signal thresholds or output levels.

VREF_PCI determined mode VREF_PERIPH determined mode SDRAM i/f (always 3.3-Volt mode)

PCI_AD00
PCI_AD01
PCI_AD02
PCI_AD03
PCI_AD04
PCI_AD05
PCI_AD06
PCI_AD07
PCI_AD08
PCI_AD09
PCI_AD10
PCI_AD11
PCI_AD12
PCI_AD13
PCI_AD14
PCI_AD15
PCI_AD16
PCI_AD17
PCI_AD18
PCI_AD19
PCI_AD20
PCI_AD21
PCI_AD22
PCI_AD23
PCI_AD24
PCI_AD25
PCI_AD26

PCI_AD27
PCI_AD28
PCI_AD29
PCI_AD30
PCI_AD31
PCI_CLK
PCI_C/BE#0
PCI_C/BE#1
PCI_C/BE#2
PCI_C/BE#3
PCI_PAR
PCI_FRAME#
PCI_IRDY#
PCI_TRDY#
PCI_STOP#
PCI_IDSEL
PCI_DEVSEL#
PCI_REQ#
PCI_GNT#
PCI_PERR#
PCI_SERR#
PCI_INTA#
PCI_INTB#
PCI_INTC#
PCI_INTD#
TRI_RESET#

TRI_USERIRQ
TRI_TIMER_CLK

JTAG_TDI
JTAG_TDO
JTAG_TCK
JTAG_TMS

VI_CLK
VI_DVALID
VI_DATA0
VI_DATA1
VI_DATA2
VI_DATA3
VI_DATA4
VI_DATA5
VI_DATA6
VI_DATA7
VI_DATA8
VI_DATA9
IIC_SDA
IIC_SCL
VO_IO1
VO_IO2
VO_CLK

AI_SCK
AI_SD
AI_WS

AO_SCK
AO_WS
SSI_CLK

SSI_RXFSX
SSI_RXDATA

SSI_IO1
SSI_IO2

RESERVED2

MM_CLK0
MM_CLK1
MM_A00
MM_A01
MM_A02
MM_A03
MM_A04
MM_A05
MM_A06
MM_A07
MM_A08
MM_A09
MM_A10
MM_A11
MM_A12
MM_A13

MM_DQ00
MM_DQ01
MM_DQ02
MM_DQ03
MM_DQ04
MM_DQ05
MM_DQ06
MM_DQ07
MM_DQ08
MM_DQ09
MM_DQ10
MM_DQ11
MM_DQ12
MM_DQM0
MM_DQM1

MM_DQM2
MM_DQM3
MM_DQ13
MM_DQ14
MM_DQ15
MM_DQ16
MM_DQ17
MM_DQ18
MM_DQ19
MM_DQ20
MM_DQ21
MM_DQ22
MM_DQ23
MM_DQ24
MM_DQ25
MM_DQ26
MM_DQ27
MM_DQ28
MM_DQ29
MM_DQ30
MM_DQ31
MM_CKE0
MM_CKE1
MM_CS0#
MM_CS1#
MM_CS2#
MM_CS3#
MM_RAS#
MM_CAS#
MM_WE#

Inputs always in 3.3-V mode Output only pins

TRI_CLKIN
BOOT_CLK
TESTMODE
SCANCPU

RESERVED1

VO_DATA0
VO_DATA1
VO_DATA2
VO_DATA3
VO_DATA4
VO_DATA5
VO_DATA6
VO_DATA7

AI_OSCLK
AO_OSCLK

AO_SD1
AO_SD2
AO_SD3
AO_SD4

SSI_TXDATA
SPDO
PRELIMINARY SPECIFICATION 1-9

PNX1300/01/02/11 Data Book Philips Semiconductors
1.7 PACKAGE

1.8 ORDERING INFORMATION

To order 143-MHz/2.5V product, part number is ‘PNX1300’, 12 nc product code 9352 7097 6557.
To order 180-MHz/2.5V product, part number is ‘PNX1301’, 12 nc product code 9352 7097 9557.
To order 200-MHz/2.5V product, part number is ‘PNX1302’, 12 nc product code 9352 7098 2557.
To order 166-MHz/2.2V product, part number is ‘PNX1311’, 12 nc product code 9352 7098 5557.

1.27 24.13

A

A1 E1bA2

A2

A1

UNIT D ye k

mm 0.70
0.50

2.51
27.2
26.8

D1 e1

24.1
23.9

27.2
26.8

24.1
23.9

4.2
3.8

∅ j

21.0
15.4

1.83
1.63

y1

0.90
0.60 0.2 0.15 0.25

DIMENSIONS (mm are the original dimensions)

E w

0.2

v

0 10 20 mm

scale

SOT553-1HBGA292: plastic, heatsink ball grid array package; 292 balls; body 27 x 27 x 1.75 mm

A
max.

detail X

yy1 Ce

e

e1

e1

∅ w
b

X

k

k

E1∅ j

D

D1

E

C

M

A
B

C
D

E
F

H

K

G

J

L
M

N
P

R
T

U
V

W
Y

2 4 6 8 10 12 14 16 18 20
1 3 5 7 9 11 13 15 17 19

B

A

ball A1
index area

Mv A

Mv B
1-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9 PARAMETRIC CHARACTERISTICS

1.9.1 PNX1300/01/02/11 Absolute Maximum Ratings

Permanent damage may occur if these conditions are exceeded

Notes: 1. VX in the 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.
2. JEDEC Standard, June 2000
3. JEDEC Standard, October 1997

1.9.2 PNX1300/01/02 Operating Range and Thermal Characteristics

Functional operation, long-term reliability and AC/DC characteristics are guaranteed for the operating conditions below.

1.9.3 PNX1311 Operating Range and Thermal Characteristics

Functional operation, long-term reliability and AC/DC characteristics are guaranteed for the operating conditions below.

1.9.4 PNX1300/01/02/11 Power Supply Sequencing

Power application and power removal should obey the following rule:

VDD should never exceed VCC by more than 0.5 V

Permanent damage may occur if this rule is not observed.

Symbol Parameter Min. Max Units Notes

VDDMAX 2.5-V core supply voltage (PNX1300/01/02/11) -0.5 3.5 V

VCCMAX 3.3-V I/O supply voltage -0.5 4.6 V

VI-5V DC input voltage on all 5-V pins -0.5 VX+0.5 V 1

VI-3.3V DC input voltage on all 3.3-V pins -0.5 VCC+0.3 V

Tstg Storage temperature range -65 150 Deg. C

Tcase Operating case temperature range 0 120 Deg. C

HBMESD Human Body Model Electrostatic handling for all pins - - CLASS 1C 2

MMESD Machine Model Electrostatic handling for all pins - - CLASS A 3

Symbol Parameter Minimum Typical Maximum Units

VDD PNX1300/01/02 Core supply voltage 2.375 2.50 2.625 V

VCC I/O supply voltage 3.135 3.30 3.465 V

Tcase Operating case temperature range 0 85 °C

Ψjt junction to case thermal resistance 3.8 °C/W

ϑja junction to ambient thermal resistance (natural convection) 15 °C/W

Symbol Parameter Minimum Typical Maximum Units

VDD PNX1311 Core supply voltage 2.090 2.20 2.310 V

VCC I/O supply voltage 3.135 3.30 3.465 V

Tcase Operating case temperature range 0 85 °C

Ψjt junction to case thermal resistance 3.8 °C/W

ϑja junction to ambient thermal resistance (natural convection) 15 °C/W
PRELIMINARY SPECIFICATION 1-11

PNX1300/01/02/11 Data Book Philips Semiconductors
1.9.5 PNX1300/01/02 DC/AC Characteristics

Notes: 1. VX for a 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.

1.9.6 PNX1311 DC/AC Characteristics

Notes: 1. VX for a 5V mode pin is either VREF_PCI or VREF_PERIPH, see Section 1.6.

Symbol Parameter Condition/Notes Min. Max Units
V

DD
Core supply voltage 2.375 2.625 V

V
CC

I/O supply voltage 3.135 3.465 V

IDD-typ Core supply current 200 MHz CPU operation (Max. application) 1400 mA

ICC-typ I/O supply current 183 MHz SDRAM operation (Max. application) 160 mA

IDD-pdn Core supply current CPU power down mode; 200 MHz 300 mA

ICC-pdn I/O supply current CPU power down mode; 183 MHz 50 mA

V
IH-5v

Input HIGH voltage for I/O-5 V Note 1. All I/O’s except IICOD 2.0 VX+ 0.5 V

VIH-3.3v Input HIGH voltage for I/O-3.3 V All I/Os except IICOD 2.0 V
CC + 0.3 V

V
IL-5v

Input LOW voltage for I/O-5 V All I/Os except IICOD -0.5 0.8 V

V
IL-3.3v

Input LOW voltage for I/O-3.3 V All I/Os except IICOD -0.3 0.8 V

I
IL-5v

Input leakage current for I/O-5 V 0 < VIN < 2.7V -70 70 uA

I
IL--3.3v

Input leakage current for I/O-3.3 V 0 < VIN < 2.7V -0 10 uA

C
IN

Input pin capacitance 8 pF

Symbol Parameter Condition/Notes Min. Max Units
V

DD
Core supply voltage 2.090 2.310 V

V
CC

I/O supply voltage 3.135 3.465 V

IDD-typ Core supply current 166 MHz CPU operation (Max. application) 1110 mA

ICC-typ I/O supply current 166 MHz SDRAM operation (Max. application) 145 mA

IDD-pdn Core supply current CPU power down mode; 166 MHz 215 mA

ICC-pdn I/O supply current CPU power down mode; 166 MHz 46 mA

V
IH-5v

Input HIGH voltage for I/O-5 V Note 1. All I/O’s except IICOD 2.0 VX+ 0.5 V

VIH-3.3v Input HIGH voltage for I/O-3.3 V All I/Os except IICOD 2.0 V
CC + 0.3 V

V
IL-5v

Input LOW voltage for I/O-5 V All I/Os except IICOD -0.5 0.8 V

V
IL-3.3v

Input LOW voltage for I/O-3.3 V All I/Os except IICOD -0.3 0.8 V

I
IL-5v

Input leakage current for I/O-5 V 0 < VIN < 2.7V -70 70 uA

I
IL--3.3v

Input leakage current for I/O-3.3 V 0 < VIN < 2.7V -0 10 uA

C
IN

Input pin capacitance 8 pF
1-12 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9.7 PNX1300 Series Power Consumption

The power consumption of PNX1300 Series is depen-
dent on the activity of the DSPCPU, the amount of pe-
ripherals being used, the frequency at which the system
is running as well as the loads on the pins.

The first section presents the power consumption for
known applications. The other power related sections
present the maximum power consumption. These maxi-
mum values are obtained with a ‘fake’ application that
turns on all the peripherals and runs intensive compute
on the CPU.

1.9.7.1 Power Consumption for
Applications on PNX1300 Series

The Table 1-1 and Table 1-2 present the power con-
sumption for two typical applications:

• The DVD playback includes video display using the
VO peripheral and audio streaming using AO periph-
eral. The bitstream is brought into the TM-1300 sys-
tem over the PCI peripheral. The VLD co-processor
is used to perform the bitstream parsing. The bit-
stream is not scrambled therefore the DVDD co-pro-
cessor is not used and it is turned off.

• The MPEG4 application includes video and audio
playback of an enocded CIF stream. The bit stream
is brought into the PNX1300 system over the PCI
peripheral. The Video and Audio subsystems of the
PNX1300 were used to render the video and sound
from the decoded stream into the video monitor and
speakers.

• The H263 video conferencing application includes
the following steps. It captures a CCIR656 video
stream at 30 frames/second using the VI peripheral.
The incoming video stream is downscaled, on the fly,
to SIF resolution by VI. The captured frames are then
downscaled to a QSIF resolution using the ICP co-
processor. The resulting QSIF image is sent over the
PCI bus via the ICP co-processor to a SVGA card
(PC monitor display) and encoded by the DSPCPU.
The resulting bitstream is then decoded by the
DSPCPU and displayed as a SIF image on the same
PC monitor (also using the ICP co-processor). All the
encoding/decoding part is done in the YUV color
space. The display is in the RGB16 color space.
Software is not optimized.

Three main technics may be applied to reduce the ‘Out
of the Box’ power consumption.

• Turn off the unused peripherals. Refer to Section
21.6 on pag e21-2.

• Run the system at the required speed, i.e. some
application may not require to run at the full speed
grade of the chip.

• Powerdown the system or the DSPCPU each time
the DSPCPU reached the Idle task.

A more detailed description can be found in the applica-
tion note ‘TM-1300 Power Saving Features’ available at
the following website:

http://www.semiconductors.philips.com/trimedia/

As previously mentioned the Table 1-1 and Table 1-2
show that the final power consumption for a realistic ap-
plication may be lower than the values reported in the
next section.

Based on these results and the following section, the
power consumption of PNX1300 Series, using an artifi-

cial scenario depicting an extremely demanding applica-
tion, for commonly used speeds, is as follows:

• PNX1300/01/02 is < 3.4 W @ 166:133 MHz
• PNX1311 is < 2.9 W @ 166:133 MHz
• PNX1302 is < 4.0 W @ 200:133 MHz

Table 1-1. Power Consumption of Example Applications for PNX1300/01/02 (Vdd = 2.5V)

APPLICATIONS
AFTER
POWER

OPTIMIZATIONS

WITHOUT
POWER

OPTIMIZATIONS

Optimizations

Unused
Peripherals
Turned Off

System Speed
Adjustment

Idle task power
management

DVD Playback 2.2 W 3.0 W @ 180 MHz 2.6 W @ 180 MHz 2.6 W @ 180 MHz 2.2 W @ 180 MHz

H.263 Vconf 1.7 W 2.9 W @ 166 MHz 2.7 W @ 166 MHz 1.9 W @ 111 MHz 1.7 W @ 111 MHz

Table 1-2. Power Consumption of Example Applications for PNX1311(Vdd = 2.2V)

APPLICATIONS
AFTER
POWER

OPTIMIZATIONS

WITHOUT
POWER

OPTIMIZATIONS

Optimizations

Unused
Peripherals
Turned Off

System Speed
Adjustment

Idle task power
management

MPEG4 (CIF) A/V
Playback 1.2 W

2.5 W @ 166 MHz 2.1 W @ 166 MHz 1.3 W @ 70 MHz 1.2 W @ 70 MHz

H.263 Vconf 1.5 W 2.4 W @ 166 MHz 2.2 W @ 166 MHz 1.7 W @ 111 MHz 1.5 W @ 111 MHz
PRELIMINARY SPECIFICATION 1-13

PNX1300/01/02/11 Data Book Philips Semiconductors
1.9.7.2 PNX1300/01/02 DSPCPU Core Current and Power Consumption

Notes: 1. Consumption for PNX1300/01/02 is organized in several categories. The “Typ” column shows current consumption for a typ-
ical application with a CPI (Clocks Per Instruction) of 1.4. The “Max” column provides current consumption for an application
with a CPI of 1.1. The measurements were taken with all the peripheral units turned on (peripherals run on a random data
pattern at the specified frequencies, except for VO which runs at 27 MHz). This “Max” data represnts an application that
heavily uses the DSPCPU and does not reflect a realistic application; it is used to determine peak currents. The “Typ” mea-
surements reflect real applications. The “Pwd” column shows current consumption when Global Powerdown mode is acti-
vated. See Chapter 21, “Power Management.”

2. Standby rows indicate current consumption when DSPCPU is maintained under RESET (See Section 11.6.5, “BIU_CTL
Register”), all peripherals turned off (i.e. not enabled) and all peripherals powered down (+ bpwd row).

3. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.5V and Vcc set to 3.3V.
4. Currents do not scale with frequency unless the CPU to SDRAM ratio is maintained. As an example, the data for CPU to

SDRAM ratio 1:1 for 183:183 MHz can be calculated by using the data from the 143:143 MHz column, and scaling the cur-
rents by a factor of 1.279.

1.9.7.3 PNX1311 DSPCPU Core Current and Power Consumption Details

Notes: 1. Consumption for PNX1311 is organized in several categories. The “Typ” column shows current consumption for a typical
application with a CPI (Clocks Per Instruction) of 1.4. The “Max” column provides current consumption for an application with
a CPI of 1.1. The measurements were taken with all the peripheral units turned on (peripherals run on a random data pattern
at the specified frequencies, except for VO which runs at 27 MHz). This “Max” data represnts an application that heavily uses
the DSPCPU and does not reflect a realistic application; it is used to determine peak currents. The “Typ” measurements
reflect real applications. The “Pwd” column shows current consumption when Global Powerdown mode is activated. See
Chapter 21, “Power Management.”

2. Standby rows indicate current consumption when DSPCPU is maintained under RESET (See Section 11.6.5, “BIU_CTL
Register”), all peripherals turned off (i.e. not enabled) and all peripherals powered down (+ bpwd row).

3. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.2V and Vcc set to 3.3V.
4. Currents do not scale with frequency unless the CPU to SDRAM ratio is maintained.

PNX1300
143:143

PNX1301
166:133

PNX1302
192:144

PNX1302
200:133

Symbol Current/Notes Pwd Typ Max Pwd Typ Max Pwd Typ Max Pwd Typ Max Units

PNX130x
(note 1)

IDD 225 1125 1200 250 1200 1300 300 1380 1475 300 1400 1525 mA

ICC 40 125 135 40 120 135 40 130 135 36 125 130 mA

Total Power Dissipation 0.8 3.2 3.5 0.8 3.4 3.7 0.9 3.9 4.1 0.9 4.0 4.2 W

IDD , DSPCPU Only - 820 920 - 900 1030 - 1030 1200 - 1050 1250 mA

ICC , DSPCPU Only - 55 45 - 50 45 - 55 45 - 55 45 mA

Power DSPCPU Only - 2.2 2.5 - 2.4 2.7 - 2.8 3.1 - 2.8 3.3 W

PNX130x
(note 1,2)

IDD , Standby - 550 - - 615 - - 720 - - 740 - mA

Power Standby - 1.5 - - 1.7 - - 1.9 - - 2.0 - W

IDD , Standby + bpwd - 405 - - 450 - - 525 - - 540 - mA

Power Standby + bpwd - 1.1 - - 1.2 - - 1.4 - - 1.5 - W

PNX1311
100:100

PNX1311
143:143

PNX1311
166:166

PNX1311
166:133

Symbol Current/Notes Pwd Typ Max Pwd Typ Max Pwd Typ Max Pwd Typ Max Units

PNX131x
(note 1)

IDD 129 670 720 185 955 1025 215 1110 1200 200 1032 1100 mA

ICC 28 87 100 40 125 140 46 145 170 37 123 130 mA

Total Power Dissipation 0.4 1.8 1.9 0.5 2.5 2.7 0.6 2.9 3.2 0.6 2.7 2.9 W

IDD , DSPCPU Only - 490 550 - 700 785 - 815 915 - 756 880 mA

ICC , DSPCPU Only - 38 31 - 55 45 - 65 55 - 50 45 mA

Power DSPCPU Only - 1.2 1.3 - 1.7 1.9 - 2.0 2.2 - 1.8 2.1 W

PNX131x
(note 1,2)

IDD , Standby - 325 - - 460 - - 535 - - 518 - mA

Power Standby - 0.8 - - 1.1 - - 1.3 - - 1.3 - W

IDD , Standby + bpwd - 240 - - 340 - - 395 - - 375 - mA

Power Standby + bpwd - 0.6 - - 0.9 - - 1.0 - - 0.9 - W
1-14 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9.7.4 PNX1300/01/02 Current Consumption For On-Chip Peripherals

Notes: 1. Pwd. column for peripheral units indicates current savings when block powerdown is activated compared to when it is idle.
See Chapter 21, “Power Management” for block powerdown activation.

2. Typ. column for peripheral units indicates current required when data pattern is random. The Max. column indicates current
ratings when data is switching from high to low level each cycle. Again that Max. column is to show peak current and does
not represent a real application. For both columns the current reported is the current required by the peripheral as well as
the internal bus and MMI to transfer the data to/from the peripheral unit.

3. Some currents are not reported due to the difficulty to measure it or because they are not relevant. For example SSI current
is difficult to measure because it heavily involves the DSPCPU and thus makes it almost impossible to separate the current
consumed by the SSI or the DSPCPU.

4. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.5V and Vcc set to 3.3V.
5. Currents do not scale with frequency if the CPU:SDRAM ratio are different. Same ratio must be used.

PNX1300
143:143

PNX1301
166:133

PNX1302
192:144

PNX1302
200:133

Symbol Current/Notes Pwd Typ Max Pwd Typ Max Pwd Typ Max Pwd Typ Max Units

VO
27 MHz

IDD , running raw mode 50 28 39 55 29 38 65 16 26 72 27 36 mA

ICC , running raw mode - 9 17 - 12 17 - 12 17 - 12 17 mA

VO
81 MHz

IDD , running raw mode - 23 75 - 33 54 - 30 58 - 47 72 mA

ICC , running raw mode - 33 51 - 37 51 - 36 52 - 36 52 mA

VI
27 MHz

IDD , running raw mode 6 8 18 6 6 18 7 8 18 7 6 18 mA

ICC , running raw mode - 7 14 - 6 14 - 8 15 - 9 15 mA

AO
44 KHz

IDD , stereo 16-bit 2 3 1 1 3 1 1 3 4 5 3 3 mA

ICC , stereo 16-bit - 2 1 - 1 1 - 1 1 - 1 1 mA

AI
44 KHz

IDD , stereo 16-bit 1 2 2 1 3 3 1 3 2 1 3 3 mA

ICC , stereo 16-bit - 1 1 - 1 1 - 1 1 - 1 1 mA

SPDIF
48 KHz

IDD running PCM audio 2 3 2 2 3 1 3 3 3 4 2 2 mA

ICC running PCM audio - 3 3 - 2 2 - 2 2 - 2 2 mA

ICP IDD , mem. block move 61 95 176 67 95 170 80 105 188 86 106 184 mA

ICC , mem. block move - 28 28 - 27 54 - 30 61 - 29 59 mA

PCI
33 MHz

IDD , DMA transfer - 37 83 - 34 80 - 32 83 - 40 53 mA

ICC , DMA transfer - 58 102 - 58 102 - 58 104 - 58 82 mA

VLD IDD 3 - - 5 - - 6 - - 6 - - mA

ICC - - - - - - - - - - - - mA

SSI
10 MHz

IDD 4 - - 5 - - 6 - - 6 - - mA

ICC - - - - - - - - - - - - mA

DVDD IDD 18 - - 21 - - 24 - - 24 - - mA

ICC - - - - - - - - - - - - mA
PRELIMINARY SPECIFICATION 1-15

PNX1300/01/02/11 Data Book Philips Semiconductors
1.9.7.5 PNX1311 Current Consumption For On-Chip Peripherals

Notes: 1. The “Pwd” column for peripheral units indicates current savings when block powerdown is activated, compared to when it is
idle. See Chapter 21, “Power Management” for block powerdown activation.

2. The “Typ” column for peripheral units indicates current required when data pattern is random. The “Max” column indicates
current ratings when data is switching from high to low level each cycle. Again that “Max” column is to show peak current
and does not represent a real application. For both columns the current reported is the current required by the peripheral as
well as the internal bus and MMI to transfer the data to/from the peripheral unit.

3. Some currents are not reported due to the difficulty to measure it or because they are not relevant. For example SSI current
is difficult to measure because it heavily involves the DSPCPU and thus makes it almost impossible to separate the current
consumed by the SSI or the DSPCPU.

4. Measurements accuracy is +/- 5%. Measurements are done with Vdd set to 2.2V and Vcc set to 3.3V.
5. Currents do not scale with frequency if the CPU:SDRAM ratio are different. Same ratio must be used.

PNX1311-100:100 PNX1311-143:143 PNX1311-166:166 PNX1311-166:133

Symbol Current/Notes Pwd Typ Max Pwd Typ Max Pwd Typ Max Pwd Typ Max Units

VO
27 MHz

IDDL , running raw mode 33 17 23 47 25 33 56 29 38 48 24 31 mA

ICC , running raw mode - 8 12 - 12 17 - 14 20 - 25 17 mA

VO
81 MHz

IDDL , running raw mode - 14 31 - 20 44 - 23 51 - 33 54 mA

ICC , running raw mode - 25 36 - 36 52 - 42 60 - 37 51 mA

VI
27 MHz

IDDL , running raw mode 3 5 8 5 7 11 6 8 13 5 7 15 mA

ICC , running raw mode - 6 10 - 9 15 - 10 17 - 8 15 mA

AO
44 KHz

IDDL , stereo 16-bit 4 2 1 6 3 2 7 3 2 1 2 2 mA

ICC , stereo 16-bit - 1 1 - 1 1 - 1 1 - 1 1 mA

AI
44 KHz

IDDL , stereo 16-bit 1 1 1 1 2 2 1 2 2 1 2 3 mA

ICC , stereo 16-bit - 1 1 - 1 1 - 1 1 - 1 1 mA

SPDIF
48 KHz

IDDL running PCM audio 2 2 1 3 3 2 3 3 2 2 2 2 mA

ICC running PCM audio - 1 1 - 2 2 - 2 2 - 2 2 mA

ICP IDDL , mem. block move 40 55 101 57 79 144 66 92 167 60 76 136 mA

ICC , mem. block move - 19 38 - 27 55 - 31 64 - 26 54 mA

PCI
33 MHz

IDDL , DMA transfer - 17 36 - 25 51 - 29 59 - 20 50 mA

ICC , DMA transfer - 41 57 - 58 82 - 67 95 - 45 81 mA

VLD IDDL 3 - - 4 - - 5 - - 4 - - mA

ICC - - - - - - - - - - - - mA

SSI
10 MHz

IDDL 2 - - 3 - - 3 - - 4 - - mA

ICC - - - - - - - - - - - - mA

DVDD IDDL 11 - - 16 - - 19 - - 18 - - mA

ICC - - - - - - - - - - - - mA

1-16 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9.7.6 STRG3, STRG5 type I/O circuit

1.9.7.7 NORM3 type I/O circuit

1.9.7.8 WEAK5 type I/O circuit

1.9.7.9 IICOD (I2c) type I/O circuit

PNX1300/01/02/11

Symbol Parameter Condition/Notes Min. Nominal Max Units

V
OH

Output HIGH voltage I
OUT = 16.0 mA 0.9VCC V

V
OL

Output LOW voltage I
OUT = -16.0 mA 0.1VCC V

Z
OH

Output AC impedance HIGH level output state 11 ohm

Z
OL

Output AC impedance LOW level output state 11 ohm

tr Output rise time Test load of Figure 1-1. 2.0 ns

tr Output fall time Test load of Figure 1-1. 2.0 ns

PNX1300/01/02/11

Symbol Parameter Condition/Notes Min. Nominal Max. Units

V
OH

Output HIGH voltage I
OUT = 8.0 mA 0.9VCC V

V
OL

Output LOW voltage I
OUT = -8.0 mA 0.1VCC V

Z
OH

Output AC impedance HIGH level output state 23 ohm

Z
OL

Output AC impedance LOW level output state 23 ohm

tr Output rise time Test load of Figure 1-2. 4.0 ns

tr Output fall time Test load of Figure 1-2. 4.0 ns

PNX1300/01/02/11

Symbol Parameter Condition/Notes Min. Nominal Max. Units

V
OH

Output HIGH voltage I
OUT = 6.0 mA 0.9VCC V

V
OL

Output LOW voltage I
OUT = -6.0 mA 0.1VCC V

Z
OH

Output AC impedance HIGH level output state 33 ohm

Z
OL

Output AC impedance LOW level output state 33 ohm

tr Output rise time Test load of Figure 1-3. 4.0 ns

tr Output fall time Test load of Figure 1-3. 4.0 ns

Symbol Parameter Condition/Notes Min. Nominal Max. Units

V
IL-IIC

Input LOW voltage -0.5 1.0 V

V
IH-IIC

Input HIGH voltage VX is 3.3V or 5V depending
on VREF_PERIPH value

2.3 VX+0.5 V

V
HYS

Input Schmitt trigger hysteresis 0.25 V

V
OL

Output LOW voltage I
OUT = -6.0 mA 0.6 V

tf Output fall time 10 - 400 pF load 1.5 250 ns
PRELIMINARY SPECIFICATION 1-17

PNX1300/01/02/11 Data Book Philips Semiconductors
1.9.7.10 SDRAM interface timing for PNX1300/01/02/11 speed grades.

Notes: 1. For best high speed SDRAM operation, 50-ohm matched PCB traces are recommended for all MM_xxx signals.
Use 27-33 ohm series terminator resistors close to PNX1300/01/02/11 in the MM_CLK0 and MM_CLK1 line only.

2. Equal load circuit. MM_CLK0 and MM_CLK1 are matched output buffers.
3. The center of the two rising edges on MM_CLK0, MM_CLK1 are used as the clock reference point.

Propagation delay guarantee is defined from 50% point of clock edge to 50% level on D/A/C.
Output hold time guarantee is defined from 50% point of clock edge to 50% level on D/A/C.

4. MM_CLK0 is used as a reference clock.
Input setup time requirement is defined as data value 50% complete to 50% level on clock.
Input hold time requirement is defined as minimum time from 50% level on clock to 50% change on data.

1.9.7.11 PCI Bus timing

The following specifications meet the PCI Specifications, Rev. 2.1 for 33-MHz bus operation.

Notes: 1. See the timing measurement conditions in Figure 1-4.
2. Minimum times are measured at the package pin with the load circuit shown in Figure 1-8. Maximum times are measured

with the load circuit shown in Figure 1-6 and Figure 1-7.
3. REG# and GNT# are point-to-point signals and have different input setup times. All other signals are bused.
4. See the timing measurement conditions in Figure 1-5.
5. RST# is asserted and de-asserted asynchronously with respect to CLK.
6. All output drivers are floated when RST# is active.
7. For the purpose of Active/Float timing measurements, the Hi-Z or ‘off’ state is defined to be when the total current delivered

through the component pin is less than or equal to the leakage current specification.

PNX1300
143

PNX1301
166

PNX1301
180

PNX1311
166

PNX1302
200

N
o
t
e
sSymbol Parameter Min Max Min Max Min Max Min Max Min Max Units

fSDRAM MM_CLK frequency 143 166 166 166 183 MHz 1

TCS Skew between MM_CLK0, CLK1 0.05 0.05 0.05 0.05 0.05 ns 2

TPD Propagation delay of data, address, control 4.7 4.2 4.2 4.2 3.7 ns 3

TOH Output hold time of data, address and control 1.5 1.5 1.5 1.5 1.5 ns 3

TSU Input data setup time 0 0 0 0 0 ns 4

TIH Input data hold time 2.0 1.5 1.5 1.5 1.5 ns 4

Symbol Parameter Min. Max Units Notes

Tval-PCI (Bus) Clk to signal valid delay, bused signals 2 11 ns 1,2,3

Tval-PCI (ptp) Clk to signal valid delay, point-to-point signals 2 12 ns 1,2,3

Ton-PCI Float to active delay 2 ns 1

TOff-PCI Active to float delay 28 ns 1,7

Tsu-PCI Input setup time to CLK - bused signals 7 ns 3,4

Tsu-PCI (ptp) Input setup time to CLK - point-to-point signals 12 ns 3,4

Th-PCI Input hold time from CLK 0.21

1. PCI Clock skew between two PCI devices must be lower than 1.8ns instead of the 2 ns as specified in PCI
2.1 specification

ns 4

Trst-PCI Reset active time after power stable 1 ms 5

Trst-clk-PCI Reset active time after CLK stable 100 µs 5

Trst-off-PCI Reset active to output float delay 40 ns 5,6,7
1-18 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
1.9.7.12 JTAG I/O timing

Notes: 1. See the timing measurement conditions in Figure 1-10.
2. See the timing measurement conditions in Figure 1-9.

1.9.7.13 I2C I/O timing

Notes: 1. See the timing measurement conditions in Figure 1-11.
2. See the timing measurement conditions in Figure 1-12.
3. See the timing measurement conditions in Figure 1-13.
4. See the timing measurement conditions in Figure 1-14.
5. See the timing measurement conditions in Figure 1-15.

1.9.7.14 Video In I/O Timing

Notes: 1. See the timing measurement conditions in Figure 1-16.

1.9.7.15 Video Out I/O Timing

Notes: 1. See the timing measurement conditions in Figure 1-17.
2. See the timing measurement conditions in Figure 1-18.
3. CLKOUT asserted, i.e. the VO unit is the source of VO_CLK
4. CLKOUT negated, i.e. the external world is the source of VO_CLK

Symbol Parameter Min. Max Units Notes

fJTAG-CLK JTAG clock frequency 20 MHz

Tclk-TDO JTAG_TCK to JTAG_TDO valid delay 2 10 ns 1

Tsu-TCK Input setup time to JTAG_TCK 3 ns 2

Th-TCK Input hold time from JTAG_TCK 7 ns 2

Symbol Parameter Min. Max Units Notes

fSCL SCL clock frequency 400 kHz 1

TBUF Bus free time 1 µs 2

Tsu-STA Start condition set up time 1 µs 3

Th-STA Start condition hold time 1 µs 3

TLOW SCL LOW time 1 µs 1

THIGH SCL HIGH time 1 µs 1

Tf SCL and SDA fall time (Cb = 10-400 pF, from VIH-IIC to VIL-IIC) 20+0.1Cb 250 ns 1

Tsu-SDA Data setup time 100 ns 4

Th-SDA Data hold time 0 ns 4

Tdv-SDA SCL LOW to data out valid 0.5 µs 5

Tdv-STO SCL HIGH to data out 1 ns 5

Symbol Parameter Min. Max Units Notes

fVI-CLK Video In clock frequency 81 MHz

Tsu-CLK Input setup time to VI_CLK 2 ns 1

Th-CLK Input hold time from VI_CLK 2 ns 1

Symbol Parameter Min. Max Units Notes

fVO-CLK Video Out clock frequency 81 MHz

TCLK-DV VO_CLK to VO_DATA (or VO_IO*) out 3 7.5 ns 1,3

TCLK-DV VO_CLK to VO_DATA (or VO_IO*) out 3 7.5 ns 1,4

Tsu-CLK VO_IO* setup time to VO_CLK 10 ns 2

Th-CLK VO_IO* hold time from VO_CLK 3 ns 2
PRELIMINARY SPECIFICATION 1-19

PNX1300/01/02/11 Data Book Philips Semiconductors
1.9.7.16 AudioIn I/O timing

Notes: 1. See the timing measurement conditions in Figure 1-19.
2. The timing measurements are done with respect to the clock edge according to CLOCK_EDGE
3. SER_MASTER asserted, i.e. Audio In is the source of AI_WS. See the timing measurement condition in Figure 1-20.

1.9.7.17 Audio Out I/O timing

Notes: 1. See the timing measurement conditions in Figure 1-21.
2. See the timing measurement conditions in Figure 1-23.
3. The timing measurements are done with respect to the AO_SCK clock edge according to CLOCK_EDGE
4. PNX1300/01/02/11 is the serial interface master, i.e. AO_SCK, AO_WS are outputs
5. PNX1300/01/02/11 is serial interface slave, i.e. AO_SCK, AO_WS are inputs
6. See the timing measurement conditions in Figure 1-22.

1.9.7.18 SSI I/O timing

Notes: 1. Interrupt latency limits SSI to a practical use at a bit rate of 1.5 Mbit/sec.
2. See the timing measurement conditions in Figure 1-24.
3. See the timing measurement conditions in Figure 1-25.

Symbol Parameter Min. Max Units Notes

fAI-SCK Audio In AI_SCK clock frequency 22 MHz

Tsu-SCK Input setup time to AI_SCK 3 ns 1,2

Th-SCK Input hold time from AI_SCK 2 ns 1,2

TSCK-WS AI_SCK to AI_WS 10 ns 3

Symbol Parameter Min. Max Units Notes

fAO-SCK Audio Out AO_SCK clock frequency 22 MHz

TSCK-DV AO_SCK to AO_SDx valid 2 12 ns 1,3,4

TSCK-DV AO_SCK to AO_SDx valid 2 12 ns 1,3,5

Tsu-SCK Input setup time to AO_SCK 4 ns 2,3,5

Th-SCK Input hold time from AO_SCK 2 ns 2,3,5

TSCK-WS AO_SCK to AO_WS 10 ns 3,4,6

Symbol Parameter Min. Max Units Notes

fSSI-CLK SSI_CLK clock frequency 20 MHz 1

TCLK-DV SSI_CLK to data valid 2 12 ns 2

Tsu-CLK Input setup time to SSI_CLK 3 ns 3

Th-CLK Input hold time from SSI_CLK 2 ns 3
1-20 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
Figure 1-1. STRG3, STRG5 test load circuit

12 pF

Output
Buffer

rise/fall test point
2” true length

50-ohm
30-ohm

PNX1300 pin

Figure 1-2. NORM3 test load circuit

30 pF

Output
Buffer

rise/fall test point

50-ohm

PNX1300 pin
2” true length

Figure 1-3. WEAK5 test load circuit

15 pF

Output
Buffer

rise/fall test point

50-ohm

PNX1300 pin
2” true length

V_test

T_on

T_off

V_trise

V_tfall

T_fval

T_rval

V_tl
V_th

CLK

Output

Tri-State

Delay

Output

Output
Delay

Figure 1-4. PCI Output Timing Measurement Con-
ditions

inputsV_test

V_tl

V_th
CLK

Input

Figure 1-5. PCI Input Timing Measurement Conditions

V_th

V_tl
valid

V_test

V_test

T_hT_su

V_max

10 pF

Figure 1-6. PCI Tval(max) Rising Edge

1/2 in. max
Output

25 Ω

Buffer

pin

10 pF

Figure 1-7. PCI Tval(max) Falling Edge

1/2 in. max
Output

25 Ω

Buffer

pin

Vcc

10 pF

Figure 1-8. PCI Tval(min) and Slew Rate

1/2 in. max

Output

1K Ω

Buffer

pin

1K Ω
Vcc

TCK

TDI, TMS

Figure 1-9. JTAG Input Timing

valid

Th_TCK

Tsu_TCK
PRELIMINARY SPECIFICATION 1-21

PNX1300/01/02/11 Data Book Philips Semiconductors
TCK

TDO

Figure 1-10. JTAG Output Timing

valid

Tclk_TDO

SCL

Figure 1-11. I2C I/O Timing

THIGH TLOW

Tr
Tf

SCL

SDA

Figure 1-12. I2C I/O Timing

TTBUF

SCL

SDA

Figure 1-13. I2C I/O Timing

Th_STATsu_STA

SCL

SDA

Figure 1-14. I2C I/O Timing

valid

Th_SDA
Tsu_SDA

Figure 1-15. I2C I/O Timing

SCL

SDA valid

Tdv_STO
Tdv_SDA

VI_CLK

VI_DATA, VI_IO

Figure 1-16. VideoI n I/O Timing

valid

Th_CLK
Tsu_CLK

Figure 1-17. Video Out I/O Timing

VO_CLK

VO_DATA valid

TCLK_DV

VO_CLK

VO_IO

Figure 1-18. Video Out I/O Timing

valid

Th_CLK
Tsu_CLK

AI_SCK

AI_SD, AI_WS

Figure 1-19. Audio In I/O Timing

valid

Th_SCK
Tsu_SCK
1-22 PRELIMINARY SPECIFICATION

Philips Semiconductors Pin List
Figure 1-20. Audio In I/O Timing

AI_SCK

AI_WS valid

TSCK_WS

Figure 1-21. Audio Out I/O Timing

AO_SCK

AO_SDx valid

TSCK_DV

Figure 1-22. Audio Out I/O Timing

AO_SCK

AO_WS valid

TSCK_WS

AO_SCK

AO_WS

Figure 1-23. Audio Out I/O Timing

valid

Th_SCK
Tsu_SCK

Figure 1-24. SSI I/O Timing

SSI_CLK

SSI I/O valid

TCLK_DV

SSI_CLK

SSI_IO

Figure 1-25. SSI I/O Timing

valid

Th_CLK
Tsu_CLK
PRELIMINARY SPECIFICATION 1-23

PNX1300/01/02/11 Data Book Philips Semiconductors
1-24 PRELIMINARY SPECIFICATION

Overview Chapter 2

by Gert Slavenburg

2.1 INTRODUCTION

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 is a successor to the TM-1300, TM-1100 and
TM-1000 media processors. For those familiar with the
TM-1300, the new features specific to the PNX1300 are
summarized in Section 2.6. For those familiar with the
TM-1100, the new features specific to the PNX1300 are
summarized in Section 2.7. For those familiar with the
TM-1000, new features for the PNX1300 are summa-
rized in Section 2.8.

2.2 PNX1300 FUNDAMENTALS

PNX1300 is a media processor for high-performance
multimedia applications that deal with high-quality video
and audio. These applications can range from low-cost,
dedicated systems such as video phones, video editing,
digital television, security systems or set-top boxes to re-
programmable, multipurpose plug-in cards for personal
computers. PNX1300 easily implements popular multi-
media standards such as MPEG-1 and MPEG-2, but its
orientation around a powerful general-purpose CPU
(called the DSPCPU) makes it capable of implementing
a variety of multimedia algorithms, both open and propri-
etary. PNX1300 is also easily configured in multiple pro-
cessor configurations for very high-end applications.

More than just an integrated microprocessor with unusu-
al peripherals, the PNX1300 is a fluid computer system
controlled by a small real-time OS kernel running on a
very-long instruction word (VLIW) processor core.
PNX1300 contains a DSPCPU, a high-bandwidth inter-
nal bus, and internal bus-mastering DMA peripherals.

Software compatibility between current and future Trime-
dia processor family members is at the source-code and
library API level; binary compatibility between family
members is not guaranteed.

Defining software compatibility at the source-code level
gives Philips the freedom to strike the optimum balance
between cost and performance for all chips in the family.
A powerful compiler and software development environ-
ment ensure that programmers never need to resort to
non-portable assembler programming. Programmers
use the library APIs and multimedia operations from C
and C++ source code.

PNX1300 is designed both for use as an accelerator in a
PC environment or as the sole CPU in cost-effective
standalone systems. In standalone system applications,
the PNX1300 external bus allows for glueless connection
of 8-bit wide ROM, EEPROM, or Flash memory for code
storage. The external bus also allows intermixing of
PCI2.1 master/slave peripherals and 8-bit simple periph-
erals, such as UARTs and other 8-bit microprocessor pe-
ripherals. This powerful external bus architecture gives
system designers a variety of options to configure low-
cost, high-performance system solutions.

Because it is based on a general-purpose CPU,
PNX1300 can also serve as a multifunctional PC en-
hancement vehicle. Typically, a PC must deal with multi
standard video and audio streams; and applications re-
quire both decompression and compression. While the
CPU chips used in PCs are becoming capable of low-
resolution, real-time video decompression, high-quality
decompression—not to mention compression—of stu-
dio-resolution video is still out of reach. Further, users
expect their systems to handle live video and audio with-
out sacrificing system responsiveness.

PNX1300 enhances a PC system by providing real-time
multimedia with the advantages of a special-purpose,
embedded solution—low cost and chip count—and the
advantages of a general-purpose processor—repro-
grammability. For PC applications, PNX1300 far sur-
passes the capabilities of fixed-function multimedia
chips.

Future media processor family members will have differ-
ent sets of interfaces appropriate for their intended use.

2.3 PNX1300 CHIP OVERVIEW

Key features of PNX1300 include:

• A very powerful, general-purpose VLIW processor
core (the DSPCPU) that coordinates all on-chip
activities. In addition to implementing the non-trivial
parts of multimedia algorithms, the DSPCPU runs a
small real-time operating system driven by interrupts
from the other units.

• Independent DMA-driven multimedia I/O units that
properly format data to make software media pro-
cessing efficient.

• DMA-driven multimedia coprocessors that operate
independently and in parallel with the DSPCPU to
perform operations specific to important multimedia
algorithms.
PRELIMINARY SPECIFICATION 2-1

PNX1300/01/02/11 Data Book Philips Semiconductors
• A high-performance bus and memory system that
provide communication between PNX1300’s pro-
cessing units.

• A flexible external bus interface.

Figure 2-1 shows a PNX1300 block diagram. The bulk of
a PNX1300 system consists of the PNX1300 micropro-
cessor itself, external synchronous DRAM (SDRAM),
and the external circuitry needed to interface to incoming
and/or outgoing video and audio data streams and com-
munication lines. PNX1300’s external peripheral bus can
gluelessly interface to PC! 2.1 components and/or 8-bit
microprocessor peripherals.

Figure 2-2 shows a possible minimally configured
PNX1300 system. A video input stream might come di-
rectly from a CCIR 656-compliant video camera chip in
YUV 4:2:2 format through a glueless interface in this
case. An analog camera can be connected via a CCIR
656 interface chip (such as the Philips SAA7113H).
PNX1300 outputs a CCIR656 video stream to drive a
dedicated video monitor. Stereo audio input and up to 8-
channel audio output require only low-cost external ADC
and DAC. The operation of the video and audio interface
units is highly customizable through programmable pa-
rameters.

The glueless PCI interface allows the PNX1300 to dis-
play video in a host PC’s video card. The Image Copro-
cessor (ICP) provides display support for live video input
an arbitrary number of arbitrarily overlapped windows.

PNX1300

Video In

Audio In

Audio Out

I2C Interface

VLD
Coprocessor

Video Out

Timers

Synchronous
Serial

Interface

Image
CoprocessorVLIW

CPU 16K
D$

32K
I$

CCIR656 dig. video
YUV 4:2:2

up to 81 MHz (40 Mpix/sec)

Stereo digital audio
8 and 16-bit data

I2S DC, up to 22 MHz AI_SCK

2/4/6/8 ch. digital audio
16 and 32-bit data

I2S DC, up to 22 MHz AO_SCK

I2C bus to
camera, etc.

Huffman decoder
Slice-at-a-time
MPEG-1 & 2

CCIR656 digital video
YUV 4:2:2
up to 81 MHz (40 Mpix/sec)

Analog modem or ISDN
front end

Down & up scaling
YUV → RGB
50 Mpix/sec

PCI-XIO Interface External bus
- PC!2.1 (32 bits, 33-MHz)
+ glueless 24A/8D slaves

SDRAM

Main Memory
Interface

DVDD

SPDIF Out
IEC958

up to 40 Mbit/sec

32-bit data
up to 572 MB/sec

Figure 2-1. PNX1300 block diagram.

Figure 2-2. PNX1300 system connections. A minimal
PNX1300 requires few supporting components.

PNX1300

CCIR656
digital video

2Mx32 SDRAM

ADC
stereo

audio in DAC
 2 - 8 ch
audio out

CCIR656
dig. video

JTAG modem
front end

PCI and 8 -b it periphera l bus

R O M
2-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Overview
Finally, the Synchronous Serial Interface (SSI) requires
only an external ISDN or analog modem front-end chip
and phone line interface to provide remote communica-
tion support. It can be used to connect PNX1300-based
systems for video phone or videoconferencing applica-
tions, or it can be used for general-purpose data commu-
nication in PC systems.

The PNX1300 JTAG port allows a debugger on a host
system to access and control the state of a PNX1300 in
a target system. It also implements 1149.1 boundary
scan functionality.

2.4 BRIEF EXAMPLES OF OPERATION

The key to understanding PNX1300 operation is observ-
ing that the DSPCPU and peripherals are time-shared
and that communication between units is through
SDRAM memory. The DSPCPU switches from one task
to the next; first it decompresses a video frame, then it
decompresses a slice of the audio stream, then back to
video, etc. As necessary, the DSPCPU issues com-
mands to the peripheral function units to orchestrate their
operation.

The DSPCPU can enlist the ICP and other coprocessors
to help with some of the straightforward, tedious tasks
associated with video processing. The ICP is very well
suited for arbitrary size horizontal and vertical video re-
sizing and color space conversion.

The DSPCPU can enlist the input/output peripherals to
autonomously receive or transmit digital video and audio
data with minimal CPU supervision. The I/O units have
been designed to interface to the outside world through
industry standard audio and video interfaces, while deliv-
ering or taking data in memory in formats suitable for
software processing.

2.4.1 Video Decompression in a PC

An example PNX1300 implementation is as a video-de-
compression engine on a PCI card in a PC. In this case,
the PC does not need to know the PNX1300 has a pow-
erful, general-purpose CPU; rather, the PC just treats the
hardware on the PCI card as a ‘black-box’ engine.

Video decompression begins when the PC operating
system hands the PNX1300 a pointer to compressed vid-
eo data in the PC’s memory (the details of the communi-
cation protocol are handled by the software driver in-
stalled in the PC’s operating system).

The DSPCPU fetches data from the compressed video
stream via the PCI bus, decompresses frames from the
video stream, and places them into local SDRAM. De-
compression may be aided by the VLD (variable-length
decoder) coprocessor unit, which implements Huffman
decoding and is controlled by the DSPCPU.

When a frame is ready for display, the DSPCPU gives
the ICP a display command. The ICP then autonomously
fetches the decompressed frame data from SDRAM and
transfers it over the PCI bus to the frame buffer in the

PC’s video display card. Alternately, video can be sent to
the graphics card using the VO unit.

2.4.2 Video Compression

Another typical application for PNX1300 is in video com-
pression. In this case, uncompressed video is usually
supplied directly to the PNX1300 system via the Video In
(VI) unit. A camera chip connected directly to the VI unit
supplies YUV data in 8-bit, 4:2:2 format. The VI unit sam-
ples the data from the camera chip and demultiplexes
the raw video to SDRAM in three separate areas, one
each for Y, U, and V.

When a complete video frame has been read from the
camera chip by the VI unit, it interrupts the DSPCPU. The
DSPCPU compresses the video data in software (using
a set of powerful data-parallel multimedia operations)
and writes the compressed data to a separate area of
SDRAM.

The compressed video data can now be transmitted or
stored in any of several ways. It can be sent to a host
system over the PCI bus for archival on local mass stor-
age, or the host can transfer the compressed video over
a network. The data can also be sent to a remote system
using the modem/ISDN interface to create, for example,
a video phone or videoconferencing system.

Since the powerful, general-purpose DSPCPU is avail-
able, the compressed data can be encrypted before be-
ing transferred for security.

2.5 INTRODUCTION TO PNX1300 BLOCKS

The remainder of this chapter provides a brief introduc-
tion to the internal components of PNX1300.

2.5.1 Internal ‘Data Highway’ Bus

The internal bus (or data highway) connects all internal
blocks together and provides access to internal control/
status registers of each block, external SDRAM, and the
external bus peripheral chips. The internal bus consists
of separate 32-bit data and address buses. Transactions
on the bus use a block-transfer protocol. On-chip periph-
eral units and coprocessors can be masters or slaves on
the bus.

Access to the internal bus is controlled by a central arbi-
ter, which has a request line from each potential bus
master. The arbiter is programmable so that the arbitra-
tion algorithm can be tailored for different applications.
Peripheral units make requests to the arbiter for bus ac-
cess and, depending on the arbitration mode, bus band-
width is allocated to the units in different amounts. Each
mode allocates bandwidth differently, but each mode
guarantees each unit a minimum bandwidth and maxi-
mum service latency. All unused bandwidth is allocated
to the DSPCPU.

The bus allocation mechanism is one of the features of
PNX1300 that makes it a true real-time system instead of
just a highly integrated microprocessor with unusual pe-
ripherals.
PRELIMINARY SPECIFICATION 2-3

PNX1300/01/02/11 Data Book Philips Semiconductors
2.5.2 VLIW Processor Core

The heart of PNX1300 is a powerful 32-bit DSPCPU
core. The DSPCPU implements a 32-bit linear address
space and 128, fully general-purpose 32-bit registers.
The registers are not separated into banks; any opera-
tion can use any register for any operand.

The PNX1300 core uses a VLIW instruction-set architec-
ture and is fully general-purpose. The VLIW instruction
length allows five simultaneous operations to be issued
every clock cycle. These operations can target any five
of the 27 functional units in the DSPCPU, including inte-
ger and floating-point arithmetic units and data-parallel
multimedia operation units.

Although the processor core runs a real-time operating
system to coordinate all activities in the PNX1300 sys-
tem, the core is not intended for true general-purpose
computer use. For example, the PNX1300 processor
core does not implement demand-paged virtual memory,
memory address translation, or 64-bit floating point - all
essential features in a general-purpose computer sys-
tem.

PNX1300 uses a VLIW architecture to maximize proces-
sor throughput at the lowest possible cost. VLIW archi-
tectures have performance exceeding that of supersca-
lar general-purpose CPUs without the cost and
complexity of a superscalar CPU implementation. The
hardware saved by eliminating superscalar logic reduces
cost and allows the integration of multimedia-specific
features that enhance the power of the processor core.

The PNX1300 operation set includes all traditional micro-
processor operations. In addition, multimedia operations
are included that dramatically accelerate standard video
and audio compression and decompression algorithms.
As just one of the five operations issued in a single
PNX1300 instruction, a single ‘custom’ or ‘media’ opera-
tion can implement up to 11 traditional microprocessor
operations. These multimedia operations combined with
the VLIW architecture result in tremendous throughput
for multimedia applications.

The DSPCPU core is supported by separate 16-KB data
and 32-KB instruction caches. The data cache is dual-
ported to allow two simultaneous accesses; both caches
are 8-way set-associative with a 64-byte block size.

2.5.3 Video In Unit

The Video In (VI) unit interfaces directly to any CCIR 601/
656-compliant device that outputs 8-bit parallel, 4:2:2
YUV time-multiplexed data. Such devices include direct
digital camera systems, which can connect gluelessly to
PNX1300 or through the standard CCIR 656 connector
with only the addition of ECL level converters. A single
chip external device can be used to convert to/from serial
D1 professional video. Non-CCIR-compliant devices can
use a digital video decoder chip, such as the Philips
SAA7113H, to interface to PNX1300.

The VI unit demultiplexes the captured YUV data before
writing it into local PNX1300 SDRAM. Separate planar
data structures are maintained for Y, U, and V.

The VI unit can be programmed to perform on-the-fly
horizontal resolution subsampling by a factor of two if
needed. Many camera systems capture a 640-pixel/line
or 720-pixel/line image. With subsampling, direct conver-
sion to a 320-pixel/line or a 360-pixel/line image can be
performed with no DSPCPU intervention. Performing this
function during video input reduces initial storage and
bus bandwidth requirements for applications requiring
reduced resolution.

2.5.4 Enhanced Video Out Unit

The Enhanced Video Out (EVO) unit essentially per-
forms the inverse function of the VI unit. EVO generates
an 8-bit, CCIR656 digital video data stream that contains
a composited video and graphics overlay image. The vid-
eo image is taken from separate Y, U, and V planar data
structures in SDRAM. The graphics overlay is taken from
a pixel-packed YUV data structure in SDRAM. Compos-
iting allows both alpha-blending and chroma keying.

The EVO unit can also upscale the video image horizon-
tally by a factor of two to convert from CIF/SIF to CCIR
601 resolution. The overlay image, if enabled, is always
in full-pixel resolution.

The EVO unit is capable of pixel emission rates up to 40
Mpix/sec and allows full programming of a horizontal and
vertical frame/field structure. It is thus capable of refresh-
ing both interlaced and non-interlaced (‘two fh’) video dis-
plays with 4:3 or 16:9 or other aspect ratios.

The sample rate for EVO unit pixels is independently and
dynamically programmable. The high-quality, on-chip
sample clock generator circuit allows the programmer
subtle control over the sampling frequency so that audio
and video synchronization can be achieved in any sys-
tem configuration. When changing the sample frequen-
cy, the instantaneous phase does not change, which al-
lows sample frequency manipulation without introducing
audio or video distortion.

2.5.5 Image Coprocessor

The ICP off-loads common image scaling or filtering
tasks from the DSPCPU. Although these tasks can be
easily performed by the DSPCPU, they are a poor use of
the relatively expensive CPU resource. When performed
in parallel by the ICP, these tasks are performed effi-
ciently by simple hardware, which allows the DSPCPU to
continue with more complex tasks.

The ICP can operate as either a memory-to-memory or a
memory-to-PCI coprocessor device.

In memory-to-memory mode, the ICP can perform either
horizontal or vertical image filtering and resizing. A high
quality algorithm is used (5-tap polyphase filter in each
direction). Filtering or scaling is done in either the hori-
zontal or vertical direction in one pass. Two invocations
of the ICP are required to filter or resize in both direc-
tions.

In memory-to-PCI mode, the ICP can perform horizontal
resizing followed by color-space conversion. For exam-
ple, assume an n × m pixel array is to be displayed in a
2-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Overview
window on the PC video screen while the PC is running
a graphical user interface. The first step (if necessary)
would use the ICP in memory-to-memory mode to per-
form a vertical resizing. The second step would use the
ICP in memory-to-PCI mode to perform horizontal resiz-
ing and optional colorspace conversion from YUV to
RGB.

While sending the final, resampled and converted pixels
over the PCI bus to the video frame buffer, the ICP uses
a full, per-pixel occlusion bit mask—accessed in destina-
tion coordinates—to determine which pixels are actually
written to the graphics card frame buffer for display. Con-
ditioning the transfer with the bit mask allows PNX1300
to accommodate an arbitrary arrangement of overlap-
ping windows on the PC video screen.

Figure 2-3 illustrates a possible display situation and the
data structures in SDRAM that support ICP operation.
On the left, the PC video screen has four overlapping
windows. Two, Image 1 and Image 2, are being used to
display video generated by PNX1300. The right side
shows a conceptual view of SDRAM contents. Two data
structures are present, one for Image 1 and the other for
Image 2. Figure 2-3 represents a point in time during
which the ICP is displaying Image 2.

When the ICP is displaying an image (i.e., copying it from
SDRAM to a frame buffer), it maintains four pointers to
the SDRAM data structures. Three pointers locate the Y,
U, and V data arrays, the fourth locates the per-pixel oc-
clusion bit map. The Y, U, and V arrays are indexed by
source coordinates while the occlusion bit map is ac-
cessed with screen coordinates.

As the ICP generates pixels for display, it performs hori-
zontal scaling and colorspace conversion. The final RGB

pixel value is then copied to the destination address in
the screen’s frame buffer only if the corresponding bit in
the occlusion bit map is a ‘1’.

As shown in the conceptual diagram, the occlusion bit
map has a pattern of 1s and 0s corresponding to the
shape of the visible area of the destination window in the
frame buffer. When the arrangement of windows on the
PC screen changes, modifications to the occlusion bit
map is performed by PNX1300 or host resident software.

It is important to note that there is no preset limit on the
number and sizes of windows that can be handled by the
ICP. The only limit is the available bandwidth. Thus, the
ICP can handle a few large windows or many small win-
dows. The ICP can sustain a transfer rate of 50 megapix-
els per second, which is more than enough to saturate
PCI when transferring images to video frame buffers.

2.5.6 Variable-Length Decoder (VLD)

The variable-length decoder (VLD) relieves the DSPCPU
of decoding Huffman-encoded video data streams. It can
be used to help decode high bitrate MPEG-1 and MPEG-
2 video streams. The lower bitrate of videoconferencing
can be adequately handled by DSPCPU software with-
out coprocessor.

The VLD is a memory-to-memory coprocessor. The
DSPCPU hands the VLD a pointer to a Huffman-encod-
ed bit stream, and the VLD produces a tokenized bit
stream that is very convenient for the PNX1300 image
decompression software to use. The format of the output
token stream is optimized for the MPEG-2 decompres-
sion software so that communication between the
DSPCPU and VLD is minimized.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PC Screen

Image 1

File Edit Format View

File Edit

FrameMaker 5

IMAGE 1

Calendar

In SDRAM

Image 2

Y

U

V

Y

U

V

1 1
1 1

1 1
1 1

1 1

1 1
1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Image 1

Image 2

ICP

Figure 2-3. ICP - Windows on the PC screen and data structures in SDRAM for two live video windows.
PRELIMINARY SPECIFICATION 2-5

PNX1300/01/02/11 Data Book Philips Semiconductors
2.5.7 Audio In and Audio Out Units

The Audio In (AI) and Audio Out (AO) units are similar to
the video units. They connect to most serial ADC and
DAC chips, and are programmable enough to handle
most serial bit protocols. These units can transfer MSB
or LSB first and left or right channel first.

The audio sampling clock is driven by PNX1300 and is
software programmable within a wide range. Like the VO
unit, AI and AO sample rates are separately and dynam-
ically programmable. The high-quality on-chip sample
clock generator circuits allows the programmer subtle
control over the sampling frequency so that audio and
video synchronization can be achieved in any system
configuration. When changing the sample frequency, the
instantaneous phase does not change, which allows
sample frequency manipulation without introducing au-
dio or video distortion.

As with the video units, the audio-in and audio-out units
buffer incoming and outgoing audio data in SDRAM. The
audio-in unit buffers samples in either 8- or 16-bit format,
mono or stereo. The audio-out unit transfers 16- or 32-bit
sample data for mono, stereo or up to 8 audio channels
from memory to the external DACs. Any manipulation or
mixing of sound data is performed by the DSPCPU since
this processing will require only a small fraction of its pro-
cessing capacity.

2.5.8 S/PDIF Out Unit

The Sony/Philips Digital Interface Out (SPDO) unit al-
lows output of a 1-bit high-speed serial data stream. The
primary application is output of digital audio data in Sony/
Philips Digital Interface (S/PDIF) format to an external
electrically isolated transformer. The SPDO unit can also
be used as a general purpose high-speed data stream
output device such as a UART.

The SPDO unit supports 2-channel PCM audio, one or
more Dolby Digital six-channel data streams, or one or
more MPEG-1 or MPEG-2 audio streams (embedded
per Project 1937). It supports arbitrary programmable
sample rates independent of and asynchronous to the
AO unit sample rate.

2.5.9 Synchronous Serial Interface

The on-chip synchronous serial interface (SSI) is spe-
cially designed to interface to high integration analog mo-
dem frontends or ISDN frontend devices. In the analog
modem case, all of the modem signal processing is per-
formed in the PNX1300 DSPCPU.

2.5.10 I2C Interface

The I2C bus is a 2-wire multi-master, multi-slave inter-
face capable of transmitting up to 400 kbit/sec. PNX1300
implements an I2C master for use in single master envi-
ronments only. This interface allows PNX1300 to config-
ure and inspect the status of I2C peripheral devices, such
as video decoders, video encoders and some camera
types.

2.6 NEW IN PNX1300 (VERSUS TM-1300)

PNX1300/01/02/11 offers the following improvements
over the TM-1300:

• Lower core voltage for PNX1311 (2.2V core voltage)
and therefore lower power consumption.

• DSPCPU speed of up to 200 MHz for PNX1302.
• Support for 256 Mbit SDRAM organized in x16. The

REFRESH counter must be changed. Refer for Sec-
tion 12.11, “Refresh” in Chapter 12, “SDRAM Mem-
ory System” for details.

• Support for 16 and 32-bit Main Memory Interface.
• Bug fixes in VI message passing mode.
• Additional VI mode where VI_DATA[9:8] in message

passing mode are not affected by the VI_DVALID
signal.

• PCI bug fix on PCI Special Cycles.
• Autonomous boot in non 1:1 ratio is fixed.

2.7 NEW IN PNX1300 (VERSUS TM-1100)

In addition to the features described in Section 2.6
PNX1300 offers also the following improvements over
the TM-1100:

• no external MATCHOUT to MATCHIN delay line.
• Video output speed improvement: up to 81 MHz.
• Video input speed improvement: up to 81 MHz.
• Prefetcheable SDRAM aperture to increase perfor-

mance. See Chapter 11, “PCI Interface.”
• Individual powerdown capability for each coproces-

sor (e.g. ICP, EVO, etc.).
• New AO coprocessor with four separate channels

and support of 16 or 32-bit samples. 8-bit samples
are no longer supported.

• New SPDO coprocessor (for output of SPDIF and
other 1-bit high-speed serial data streams)

2.8 NEW IN PNX1300 (VERSUS TM-1000)

In addition to the features described in Section 2.7
PNX1300 offers also the following improvements over
the TM-1000:

• New DSPCPU instructions. See Appendix A,
“PNX1300/01/02/11 DSPCPU Operations.”

• Video Output unit improvements (8-bit alpha blend-
ing, chroma keying, genlock). See Chapter 7,
“Enhanced Video Out.”

• Capability to intermix PCI2.1 and 8-bit peripherals or
ROM/Flash memories on the external bus. See
Chapter 22, “PCI-XIO External I/O Bus.”

• An on-chip DVD authentication/descrambling copro-
cessor. Information available to DVD product devel-
opers on special request.

• Full 1149.1 boundary scan.
• Improved PCI DMA read performance. See Chapter

11, “PCI Interface.”
• Improved clock generation with new DDS blocks.
2-6 PRELIMINARY SPECIFICATION

DSPCPU Architecture Chapter 3

by Gert Slavenburg, Marcel Janssens

3.1 BASIC ARCHITECTURE CONCEPTS

In the document the generic PNX1300 product name
refers to PNX1300 Series, or the PNX1300/01/02/11
products.

This section documents the system programmer or
‘bare-machine’ view of the PNX1300 CPU (or DSPCPU).

3.1.1 Register Model

Figure 3-1 shows the DSPCPU’s 128 general purpose
registers, r0...r127. In addition to the hardware program
counter, PC, there are 4 user-accessible special purpose
registers, PCSW, DPC (destination program counter),
SPC (source program counter), and CCCOUNT.
Table 3-1 lists the registers and their purposes.

Register r0 always contains the integer value '0', corre-
sponding to the boolean value 'FALSE' or the single-pre-
cision floating point value +0.0. Register r1 always con-
tains the integer value '1' ('TRUE'). The programmer is
NOT allowed to write to r0 or r1.

Note: Writing to r0 or r1 may cause reads from r0 or
r1 scheduled in adjacent clock cycles to return unpre-
dictable values. The standard assembler prevents/
forbids the use of r0 or r1 as a destination register.

Registers r2 through r127 are true general purpose reg-
isters; the hardware does not imply their use in any way,

though compiler or programmer conventions may assign
particular roles to particular registers. The DPC and SPC
relate to interrupt and exception handling and are treated
in Section 3.1.4, “SPC and DPC—Source and Destina-
tion Program Counter.” The PCSW (Program Control
and Status Word) register is treated in Section 3.1.3,
“PCSW Overview.” CCCOUNT, the 64-bit clock cycle
counter is treated in Section 3.1.5, “CCCOUNT—Clock
Cycle Counter.”

31 23 15 7 0

0 00

0 10

0 0

0 0

31 23 15 7 0

63 55 47 39

r0
r1
r2
r3

r126
r127

PC

PCSW

DPC

SPC

CCCOUNT

128 General-Purpose Registers
 • r0 & r1 fixed
 • r2–r127 variable

System Status & Control Registers

•
•
•

•
•
•

Figure 3-1. PNX1300 registers.

Table 3-1. DSPCPU registers

Register Size Details

r0 32 bits Always reads as 0x0; must not be used
as destination of operations

r1 32 bits Always reads as 0x1; must not be used
as destination of operations

r2–r127 32 bits 126 general-purpose registers

PC 32 bits Program counter

PCSW 32 bits Program control & status word

DPC 32 bits Destination program counter; latches
target of taken branch that is interrupted

SPC 32 bits Source program counter; latches target
of taken branch that is not interrupted

CCCOUNT 64 bits Counts clock cycles since reset
PRELIMINARY SPECIFICATION 3-1

PNX1300/01/02/11 Data Book Philips Semiconductors
3.1.2 Basic DSPCPU Execution Model

The DSPCPU issues one ‘long instruction’ every clock
cycle. Each instruction consists of several operations
(five operations for the PNX1300 microprocessor). Each
operation is comparable to a RISC machine instruction,
except that the execution of an operation is conditional
upon the content of a general purpose register. Exam-
ples of operations are:

IF r10 iadd r11 r12 → r13

(if r10 true, add r11 and r12 and write sum in r13)

IF r10 ld32d(4) r15 → r16

(if r10 true, load 32 bits from mem[r15+4] into r16)

IF r20 jmpf r21 r22

(if r20 true and r21 false, jump to address in r22)

Each operation has a specific, known execution latency
in clock cycles. For example, iadd takes 1 cycle; thus the
result of an iadd operation started in clock cycle i is avail-
able for use as an argument to operations issued in cycle
i+1 or later. The other operations issued in cycle i cannot
use the result of iadd. The ld32d operation has a latency
of 3 cycles. The result of an ld32d operation started in cy-
cle j is available for use by other operations issued in cy-
cle j+3 or later. Branches, such as the jmpf example
above have three delay slots. This means that if a branch
operation in cycle k is taken, all operations in the instruc-
tions in cycle k+1, k+2 and k+3 are still executed.

In the above examples, r10 and r20 control conditional
execution of the operations. Also known as ‘guarding’,
here r10 and r20 contain the operation ‘guard’. See Sec-
tion 3.2.1, “Guarding (Conditional Execution).”

Certain restrictions exist in the choice of what operations
can be packed into an instruction. For example, the
DSPCPU in PNX1300 allows no more than two load/
store class operations to be packed into a single instruc-
tion. Also, no more than five results (of previously started
operations) can be written during any one cycle. The
packing of operations is not normally done by the pro-
grammer. Instead, the instruction scheduler (See Philips
TriMedia SDE Reference Manual) takes care of convert-
ing the parallel intermediate format code into packed in-
structions ready for the assembler. The rules are formally
described in the machine description file used by the in-
struction scheduler and other tools.

3.1.3 PCSW Overview

Figure 3-2 shows the PCSW register. The PNX1300 val-
ue of PCSW on reset is 0x800. For compatibility, any un-
defined PCSW fields should never be modified.

Note that the DSPCPU architecture has no condition
codes or integer arithmetic status flags. Integer opera-
tions that generate out-of-range results deliver an opera-
tion specific bit pattern. For examples, see dspiadd in
Appendix A, “PNX1300/01/02/11 DSPCPU Operations.”
Predicate operations exist that take the place of integer
status flags in a classical architecture. Multiword arith-
metic is supported by the ‘carry’ operation which gener-
ates a ‘0’ or ‘1’ depending on the carry that would be gen-
erated if its arguments were summed.

FP-Related Fields.The IEEE mode field determines the
IEEE rounding mode of all floating point operations, with
the exception of a few floating point conversion opera-
tions that use fixed rounding mode. For examples, see if-
ixrz, ifloatrz, ifixrz, ifloatrz in Appendix A, “PNX1300/01/
02/11 DSPCPU Operations.”

The FP exception flags are ‘sticky bits’ that are set as a
side effect of floating-point computations. Each floating
point operation can set one or more of the flags if it incurs
the corresponding exception. The flags can only be reset
by direct software manipulation of the PCSW (using the
writepcsw operation). The bits have the meanings shown
in Table 3-2.

The FP exception trap enable bits determine which FP
exception flags invoke CPU exception handling. An ex-
ception is requested if the intersection of the exception
flags and trap enable flags is non-zero. The acceptance
and handling of exceptions is described in Section 3.5,
“Special Event Handling.”

BSX (Bytesex). The DSPCPU has a switchable bytesex.
The BSX flag in the PCSW can be written by software.
Load/store operations observe little- or big-endian byte
ordering based on the current setting of BSX.

IEN (Interrupt Enable). The IEN flag disables or enables
interrupt processing for most interrupt sources. Only NMI
(non-maskable interrupt) bypasses IEN. The acceptance
and handling of interrupts is described in Section 3.5.3,
“INT and NMI (Maskable and Non-Maskable Interrupts).”

MSE CS IEN BSX IEEE MODE OFZ IFZ INV OVF UNF INX DBZ

01234567891011121415

Misaligned store exception

Count stalls (1 ⇒ Yes)

FP exception trap-enable bits

IEEE rounding mode
0 ⇒ to nearest, 1 ⇒ to zero, 2 ⇒ to positive, 3 ⇒ to negative

Interrupt enable (1 ⇒ allow interrupts)

Byte sex (1 ⇒ little endian)

PCSW[31:16]

PCSW[15:0] UNDEF

Misaligned store
exception trap enable Trap on first exit

FP exceptions

TRP
MSE TFE TRP

OFZ
TRP
IFZ

TRP
INV

TRP
OVF

TRP
UNF

TRP
INX

TRP
DBZ

1617181920212223252627283031

UNDEF U N D E F I N E D

13

WBE RSE

Write back error
Reserved exception

TRP
WBE

TRP
RSE

Write back error trap enable
Reserved exception
trap enable

29

PCSW = 0x800
after RESET

Figure 3-2. PNX1300 PCSW (Program Control and Status Word) register format.
3-2 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
CS (Count Stalls). The CS flag determines the mode of
CCCOUNT, the 64-bit clock cycle counter. If CS = ‘1’, the
cycle counter increments on all clock cycles. If CS = ‘0’,
the clock cycle counter only increments on non-stall cy-
cles. See also Section 3.1.5, “CCCOUNT—Clock Cycle
Counter.” After RESET, CS is set to ‘1’.

MSE and TRPMSE (Misaligned-Store Exception). The
MSE bit will be set when the processor detects a store
operation to an address that is not aligned. For example,
a 32-bit store executed with an address that is not a mul-
tiple of four will cause MSE to be set. The TRPMSE bit
enables the DSPCPU to raise misaligned address ex-
ceptions. An exception is requested if the intersection of
MSE and TRPMSE is non-zero. The acceptance and
handling of exceptions is described in Section 3.5, “Spe-
cial Event Handling.”

Unaligned load operations do not cause an exception,
because load operations can be speculative (i.e. their re-
sult is thrown away).

When the DSPCPU generates an unaligned address, the
low order address bit(s) (one bit in the case of a 16-bit
load, two bits for a 32-bit load) are forced to zero and the
load/store is executed from this aligned address.

WBE and TRPWBE (Write Back Error). The WBE flag
will be set whenever a program attempts to write back
more than 5 results simultaneously. This is indicative of
a programming error, likely caused by the scheduler or
assembler. The TRPWBE bit enables the corresponding
exception.

RSE, TRPRSE (Reserved Exception). RSE and TR-
PRSE are reserved for diagnostic purposes and not de-
scribed here.

TFE (Trap on First Exit). The TFE bit is a support bit for
the debugger. The TFE bit is set by the debugger prior to
taking a (non-interruptible) jump to the application pro-
gram. On the next interruptible jump (the first interrupt-
ible jump in the application being debugged), an excep-
tion is requested because the TFE bit is set. The
acceptance and handling of exception processing is de-
scribed in Section 3.5, “Special Event Handling.” It is the
responsibility of the exception handler software to clear
the TFE bit. The hardware does not clear or set TFE.

Corner-case note: Whenever a hardware update (e.g. an
exception being raised) and a software update (through
writepcsw) of the PCSW coincide, the new value of the

PCSW will be the value that is written by the writepcsw
instruction, except for those bits that the hardware is cur-
rently updating (which will reflect the hardware value).

3.1.4 SPC and DPC—Source and
Destination Program Counter

The SPC and DPC registers are support registers for ex-
ception processing. The DPC is updated during every in-
terruptible jump with the target address of that interrupt-
ible jump. If an exception is taken at an interruptible
jump, the value in the DPC register can be used by the
exception handling routine as the return address to re-
sume the program at the place of interruption.

The SPC register is updated during every interruptible
jump that is not interrupted by an exception. Thus on an
interrupted interruptible jump, the SPC register is not up-
dated. The SPC register allows the exception handling
routine to determine the start address of the decision tree
(a block of uninterruptible, scheduled PNX1300 code)
that was executing when the exception was taken (see
also Section 3.5, “Special Event Handling”).

Corner-case note: Whenever a hardware update (during
an interruptible jump) and a software update (through
writedpc or writespc) coincide, the software update takes
precedence.

3.1.5 CCCOUNT—Clock Cycle Counter

CCCOUNT is a 64-bit counter that counts clock cycles
since RESET. Cycle counting can occur in two modes,
depending on PCSW.CS. If PCSW.CS = ‘1’, the cycle
count increments on every CPU clock cycle. If PCSW.CS
= ‘0’, the clock cycle count only increments on non-stall
CPU cycles.

CCCOUNT is implemented as a master counter/slave
register pair. The master 64-bit counter gets updated
continuously. The value of the CCCOUNT slave register
is updated with the current master cycle count during
successful interruptible jumps only. The cycles and hicy-
cles DSPCPU operations return the content of the 32
LSBs and 32 MSBs, respectively, of the slave register.
This ensures that the value returned by hicycles and cy-
cles is coherent, as long as there is no intervening inter-
ruptible jump, which makes these operations suitable for
64-bit high resolution timing from C source code pro-
grams. The curcycles DSPCPU operation returns the 32
LSBs of the master counter. The latter operation can be
used for instruction cycle precise timing. When used, it
must be precisely placed, probably at the assembly code
level.

3.1.6 Boolean Representation

The bit pattern generated by boolean valued operations
(ileq, fleq etc.) is '00...00' (FALSE) or '00...01' (TRUE).
When interpreting a bit pattern as a boolean value, only
the LSB is taken into account, i.e. 'xx..x0' is interpreted
as FALSE and 'xx..x1' is interpreted as TRUE. In partic-
ular, wherever a general purpose register is used as a
‘guard’, the LSB determines whether execution of the
guarded operation takes place.

Table 3-2. PCSW FP exception flag definitions

Flag Function

INV Standard IEEE invalid flag

OVF Standard IEEE overflow flag

UNF Standard IEEE underflow flag

INX Standard IEEE inexact flag

DBZ Standard IEEE divide-by-zero flag

OFZ ‘Output flushed to zero’ set if an operation caused a
denormalized result

IFZ ‘Input flushed to zero’ set if an operation was applied to
one or more denormalized operands
PRELIMINARY SPECIFICATION 3-3

PNX1300/01/02/11 Data Book Philips Semiconductors
3.1.7 Integer Representation

The architecture supports the notion of 'unsigned inte-
gers' and 'signed integers.' Signed integers use the stan-
dard two’s-complement representation.

Arithmetic on integers does not generate traps. If a result
is not representable, the bit pattern returned is operation
specific, as defined in the individual operation description
section. The typical cases are:

• Wrap around for regular add- and subtract-type oper-
ations.

• Clamping against the minimum or maximum repre-
sentable value for DSP-type operations.

• Returning the least significant 32-bit value of a 64-bit
result (e.g., integer/unsigned multiply).

3.1.8 Floating Point Representation

The PNX1300 architecture supports single precision (32-
bit) IEEE-754 floating point arithmetic.

All arithmetic conforms to the IEEE-754 standard in
flush-to-zero mode.

All floating point compute operations round according to
the current setting of the PCSW IEEE mode field. The
current setting of the field determines result rounding (to
nearest, to zero, to positive infinity, to negative infinity).
Conversions from float to integer/unsigned are available
in two forms: a PCSW rounding-mode-observing form
and an ANSI-C-specific-rounding form. The ANSI-C-
specific form forces round to zero regardless of the
PCSW IEEE rounding mode. Conversion from integer/
unsigned to float always observes the IEEE rounding
mode.

Floating point exceptions are supported with two mecha-
nisms. Each individual floating point operation (e.g. fadd)
has a counterpart operation (faddflags) that computes
the exception flag values. These operations can be used
for precise exception identification1. The second mecha-
nism uses the ‘sticky’ exception bits in the PCSW that
collect aggregate exception events. The PCSW excep-
tion bits can selectively invoke CPU exception handling.
See Section 3.5.2, “EXC (Exceptions).”

Table 3-3 shows the representation choices that were
made in PNX1300’s floating point implementation .

3.1.9 Addressing Modes

The addressing modes shown in Table 3-4 are support-
ed by the DSPCPU architecture (store operations allow
only displacement mode).

In these addressing modes, R[i] indicates one of the gen-
eral purpose registers. The scale factor applied (1/2/4) is

equal to the size of the item loaded or stored, i.e. 1 for a
byte operation, two for a 16-bit operation and four for a
32-bit operation. The range of valid 'i', 'j' and 'k' values
may differ between implementations of the architecture;
the minimum values for implementation-dependent char-
acteristics are shown in Table 3-5.

Note that the assembly code specifies the true displace-
ment, and not the value to be scaled. For example,
‘ld32d(–8) r3’ loads a 32-bit value from address (r3 – 8).
This is encoded in the binary operation pattern as a –2 in
the seven-bit field by the assembler. At runtime, the
scale factor four is applied to reconstruct the intended
displacement of –8.

3.1.10 Software Compatibility

The DSPCPU architecture expressly does not support
binary compatibility between family members. The ANSI
C compiler ensures that all family members are compat-
ible at the source-code level.

1. This mechanism allows precise exception identification
in the context of our multi-issue microprocessor core—
where many floating point operations may issue simul-
taneously—at the expense of additional operations
generated by the compiler. It also allows the compiler to
issue compute operations speculatively and compute
exceptions precisely.

Table 3-3. Special Float Value Representation

Item Representation

+inf 0x7f800000

-inf 0xff800000

self generated qNaN 0xffffffff

result of operation
on any NaN argu-
ment

argument | 0x00400000 (forcing the
NaN to be quiet)

signalling NaN never generated by PNX1300,
accepted as per IEEE-754

Table 3-4. Addressing Modes

Mode Suffix Applies to Name

R[i] + scaled(#j) d Load & Store Displacement

R[i] + R[k] r Load only Index

R[i] + scaled(R[k]) x Load only Scaled index

Table 3-5. Minimum values for implementation-
dependent addressing mode components

Parameter Minimum Range

‘i’ and ‘k’ 0..127 (i.e., each implementation has at least 128
registers)

‘j’ -64..63 (i.e., displacements will be at least 7 bits
long and signed)
3-4 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
3.2 INSTRUCTION SET OVERVIEW

3.2.1 Guarding (Conditional Execution)

In the PNX1300 architecture, all operations can be op-
tionally 'guarded'. A guarded operation executes condi-
tionally, depending on the value in the ‘guard' register.
For example, a guarded add is written as:

IF R23 iadd R14 R10 → R13

This should be taken to mean

if R23 then R13 ← R14 + R10.

The ’if R23' clause controls the execution of the opera-
tion based on the LSB of R23. Hence, depending on the
LSB of R23, R13 is either unchanged or set to contain
the integer sum of R14 and R10.

Guarding applies to all DSPCPU operations, except iimm
and uimm (load-immediate). It controls the effect on all
programmer-visible states of the system, i.e. register val-
ues, memory content, exception raising and device state.

3.2.2 Load and Store Operations

Memory is byte addressable. Loads and stores must be
‘naturally aligned’, i.e. a 16-bit load or store must target
an address that is a multiple of 2. A 32-bit load or store
must target an address that is a multiple of 4. The BSX
bit in the PCSW determines the byte order of loads and
stores. For example, see ld32 and st32 in Appendix A,
“PNX1300/01/02/11 DSPCPU Operations.”

Only 32-bit load and store operations are allowed to ac-
cess MMIO registers in the MMIO address aperture (see
Section 3.4, “Memory and MMIO”). The results are unde-
fined for other loads and stores. A load from a non-exis-
tent MMIO register returns an undefined result. A store to
a non-existent MMIO register times out and then does
not happen. There are no other side effects of an access
to a nonexistent MMIO register. The state of the BSX bit
has no effect on the result of MMIO accesses.

Loads are allowed to be issued speculatively. Loads out-
side the range of valid data memory addresses for the
active process return an implementation-dependent val-
ue and do not generate an exception. Misaligned loads
also return an implementation dependent value and do
not generate an exception.

If a pair of memory operations involves one or more com-
mon bytes in memory, the effect on the common bytes is
as defined in Table 3-6.

Table 3-4 shows the supported addressing modes. The
minimum values of implementation-dependent address-
ing-mode components are shown in Table 3-5.

Note: The index and scaled-index modes are not
allowed with store opcodes, due to the hardware

restriction that each operation have at most 2 source
operand registers and 1 condition register. Stores
use 1 operand register for the value to be stored
leaving only 1 register to form an address.

The scale factor applied (1/2/4) in the scaled addressing
modes is equal to the size of the item loaded or stored,
i.e. 1 for a byte operation, 2 for a 16-bit operation and 4
for a 32-bit operation.

Table 3-7 lists the available load and store mnemonics
for the three addressing modes.

Example usage of load and store operations:

IF r10 ild16d(12) r12 → r13

If the LSB of r10 is set, load 16 bits starting at
address (r12+12) using the byte ordering indicated
in PCSW.BSX, sign-extend the value to 32 bits and
store the result in r13.

IF r10 st32d(40) r12 r13

If the LSB of r10 is set, store the 32-bit value from
r13 to the address (r12+40) using the byte ordering
indicated in PCSW.BSX.

Table 3-6. Behavior of loads and stores with
coincident addresses

Condition Behavior

Tstore < Tload If a store is issued before a load, the value
loaded contains the new bytes.

Tload < Tstore If a load is issued before a store, the value
loaded contains the old bytes.

Tstore1 < Tstore2 If store1 is issued before store2, the result-
ing value contains the bytes of store2.

Tstore = Tload If a load and store are issued in the same
clock cycle, the result is UNDEFINED.

Tstore1 = Tstore2 If two stores are issued in the same clock
cycle, the resulting stored value is unde-
fined.

Table 3-7. Load and store mnemonics

Operation Displacement Index Scaled-
Index

8-bit signed load ild8d ild8r —

8-bit unsigned load uld8d uld8r —

16-bit signed load ild16d ild16r ild16x

16-bit unsigned load uld16d uld16r uld16x

32-bit load ld32d ld32r ld32x

8-bit store st8d — —

16-bit store st16d — —

32-bit store st32d — —
PRELIMINARY SPECIFICATION 3-5

PNX1300/01/02/11 Data Book Philips Semiconductors
3.2.3 Compute Operations

Compute operations are register-to-register operations.
The specified operation is performed on one or two
source registers and the result is written to the destina-
tion register.

Immediate Operations. Immediate operations load an
immediate constant (specified in the opcode) and pro-
duce a result in the destination register.

Floating-Point Compute Operations. Floating-point
compute operations are register-to-register operations.
The specified operation is performed on one or two
source registers and the result is written to the destina-
tion register. Unless otherwise mentioned all floating
point operations observe the rounding mode bits defined
in the PCSW register. All floating-point operations not
ending in ‘flags’ update the PCSW exception flags. All
operations ending in ‘flags’ compute the exception flags
as if the operation were executed and return the flag val-
ues (in the same format as in the PCSW); the exception
flags in the PCSW itself remain unchanged.

Multimedia Operations. These special compute opera-
tions are like normal compute operations, but the speci-
fied operations are not usually found in general purpose
CPUs. These operations provide special support for mul-
timedia applications.

3.2.4 Special-Register Operations

Special register operations operate on the special regis-
ters: PCSW, DPC, SPC and CCCOUNT.

3.2.5 Control-Flow Operations

Control-flow operations change the value of the program
counter. Conditional jumps test the value in a register
and, based on this value, change the program counter to
the address contained in a second register or continue
execution with the next instruction. Unconditional jumps
always change the program counter to the specified im-
mediate address.

Control-flow operations can be interruptible or non-inter-
ruptible. Execution of an interruptible jump is the only oc-
casion where PNX1300 allows special event handling to
take place (see Section 3.5, “Special Event Handling”).

3.3 PNX1300 INSTRUCTION ISSUE RULES

The PNX1300 VLIW CPU allows issue of 5 operations in
each clock cycle according to a set of specific issue
rules. The issue rules impose issue time constraints and
a result writeback constraint. Any set of operations that
meets all constraints constitutes a legal PNX1300 in-
struction. A more extensive description and a few special
case issue rules and limitations can be found in the Phil-
ips TriMedia SDE documentation.

Issue time constraints:

• an operation implies a need for a functional unit type
(as documented in Appendix A, “PNX1300/01/02/11
DSPCPU Operations.”)

• each operation requires an issue slot that has an
instance of the appropriate functional unit type
attached

FALU DSPMUL DSPMUL FALU DMEMSPEC

SHIFTER SHIFTER FCOMP DMEM DMEM

BRANCH BRANCH BRANCH

IFMUL IFMUL

DSPALU FTOUGH
(latency 17,
recovery 16)

DSPALU

ALU ALU ALU ALU ALU

CONST CONST CONST CONST CONST

issue slot 1 issue slot 2 issue slot 3 issue slot 4 issue slot 5

Figure 3-3. PNX1300 issue slots, functional units, and latency.
3-6 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
• functional units should be ‘recovered’ from any prior
operation issues

Writeback constraint:

• No more than 5 results should be simultaneously
written to the register file at any point in time (write-
back occurs ‘latency’ cycles after issue)

Figure 3-3 shows all functional units of PNX1300, includ-
ing the relation to issue slots, and each functional unit’s
latency (e.g. 1 for CONST, 3 for FALU, etc.). With the ex-
ception of FTOUGH, each functional unit can accept an
operation every clock cycle, i.e. has a recovery time of 1.
The binding of operations to functional unit types is sum-
marized in Table 3-8. In Appendix A, “PNX1300/01/02/
11 DSPCPU Operations”, each operation lists the pre-
cise functional unit and unit latency.

3.4 MEMORY AND MMIO

PNX1300 defines four apertures in its 32-bit address
space: the memory hole, the DRAM aperture, the MMIO
aperture and the PCI apertures (See Figure 3-4).The
memory hole covers addresses 0..0xff. The DRAM and
MMIO apertures are defined by the values in MMIO reg-
isters; the PCI apertures consist of every address that
does not fall in the other three apertures.

3.4.1 Memory Map

DRAM is mapped into an aperture extending from the
address in DRAM_BASE to the address in
DRAM_LIMIT. The maximum DRAM aperture size is 64
MB.

The MMIO aperture is located at address MMIO_BASE
and is a fixed 2-MB size.

In the default operating mode, al l memory accesses not
going to either the hole, DRAM or MMIO space are inter-
preted as PCI accesses. This behavior can be overrid-
den as described in Section 5.3.8, “Memory Hole and
PCI Aperture Disable.”

The MMIO aperture and the DRAM aperture can be at
any naturally aligned location, in any order, but should

not overlap; if they do, the consequences are undefined.
The values of DRAM_BASE, DRAM_LIMIT, and
MMIO_BASE are set during the boot process. In the
case of a PCI host assisted boot, the values are deter-
mined by the host BIOS. In case of standalone boot (i.e.,
PNX1300 is the PCI host), the values are taken from the
boot ROM. Refer to Chapter 13, “System Boot” for de-
tails. DSPCPU update of DRAM_BASE and
MMIO_BASE is possible, but not recommended, see
Section 11.6.3, “MMIO/DRAM_BASE updates.”

3.4.2 The Memory Hole

The memory hole from address 0 to 0xff serves to protect
the system from performance loss due to speculative
loads. Due to the nature of C program references, most
speculative loads issued by the DSPCPU fall in the
range covered by the hole. Activated by default upon RE-
SET, the hole serves to ensure that these speculative
loads do NOT cause PCI read accesses and slow down
the system. The value returned by any data load from the
hole is 0. The hole only protects loads. Store operations
in the hole do cause writes to PCI, SDRAM or MMIO as
determined by the aperture base address values. If the
SDRAM aperture overlaps the memory hole, the memory
hole is ignored.

The hole can be temporarily disabled through the
DC_LOCK_CTL register. This is described in Section
5.3.8, “Memory Hole and PCI Aperture Disable.”

3.4.3 MMIO Memory Map

Devices are controlled through memory-mapped device
registers, referred to as MMIO registers. To ensure com-
patibility with future devices, any undefined MMIO bits
should be ignored when read, and written as ‘0’s. Some
devices can autonomously access data memory (DMA)
and most devices can cause CPU interrupts.

The 2-MB MMIO aperture is initially located at address
0xEFE00000 on RESET; it is relocated by the PCI BIOS

Table 3-8. Functional unit operations

unit type operation category

const immediate operations

alu 32-bit arithmetic, logical, pack/unpack

dspalu dual 16-bit, quad 8-bit multimedia arithmetic

dspmul dual 16-bit and quad 8-bit multimedia multiplies

dmem loads/stores

dmemspec cache coherency, cache control, prefetch

shifter multi-bit shift

branch control flow

falu floating point arithmetic & conversions

ifmul 32-bit integer and floating point multiplies

fcomp single cycle floating point compares

ftough iterative floating point square root and division

hole256byte0x0000 0000

PCI

MMIO_BASE

MMIO Aperture

DRAM_LIMIT

DRAM_BASE

DRAM Aperture

0xFFFF FFFFF

PCI

2 MB

1 MB - 64 MB

PCI

Figure 3-4. PNX1300 memory map.
PRELIMINARY SPECIFICATION 3-7

PNX1300/01/02/11 Data Book Philips Semiconductors
for PC-hosted PNX1300 boards; its final location is de-
termined by the boot EEPROM for standalone systems.
See Chapter 13, “System Boot” for more information.
Figure 3-5 gives a detailed overview of the MMIO mem-
ory map (addresses used are offsets with respect to the
MMIO base). The operating system on PNX1300 can
change MMIO_BASE by writing to the MMIO_BASE
MMIO location. User programs should not attempt this.
Refer to the TriMedia SDE Reference Manual for the
standard method to access the device registers from C
language device drivers.

Only 32-bit load and store operations are allowed to ac-
cess MMIO registers in the MMIO address aperture. The
results are undefined for other loads and stores. Reads
from non-existent MMIO registers return undefined val-
ues. Writes to nonexistent MMIO registers time out.
There are no side effects of accesses to nonexistent
MMIO registers. The state of the PCSW BSX bit has no
effect on the result of MMIO accesses.

The Icache tag and LRU bit access aperture give the
DSPCPU read-only access to the Icache status. Refer to
Section 5.4.8, “Reading Tags and Cache Status” for de-
tails.

The EXCVEC MMIO location is explained in Section
3.5.2, “EXC (Exceptions).” Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” describes
the locations that deal with the setup and handling of in-

terrupts: ISETTING, IPENDING, ICLEAR, IMASK and
the interrupt vectors. The timer MMIO locations are de-
scribed in Section 3.8, “Timers.” The instruction and
data breakpoint are described in Section 3.9, “Debug
Support.” The MMIO locations of each device are treat-
ed in the respective device chapters.

3.5 SPECIAL EVENT HANDLING

The PNX1300 microprocessor responds to the special
events shown in Table 3-9, ordered by priority.

With the exception of RESET, which is enabled at all
times, the architecture of the DSPCPU allows special
event handling to begin only during an interruptible jump
operation (ijmpt, ijmpf or ijmpi) that succeeds (i.e., is a
taken jump). EXC, NMI and INT handling can be initiated
during handling of an EXC or an INT, but only during suc-
cessful interruptible jumps.

0x00 0000

Reserved
for

Future Use

Reserved
for

Future Use

0x10 3800 JTAG interface
0x10 3400 I2C interface
0x10 3000 PCI interface
0x10 2C00 SSI interface
0x10 2800 VLD coprocessor
0x10 2400 Image coprocessor
0x10 2000 Audio Out
0x10 1C00 Audio In
0x10 1800 Video Out
0x10 1400 Video In
0x10 1000 Debug support
0x10 0C00 Timers
0x10 0800 Vectored interrupt controller
0x10 0400 MMIO base
0x10 0000 Main memory, cache control

0x1F FFFFF 0x10 1200 data breakpoints
0x10 1000 instruction breakpoints

0x10 0C60 systimer
0x10 0C40 timer3
0x10 0C20 timer2
0x10 0C00 timer1

0x10 08Fc intvec31
0x10 08F8 intvec30

0x10 0888 intvec2
0x10 0884 intvec1
0x10 0880 intvec0

0x10 0828 imask
0x10 0824 iclear
0x10 0820 ipending
0x10 081C isetting3
0x10 0818 isetting2
0x10 0814 isetting1
0x10 0810 isetting0
0x10 0800 excvec

0x10 0400 MMIO_BASE

0x10 0004 DRAM_LIMIT
0x10 0000 DRAM_BASE

0x01 0000
Icache tags & LRU (r/o)

Figure 3-5. Memory map of MMIO address space (addresses are offset from MMIO_BASE).

Table 3-9. Special Events and Event Vectors

Event Vector

RESET (Highest priority) vector to DRAM_BASE

EXC (All exceptions) vector to EXCVEC (programmable)

NMI,
INT

(Non-maskable interrupt, maskable interrupt) use
the programmed vector (one of 32 vectors depend-
ing on the interrupt source)
3-8 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
The instruction scheduler uses interruptible jumps exclu-
sively for inter-decision tree jumps. Hence, within a deci-
sion tree, no special-event processing can be initiated. If
a tree-to-tree jump is taken, special-event processing is
allowed. Since the only registers live at this point (i.e.,
that contain useful data) are the global registers allocat-
ed by the ANSI C compiler, only a subset of the registers
needs to be preserved by the event handlers. Refer to
the TriMedia SDE Reference Manual for details on which
registers can be in use. The DSPCPU register state can
be described by the contents of this subset of general
purpose registers and the contents of the PCSW and the
DPC value (the target of the inter-tree jump).

The priority resolution mechanism built into the DSPCPU
hardware dispatches the highest-priority, non-masked
special-event request at the time of a successful inter-
ruptible jump operation. In view of the simple, real-time-
oriented nature of the mechanisms provided, only limited
nesting of events should be allowed.

3.5.1 RESET

RESET is the highest priority special event. It is asserted
by external hardware or by the host CPU. PNX1300 will
respond to it at any time.

External hardware reset through the TRI_RESET# pin
initiates boot protocol execution as described in Chapter
13, “System Boot.” This causes the current PC value to
be lost and instruction execution to start from address
DRAM_BASE.

A PCI host CPU can perform a PNX1300 DSPCPU-only
reset by an MMIO write to the BIU_CTL.SR and CR bits.
Such a reset does not cause a full boot, instead the
DSPCPU resumes execution from DRAM_BASE.

3.5.2 EXC (Exceptions)

The DSPCPU enters EXC special-event processing un-
der the following conditions:

1. RESET is de-asserted.
2. The intersection PCSW[15,6:0] & PCSW[31,22:16] is

non-empty or PCSW.TFE is set.
3. A successful interruptible jump is in the final jump ex-

ecution stage.

DSPCPU hardware takes the following actions on the ini-
tiation of EXC processing:

1. DPC is assigned the intended destination address of
the successful jump.

2. Instruction processing starts at EXCVEC.

All other actions are the responsibility of the EXC handler
software. Note that no other special event processing will
take place until the handler decides to execute an inter-
ruptible jump that succeeds.

3.5.3 INT and NMI (Maskable and Non-
Maskable Interrupts)

The on-chip Vectored Interrupt Controller (VIC) provides
32 INT request input hardware lines. The interrupt con-
troller prioritizes and maps attention requests from sev-
eral different peripherals onto successive INT requests
to the DSPCPU.

INT special event processing will occur under the follow-
ing conditions:

1. RESET is de-asserted.
2. The intersection PCSW[15,6:0] & PCSW[31,22:16] is

empty and PCSW.TFE is not set.
3. The intersection of IPENDING and IMASK is non-

empty.
4. The interrupt is at level NMI or PCSW.IEN = 1.
5. A successful interruptible jump is in the final jump ex-

ecution stage.

DSPCPU hardware takes the following actions on the ini-
tiation of NMI or INT processing:

1. DPC gets assigned the intended destination address
of the successful jump.

2. Instruction processing starts at the appropriate inter-
rupt vector.

All other actions are the responsibility of the INT handler
software. Note that no other special event processing will
take place until the handler decides to execute an inter-
ruptible jump that succeeds.

3.5.3.1 Interrupt vectors

Each of the 32 interrupt sources can be assigned an ar-
bitrary interrupt vector (the address of the first instruction
of the interrupt handler). A vector is setup by writing the
address to one of the MMIO locations shown in
Figure 3-6. The state of the MMIO vector locations is un-
defined after RESET. (Addresses of the MMIO vector
registers are offset with respect to MMIO_BASE.)

Source 0 vectorINTVEC0 (r/w)
Source 1 vectorINTVEC1 (r/w)
Source 2 vectorINTVEC2 (r/w)

Source 30 vectorINTVEC30 (r/w)
Source 31 vectorINTVEC31 (r/w)

•
•
•

•
•
•

0x10 0880

0x10 0884

0x10 0888

0x10 08F8

0x10 08FC

•
•
•

31 0

MMIO_BASE
offset:

Figure 3-6. Interrupt vector locations in MMIO address space.
PRELIMINARY SPECIFICATION 3-9

PNX1300/01/02/11 Data Book Philips Semiconductors
Programmer’s note: See the Philips TriMedia Cookbook
(Book 2 of TriMedia SDE documentation) for information
on writing interrupt handlers.

3.5.3.2 Interrupt modes

DSPCPU interrupt sources can be programmed to oper-
ate in either level-sensitive or edge-triggered mode. Op-
eration in edge-triggered or level-sensitive mode is de-
termined by a bit in the ISETTING MMIO locations
corresponding to the source, as defined in Figure 3-7.
On RESET, all ISETTING registers are cleared.

In edge-triggered mode, the leading edge of the signal
on the device interrupt request line causes the VIC (Vec-
tored Interrupt Controller) to set the interrupt pending flag
corresponding to the device source number. Note that,
for active high signals, the leading edge is the positive
edge, whereas for active low request signals (such as
PCI INTA#), the negative edge is the leading edge. The
interrupt remains pending until one of two events occurs:

• The VIC successfully dispatches the vector corre-
sponding to the source to the PNX1300 CPU, or

• PNX1300 CPU software clears the interrupt-pending
flag by a direct write to the ICLEAR location.

No interrupt acknowledge to ICLEAR is needed for de-
vices operating in edge-triggered mode, since the vector
dispatch clears the IPENDING request. The device itself
may however need a device-specific interrupt acknowl-
edge to clear the requesting condition. Edge-triggered
mode is not recommended for devices that can signal
multiple simultaneous interrupt conditions. The on-chip
timers must be operated in edge triggered mode.

In level-sensitive mode, the device requests an interrupt
by asserting the VIC source request line. The device
holds the request until the device interrupt handler per-
forms a device interrupt acknowledge. It is highly recom-
mended that all off-chip and on-chip sources, with the ex-
ception of the timers, operate in level-sensitive mode.

3.5.3.3 Device interrupt acknowledge

All devices capable of generating level-triggered inter-
rupts have interrupt acknowledge bits in their memory
mapped control registers for this purpose. An interrupt
acknowledge is performed by a store to such control reg-

ister, with a ‘1’ in the bit position(s) corresponding to the
desired acknowledge flags.

Programmers note: the store operation that performs the
interrupt acknowledge should be issued at least 2 cycles
before the (interruptible) jump that ends an interrupt han-
dler. This ensures that the same interrupt is not dis-
patched twice due to request de-assertion clock delays.

3.5.3.4 Interrupt priorities

Each interrupt source can be programmed to request
one out of eight levels of priorities. The highest priority
level (level 7) corresponds to requesting an NMI—an in-
terrupt that cannot be masked by the DSPCPU PC-
SW.IEN bit. The other levels request regular interrupts,
that can be masked as a group by the PCSW.IEN flag.
Level six represents the highest priority normal interrupt
level and level zero represents the lowest. Refer to
Figure 3-7 for details of programming the priority level.

The VIC arbitrates the highest-priority pending interrupt
requestor. Sources programmed to request at the same
level are treated with a fixed priority, from source number
0 (highest) to 31 (lowest). At such time as the DSPCPU
is willing to process special events, the vector of highest
priority NMI source will be dispatched. If no NMI is pend-
ing, and the DSPCPU allows regular interrupts (PC-
SW.IEN is asserted), the vector of the highest priority
regular source is dispatched. Once a vector is dis-
patched, the corresponding interrupt pending flag is de-
asserted (edge triggered mode sources only).

3.5.3.5 Interrupt masking

A single MMIO register (IMASK in Figure 3-8) allows
masking of an arbitrary subset of the interrupt sources.
Masking applies to both regular as well as NMI level re-
questors. Masking is used by software to disable unused
devices and/or to implement nested interrupt handling. In
the latter case, each interrupt handler can stack the old
IMASK content for later restoration and insert a new
mask that only allows the interrupts it is willing to handle.
For level-triggered device handlers, IMASK should also
exclude the device itself to prevent repeated handler ac-
tivation.

Each interrupt source device typically has its own inter-
rupt enable flag(s) that determine whether certain key

MP31ISETTING3 (r/w)0x10 081C
31 0

MMIO_BASE
offset:

ISETTING2 (r/w)0x10 0818

ISETTING1 (r/w)0x10 0814

ISETTING0 (r/w)0x10 0810

MP30 MP29 MP28 MP27 MP26 MP25 MP24
371115192327

Each MP Field:
 0xxx source operates in edge-triggered mode
 1xxx source operates in level-sensitive mode

Each MP Field:
 x111 NMI (highest) priority
 x110 maskable level 6
 ...
 x000 maskable level 0

MP23 MP22 MP21 MP20 MP19 MP18 MP17 MP16

MP15 MP14 MP13 MP12 MP11 MP10 MP9 MP8

MP7 MP6 MP5 MP4 MP3 MP2 MP1 MP0

Figure 3-7. Interrupt mode and priority MMIO locations and formats.
3-10 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
device events lead to the request of an interrupt. In addi-
tion, the PCSW.IEN flag determines whether the
DSPCPU is willing to handle regular interrupts. Non
maskable interrupts ignore the state of this flag.

All three mechanisms are necessary: the PCSW.IEN flag
is used to implement critical sections of code during
which the RTOS (real-time operating system) is unable
to handle regular interrupts. The IMASK is used to allow
full control over interrupt handler nesting. The device in-
terrupt flags set the operational mode of the device.

When RESET is asserted, IPENDING, ICLEAR, and
IMASK are set to all zeroes. (MMIO register addresses
shown in Figure 3-8 are offset addresses with respect to
MMIO_BASE.)

3.5.3.6 Software interrupts and
acknowledgment

The IPENDING register shown in Figure 3-8 can be read
to observe the currently pending interrupts. Each bit read
depends on the mode of the source:

• For a level-sensitive source, a bit value corresponds
to the current state of the device interrupt request
line.

• For an edge-triggered interrupt, a ‘1’ is read if and
only if an interrupt request occurred and the corre-
sponding vector has not yet been dispatched.

Software can request an interrupt for sources operating
in edge-triggered mode. Writes to the IPENDING register
assert an interrupt request for all sources where a 1 oc-
curred in the bit position of the written value. The state of
sources where a 0 occurred in the written value is un-
changed. Writes have no effect on level-sensitive mode
sources. The interrupt request, if not masked, will occur
at the next successful interruptible jump. This differs from
the conventional software interrupt-like semantics of
many architectures. Any of the 32 sources can be re-
quested in software. In normal operation however, soft-
ware-requested interrupts should be limited to source
vectors not allocated for hardware devices. Note that an-
other PCI master can request interrupts by manipulating
the IPENDING location in the MMIO aperture. This is
useful for inter-processor communication.

The ICLEAR register reads the same as the IPENDING
register. Writes to the ICLEAR register serve to clear
pending flags for edge-triggered mode sources. All IP-
ENDING flags corresponding to bit positions in which ‘1’s
are written are cleared. IPENDING flags corresponding
to bit positions in which ‘0’s are written are not affected.
Writes have no effect on level-sensitive mode sources.
When a pending interrupt bit is being cleared through a
write to the ICLEAR register at the same time that the
hardware is trying to set that interrupt bit, the hardware
takes precedence.

3.5.3.7 NMI sequentialization

In most applications, it is desirable not to nest NMIs. The
NMI interrupt handler can accomplish this by saving the
old IMASK content and clearing IMASK before the first
interruptible jump is executed by the NMI handler.

3.5.3.8 Interrupt source assignment

Table 3-10 shows the assignment of devices to interrupt
source numbers, as well as the recommended operating
mode (edge or level triggered). Note that there are a total
of 5 external pins available to assert interrupt requests.
The PCI INTA to INTD requests are asserted by active
low signal conventions, i.e. a zero level or a negative
edge asserts a request. The USERIRQ pin operates with
active high signalling conventions.

3.6 PNX1300 TO HOST INTERRUPTS

In systems where PNX1300 is operating in the presence
of a host CPU on PCI, PNX1300 can generate interrupts
to the host, using any combination of the four PCI INTA#
to INTD# pins. In a typical host system, only one of these
pins needs to be wired to the PCI bus interrupt request
lines. Any unused pins of this group are then available for
use as software programmable I/O pins.

The INT_CTL register (see Figure 3-9) IEx bits, when
set, enable the open collector driver of the four
INTD#..INTA# pins. The INTx bits determine the output
value generated (if enabled). A ‘1’ in INTx causes the
corresponding PCI interrupt pin to be asserted (low IN-
Tx# pin). The ISx bits are read-only and reflect the cur-

IMASK (r/w)0x10 0828
31 0

MMIO_BASE
offset: 723 15

ICLEAR (r/w)0x10 0824

IPENDING (r/w)0x10 0820

Each IMASK(i) bit:
 On read or write, 0 ⇒ disallow source i interrupt request
 On read or write, 1 ⇒ allow source i interrupt request

Each ICLEAR(i) bit:
 On read, same as IPENDING(i)
 On write, 1 ⇒ clear source i interrupt request

Each IPENDING(i) bit:
 On read, 1 ⇒ source i interrupt request is pending
 On write, 1 ⇒ software source i interrupt request

Figure 3-8. Interrupt controller request, clear, and mask MMIO registers.
PRELIMINARY SPECIFICATION 3-11

PNX1300/01/02/11 Data Book Philips Semiconductors
rent actual state of the pins. Note that the pins have neg-
ative logic (active low) polarity and are of the open
collector output type. Hence the pin voltage is low (ac-
tive) when the logical value set or seen in the INT_CTL
register is a ‘1’.

The assertion and de-assertion of host interrupts is the
responsibility of PNX1300 software.

See also Section 11.6.17, “INT_CTL Register.”

3.7 HOST TO PNX1300 INTERRUPTS

A host CPU can generate an interrupt to PNX1300 in
several ways:

• by a PCI MMIO write to IPENDING to assert the
HOSTCOMM interrupt (bit 28)

• by a hardware circuit that asserts one of the interrupt
request pins TRI_USERIRQ, or INTA..INTD.

The first and most common method requires no circuitry
and leaves the interrupt pins available for other purposes.

3.8 TIMERS

The DSPCPU contains four programmable timer/
counters, all with the same function. The first three
(TIMER1, TIMER2, TIMER3) are intended for general
use. The fourth timer/counter (SYSTIMER) is reserved
for use by the system software and should not be used
by applications.

Each timer has three registers as shown in Figure 3-10.
The MMIO register addresses shown are offset address-
es with respect to the timer’s base address.

Each timer/counter can be set to count one of the event
types specified in Table 3-12. Note that the
DATABREAK event is special, in that the timer/counter
may increment by zero, one or two in each clock cycle.
For all other event types, increments are by zero or one.
The CACHE1 and CACHE2 events serve as cache per-
formance monitoring support. The actual event selected
for CACHE1 and CACHE2 is determined by the
MEM_EVENTS MMIO register, see Section 5.7, “Perfor-
mance Evaluation Support.” If a PNX1300 pin signal (VI-
CLK, etc.) is selected as an event, positive-going edges
on the signal are counted.

Each timer increments its value until the modulus is
reached. On the clock cycle where the incremented val-
ue would equal or exceed the modulus, the value wraps
around to zero or one (in the case of an increment by
two), and an interrupt is generated as defined in
Table 3-10. The timer interrupt source mode should be
set as edge-sensitive. No software interrupt acknowl-
edge to the timer device is necessary.

Counting starts and continues as long as the run bit is
set.

Loading a new modulus does not affect the contents of
the value register. If a store operation to either the mod-
ulus or value register results in value and modulus being
the same, no interrupt will be generated. If the run bit is
set, the next value will be modulus+1 or modulus+2, and

Table 3-10. Interrupt source assignments

SOURCE
NAME

SRC
NUM MODE SOURCE DESCRIPTION

PCI INTA 0 level PCI_INTA# pin signal

PCI INTB 1 level PCI_INTB# pin signal

PCI INTC 2 level PCI_INTC# pin signal

PCI INTD 3 level PCI_INTD# pin signal

TRI_USERIRQ 4 either external general-purpose
pin

TIMER1 5 edge general-purpose timer

TIMER2 6 edge general-purpose timer

TIMER3 7 edge general-purpose timer

SYSTIMER 8 edge reserved for debugger

VIDEOIN 9 level video in block

VIDEOOUT 10 level video out block

AUDIOIN 11 level audio in block

AUDIOOUT 12 level audio out block

ICP 13 level image coprocessor

VLD 14 level VLD coprocessor

SSI 15 level SSI interface

PCI 16 level PCI BIU (DMA, etc.; see
Table 11-14 for possible
interrupt causes)

IIC 17 level I2C interface

JTAG 18 level JTAG interface

t.b.d. 19..24 reserved for future devices

SPDO 25 level SPDO block

t.b.d. 26..27 reserved for future devices

HOSTCOM 28 edge (software) host communica-
tion

APP 29 edge (software) application

DEBUGGER 30 edge (software) debugger

RTOS 31 edge (software) RTOS

Figure 3-9. Host interrupt control register

31 0

MMIO_BASE
offset:

0x10 3038
371115192327

INT_CTL (r/w)

IS[D:A]
IE[D:A]

INT[D:A]
3-12 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
the counter will have to loop around before an interrupt is
generated.

A modulus value of zero causes a wrap-around as if the
modulus value was 232.

On RESET, the TCTL registers are cleared, and the val-
ue of the TMODULUS and TVALUE registers is unde-
fined.

3.9 DEBUG SUPPORT

This section describes the special debug support offered
by the DSPCPU. Instruction and data breakpoints can be
defined through a set of registers in the MMIO register
space. When a breakpoint is matched, an event is gen-
erated that can be used as a timer source (see Section
3.8, “Timers”). The timer TMODULUS has to be set to
generate a DSPCPU interrupt after the desired number
of breakpoint matches.

3.9.1 Instruction Breakpoints

The instruction-breakpoint control register is shown in
Figure 3-11. On RESET, the BICTL register is cleared.
(MMIO-register addresses shown are offset with respect
to MMIO_BASE.)

The instruction-breakpoint address-range registers are
shown in Figure 3-12. After RESET, the value of these
registers is undefined. (MMIO-register addresses shown
are offset with respect to MMIO_BASE.)

When the IC bit in the breakpoint control register is set to
‘1’, instruction breakpoints are activated. Any instruction
address issued by the PNX1300 chip is compared
against the low and high address-range values. The IAC
bit in the breakpoint control register determines whether
the instruction address needs to be inside or outside of
the range defined by the low and high address-range
registers. A successful comparison takes place when ei-
ther:

• IAC = ‘0’ and low ≤ iaddr ≤ high, or
• IAC = ‘1’ and iaddr < low or iaddr > high.

On a successful comparison, an instruction breakpoint
event is generated, which can be used as a clock input
to a timer. After counting the programmed number of in-
struction breakpoint events, the timer will generate an in-
terrupt request.

Table 3-11. Timer base MMIO address

TIMER1 MMIO_BASE+0x10,0C00

TIMER2 MMIO_BASE+0x10,0C20

TIMER3 MMIO_BASE+0x10,0C40

SYSTIMER MMIO_BASE+0x10,0C60

Table 3-12. Timer source selections

Source Name
Source

Bits
Value

Source Description

CLOCK 0 CPU clock

PRESCALE 1 prescaled CPU clock

TRI_TIMER_CLK 2 external clock pin

DATABREAK 3 data breakpoints

INSTBREAK 4 instruction breakpoints

CACHE1 5 cache event 1

CACHE2 6 cache event 2

VI_CLK 7 video in clock pin

VO_CLK 8 video out clock pin

AI_WS 9 audio in word strobe pin

AO_WS 10 audio out word strobe pin

SSI_RXFSX 11 SSI receive frame sync pin

SSI_IO2 12 SSI transmit frame sync pin

— 13-15 undefined

MODULUSTMODULUS (r/w)0
31 0Timer base offset:

TVALUE (r/w)4

TCTL (r/w)8

371115192327

“PRESCALE”:
 Prescale value is
 2^PRESCALE, i.e.,
 in the range [1..32768]

“SOURCE” select:
see table Table 3-12

VALUE

PRESCALE SOURCE

“RUN” bit:
 0 Timer stopped
 1 Timer running

R

Figure 3-10. Timer register definitions.
PRELIMINARY SPECIFICATION 3-13

PNX1300/01/02/11 Data Book Philips Semiconductors
3.9.2 Data Breakpoints

The data-breakpoint address-range and compare-value
registers are shown in Figure 3-13. After RESET, the val-
ue of the data breakpoint registers is undefined. (MMIO-
register addresses shown are offset with respect to
MMIO_BASE.)

The data-breakpoint control register is shown in
Figure 3-14. On RESET, the BDCTL register is cleared.
(The register address shown is offset with respect to
MMIO_BASE.)

When the DC bits in the data breakpoint control register
are not set to ‘0’, data breakpoints are activated. When
the value of the DC bits is ‘1’ or ‘3’, any data address from
load operations (if the BL bit is set) and/or store opera-
tions (if the BS bit is set) issued by the DSPCPU is com-
pared against the low and high address-range values.
The DAC bit in the breakpoint control register determines
whether data addresses need to be inside or outside of
the range defined by the low and high address-range
registers. A successful comparison occurs when either:

• DAC = ‘0’ and low ≤ daddr ≤ high, or
• DAC = ‘1’ and daddr < low or daddr > high.

31 0

MMIO_BASE
offset:

BICTL (r/w)0x10 1000
371115192327

‘IAC’ Instruction address control:
 0 Breakpoint if address inside range
 1 Breakpoint if address outside range

‘IC’ Instruction control bit:
0 Disable instruction breakpoints
1 Enable instruction breakpoints

IC

Figure 3-11. Instruction-breakpoint control register.

Address Range StartBINSTLOW (r/w)0x10 1004
31 0

MMIO_BASE
offset:

BINSTHIGH (r/w)0x10 1008

371115192327

Address Range End

Figure 3-12. Instruction-breakpoint address-range registers.

BDATAALOW (r/w)0x10 1030
31 0

MMIO_BASE
offset:

BDATAAHIGH (r/w)0x10 1034

BDATAVAL (r/w)0x10 1038

BDATAMASK (r/w)0x10 103C

Address Range Start
371115192327

Address Range End

Data Breakpoint Value

Data Breakpoint Value Mask

Figure 3-13. Data-breakpoint address-range and value-compare registers.

31 0

MMIO_BASE
offset:

BDCTL (r/w)0x10 1020
371115192327

‘DVC’ Data Value Control:
 0 Breakpoint if data equal
 1 Breakpoint if data not equal

DCBS BL

‘BS’ Break on Store:
 0 Don’t check data stores
 1 Do check data stores

‘DAC’ Data Address Control:
 0 Breakpoint if address inside range
 1 Breakpoint if address outside range

‘BL’ Break on Load:
 0 Don’t check data loads
 1 Do check data loads

‘DC’ Data Control:
 0 No checking
 1 Check data addresses
 2 Check data values
 3 Check data value and addresses

Figure 3-14. Data-breakpoint control register.
3-14 PRELIMINARY SPECIFICATION

Philips Semiconductors DSPCPU Architecture
Note that this comparison works for all addresses re-
gardless of the aperture to which they belong. When the
value of the DC bits is ‘2’ or ‘3’, any data value from load
operations (if the BL bit is set) and/or store operations (if
the BS bit is set) issued by the PNX1300 CPU is com-
pared against the value in the BDATAVAL register. Only
the bits for which the corresponding BDATAMASK regis-
ter bits are set to ‘1’ will be used in the comparison. The
DVC bit in the breakpoint control register determines
whether the data value needs to be equal or not equal to
the comparison value. A successful comparison occurs
when either of the following are true:

• DVC = ‘0’ and (data & BDATAMASK) = (BDATAVAL
& BDATAMASK).

• DVC = ‘1’ and (data & BDATAMASK) != (BDATAVAL
& BDATAMASK).

Note: use a nonzero datamask or the result is undefined.

When a successful comparison has taken place, a data
breakpoint event is generated, which can be used as a
clock input to a timer. After counting the set number of
data breakpoint events, the timer will generate an inter-
rupt request.

When the value of the DC bits is ‘3’, a data breakpoint
event is generated if and only if a successful comparison
occurs on both address and data simultaneously.

Note that up to two data breakpoint events can occur per
clock cycle, due to the dual load/store capability of the
CPU and data cache.
PRELIMINARY SPECIFICATION 3-15

PNX1300/01/02/11 Data Book Philips Semiconductors
3-16 PRELIMINARY SPECIFICATION

Custom Operations for Multimedia Chapter 4

by Gert Slavenburg, Pieter v.d. Meulen, Yong Cho, Sang-Ju Park

4.1 CUSTOM OPERATIONS OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

Custom operations in the PNX1300 DSPCPU architec-
ture are specialized, high-function operations designed
to dramatically improve performance in important multi-
media applications. When properly incorporated into ap-
plication source code, custom operations enable an ap-
plication to take advantage of the highly parallel
PNX1300 microprocessor implementation. Achieving a
similar performance increase through other means—
e.g., executing a higher number of traditional micropro-
cessor instructions per cycle—would be prohibitively ex-
pensive for PNX1300’s low-cost target applications.

Custom operations are simple to understand and consis-
tent in their definition, but their unusual functions make it
difficult for automatic code generation algorithms to use
them effectively. Consequently, custom operations are
inserted into source code by the programmer. To make
this process as painless as possible, custom operation
syntax is consistent with the C programming language,
and, just as with all other operations generated by the
compiler, the scheduler takes care of register allocation,
operation packing, and flow analysis.

4.1.1 Custom Operation Motivation

For both general-purpose and embedded microproces-
sor-based applications, programming in a high-level lan-
guage is desirable. To effectively support optimizing
compilers and a simple programming model, certain mi-
croprocessor architecture features are needed, such as
a large, linear address space, general-purpose registers,
and register-to-register operations that directly support
the manipulation of linear address pointers. A common
choice in microprocessor architectures is 32-bit linear
addresses, 32-bit registers, and 32-bit integer opera-
tions. PNX1300 is such a microprocessor architecture.

For the data manipulation in many algorithms, however,
32-bit data and operations are wasteful of expensive sil-
icon resources. Important multimedia applications, such
as the decompression of MPEG video streams, spend
significant amounts of execution time dealing with eight-
bit data items. Using 32-bit operations to manipulate
small data items makes inefficient use of 32-bit execution
hardware in the implementation. If these 32-bit resources
could be used instead to operate on four eight-bit data
items simultaneously, performance would be improved

by a significant factor with only a tiny increase in imple-
mentation cost.

Getting the highest execution rate from standard micro-
processor resources is one of the motivations behind
custom operations in PNX1300. A range of custom oper-
ations is provided that each processes—simultaneous-
ly—four 8-bit or two 16-bit data items. There is little cost
difference between a standard 32-bit ALU and one that
can process either one pair of 32-bit operands or four
pairs of eight-bit operands, but there is a big perfor-
mance difference for PNX1300’s target applications.

PNX1300’s custom operations go beyond simply making
the best use of standard resources. Some custom oper-
ations combine several simple operations. These combi-
nations are tailored specifically to the needs of important
multimedia applications. Some high-function custom op-
erations eliminate conditional branches, which helps the
scheduler make effective use of all five operation slots in
each PNX1300 instruction. Filling up all five slots is es-
pecially important in the inner loops of computational in-
tensive multimedia applications.

In short, custom operations help PNX1300 reach its
goals of extremely high multimedia performance at the
lowest possible cost.

4.1.2 Introduction to Custom Operations

Table 4-1 and Table 4-2 contain two listings of the cus-
tom operations available in the PNX1300 architecture.
Table 4-1 groups the custom operations by type of func-
tion while Table 4-2 lists the operations by operand size.
For more detailed information about the custom opera-
tions, Appendix A, “PNX1300/01/02/11 DSPCPU Opera-
tions.”

Some operations exist in several versions that differ in
the treatment of their operands and results, and the mne-
monics for these versions make it easy to select the ap-
propriate operation. For example, the sum of products
operations all have “fir” in their mnemonics; the prefix
and suffix of the mnemonic expresses the treatment of
the operands and result. The ifir8ii operation treats both
of its operands as signed (ifir8ii) and produces a signed
result (ifir8ii). The ifir8iu operation treats its first operand
as signed (ifir8iu), the second as unsigned (ifir8i u), and
produces a signed result (ifir8iu). The ume8ii operation
implements an eight-bit motion-estimation; it treats both
operands as signed but produces an unsigned result.

The operations beginning with “dsp” implement a clip-
ping (sometimes called saturating) function before stor-
PRELIMINARY SPECIFICATION 4-1

PNX1300/01/02/11 Data Book Philips Semiconductors
ing the result(s) in the destination register. Otherwise,
their naming follows the rules given above where appro-
priate. For example, the dspuquadaddui operation imple-
ments four 8-bit additions; it treats the first operand of
each addition as unsigned, the second operand as
signed, and produces an unsigned result for each addi-
tion. Each result, which is computed with no loss of pre-
cision, is clipped into the representable range of a byte
(0..255).

Table 4-1. Key Multimedia Custom Operations Listed
by Function Type

Function Custom Op Description

DSP
absolute
value

dspiabs Clipped signed 32-bit absolute
value

dspidualabs Dual clipped absolute values of
signed 16-bit halfwords

Shift dualasr dual-16 arithmetic shift right

Clip dualiclipi dual-16 clip signed to signed

dualuclipi dual-16 clip signed to unsigned

 Min,max quadumax Unsigned bytewise quad max

quadumin Unsigned bytewise quad min

DSP add dspiadd Clipped signed 32-bit add

dspuadd Clipped unsigned 32-bit add

dspidualadd Dual clipped add of signed 16-
bit halfwords

dspuquadaddui Quad clipped add of unsigned/
signed bytes

DSP
multiply

dspimul Clipped signed 32-bit multiply

dspumul Clipped unsigned 32-bit multi-
ply

dspidualmul Dual clipped multiply of signed
16-bit halfwords

DSP
subtract

dspisub Clipped signed 32-bit subtract

dspusub Clipped unsigned 32-bit sub-
tract

dspidualsub Dual clipped subtract of signed
16-bit halfwords

Sum of
products

ifir16 Signed sum of products of
signed 16-bit halfwords

ifir8ii Signed sum of products of
signed bytes

ifir8iu Signed sum of products of
signed/unsigned bytes

ufir16 Unsigned sum of products of
unsigned 16-bit halfwords

ufir8uu Unsigned sum of products of
unsigned bytes

Merge,
pack

mergedual16lsb Merge dual-16 least-significant
bytes

mergelsb Merge least-significant bytes

mergemsb Merge most-significant bytes

pack16lsb Pack least-significant 16-bit
halfwords

pack16msb Pack most-significant 16-bit
halfwords

packbytes Pack least-significant bytes

Byte
averages

quadavg Unsigned byte-wise quad aver-
age

Byte
multiplies

quadumulmsb Unsigned quad 8-bit multiply
most significant

Motion
estima-
tion

ume8ii Unsigned sum of absolute val-
ues of signed 8-bit differences

ume8uu Unsigned sum of absolute val-
ues of unsigned 8-bit differ-
ences

Table 4-2. Key Multimedia Custom Operations Listed
by Operand Size

Op. Size Custom Op Description

32-bit dspiabs Clipped signed 32-bit abs value

dspiadd Clipped signed 32-bit add

dspuadd Clipped unsigned 32-bit add

dspimul Clipped signed 32-bit multiply

dspumul Clipped unsigned 32-bit multi-
ply

dspisub Clipped signed 32-bit subtract

dspusub Clipped unsigned 32-bit sub-
tract

16-bit mergedual16lsb Merge dual-16 least-significant
bytes

dualasr dual-16 arithmetic shift right

dualiclipi dual-16 clip signed to signed

dualuclipi dual-16 clip signed to unsigned

dspidualmul Dual clipped multiply of signed
16-bit halfwords

dspidualabs Dual clipped absolute values of
signed 16-bit halfwords

dspidualadd Dual clipped add of signed 16-
bit halfwords

dspidualsub Dual clipped subtract of signed
16-bit halfwords

ifir16 Signed sum of products of
signed 16-bit halfwords

ufir16 Unsigned sum of products of
unsigned 16-bit halfwords

pack16lsb Pack least-significant 16-bit
halfwords

pack16msb Pack most-significant 16-bit
halfwords
4-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Custom Operations for Multimedia
4.1.3 Example Uses of Custom Ops

The next three sections illustrate the advantages of using
custom operations. Also, the more complex examples il-
lustrate how custom operations can be integrated into
application code by providing listings of C-language pro-
gram fragments. The examples progress in complexity
from simple to intricate; the most interesting examples
are taken from actual multimedia codes, such as MPEG
decompression.

4.2 EXAMPLE 1: BYTE-MATRIX
TRANSPOSITION

The goal of this example is to provide a simple, introduc-
tory illustration of how custom operations can significant-
ly increase processing speed in small kernels of applica-
tions. As in most uses of custom operations, the power
of custom operations in this case comes from their ability
to operate on multiple data items in parallel.

Imagine that our task is to transpose a packed, 4-by-4
matrix of bytes in memory; the matrix might, for example,
contain 8-bit pixel values. Figure 4-1 illustrates both the
organization of the matrix in memory and the task to be
performed in standard mathematical notation.

Performing this operation with traditional microprocessor
instructions is straight forward but time consuming. One
way to perform the manipulation is to perform 12 load-
byte instructions (since only 12 of the 16 bytes need to
be repositioned) and 12 store-byte instructions that place
the bytes back in memory in their new positions. Another
way would be to perform four load-word instructions, re-

position the bytes in registers, and then perform four
store-word instructions. Unfortunately, repositioning the
bytes in registers would require a large number of in-
structions to properly shift and mask the bytes. Perform-
ing the 24 loads and stores makes implicit use of the
shifting and masking hardware in the load/store units and
thus yields a shorter instruction sequence.

The problem with performing 24 loads and stores is that
loads and stores are inherently slow operations because
they must access at least the cache and possibly slower
layers in the memory hierarchy. Further, performing byte
loads and stores when 32-bit word-wide accesses run
just as fast wastes the power of the cache/memory inter-
face. We would prefer a fast algorithm that takes full ad-
vantage of cache/memory bandwidth while not requiring
an inordinate number of byte-manipulation instructions.

PNX1300 has instructions that merge and pack bytes
and 16-bit halfwords directly and in parallel. Four of
these instructions can be applied in this case to speed up
the manipulation of bytes that are packed into words.

Figure 4-2 shows the application of these instructions to
the byte-matrix transposition problem, and the left side of
Figure 4-3 shows a list of the operations needed to im-
plement the matrix transpose. When assembled into ac-
tual PNX1300 instructions, these custom operations
would be packed as tightly as dependencies allow, up to
five operations per instruction.

Note that a programmer would not need to program at
this level (PNX1300 assembler). The matrix transpose
would be expressed just as efficiently in C-language
source code, as shown on the right side of Figure 4-3.
The low-level code is shown here for illustration purpos-
es only.

The first sequence of four load-word operations in
Figure 4-3 brings the packed words of the input matrix
into registers R10, R11, R12, and R13. The next se-
quence of four merge operations produces intermediate
results into registers R14, R15, R16, and R17. The next
sequence of four pack operations could then replace the
original operands or place the transposed matrix in sep-
arate registers if the original matrix operands were need-

8-bit quadumax Unsigned bytewise quad max

quadumin Unsigned bytewise quad min

dspuquadaddui Quad clipped add of unsigned/
signed bytes

ifir8ii Signed sum of products of
signed bytes

ifir8iu Signed sum of products of
signed/unsigned bytes

ufir8uu Unsigned sum of products of
unsigned bytes

mergelsb Merge least-significant bytes

mergemsb Merge most-significant bytes

packbytes Pack least-significant bytes

quadavg Unsigned byte-wise quad aver-
age

quadumulmsb Unsigned quad 8-bit multiply
most significant

ume8ii Unsigned sum of absolute val-
ues of signed 8-bit differences

ume8uu Unsigned sum of absolute val-
ues of unsigned 8-bit differ-
ences

Table 4-2. Key Multimedia Custom Operations Listed
by Operand Size

Op. Size Custom Op Description
31 0

a
e
i

m

b
f
j
n

c
g
k
o

d
h
l
p

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

Row Major Column Major

Transpose

a b c d

e f g h

i j k l

m n o p

31 0

a e i m

b f j n

c g k o

d h l p

Transpose

n+0:

n+4:

n+8:

n+12:

Memory
Location

Figure 4-1. Byte-matrix transposition. Top shows
byte matrices packed into memory words; bottom
shows mathematical matrix representation.
PRELIMINARY SPECIFICATION 4-3

PNX1300/01/02/11 Data Book Philips Semiconductors
ed for further computations (the PNX1300 optimizing C
compiler performs this analysis automatically). In this ex-
ample, the transpose matrix is placed in registers R18,
R19, R20, and R21. The final four store-word operations
put the transposed matrix back into memory.

Thus, using the PNX1300 custom operations, the byte-
matrix transposition requires four load-word operations
and four store-word operations (the minimum possible)
and eight register-to-register data-manipulation opera-
tions. The result is 16 operations, or byte-matrix transpo-
sition at the rate of one operation per byte.

While the advantage of the custom-operation-based al-
gorithm over the brute-force code that uses 24 load- and
store-byte instruction seems to be only eight operations
(a 33% reduction), the advantage is actually much great-
er. First, using custom operations, the number of memo-
ry references is reduced from 24 to eight (a factor of
three). Since memory references are slower than regis-
ter-to-register operations (such as the custom operations
in this example), the reduction in memory references is
significant.

Further, the ability of the PNX1300 VLIW compilation
system to exploit the performance potential of the
PNX1300 microprocessor hardware is enhanced by the
custom-operation-based code. This is because it is eas-
ier for the compilation system to produce an optimal
schedule (arrangement) of the code when the number of
memory references is in balance with the number of reg-
ister-to-register operations. The PNX1300 CPU (like all
high-performance microprocessors) has a limit on the

number of memory references that can be processed in
a single cycle (two is the current limit). A long sequence
of code that contains only memory references can result
in empty operation slots in the long PNX1300 instruc-
tions. Empty operation slots waste the performance po-
tential of the PNX1300 hardware.

As this example has shown, careful use of custom oper-
ations has the potential to not only reduce the absolute
number of operations needed to perform a computation
but can also help the compilation system produce code
that fully exploits the performance potential of the
PNX1300 CPU.

4.3 EXAMPLE 2: MPEG IMAGE
RECONSTRUCTION

The complete MPEG video decoding algorithm is com-
posed of many different phases, each with computational
intensive kernels. One important kernel deals with recon-
structing a single image frame given that the forward-
and backward-predicted frames and the inverse discrete
cosine transform (IDCT) results have already been com-
puted. This kernel provides an excellent opportunity to il-
lustrate of the power of PNX1300’s specialized custom
operators.

In the code fragments that follow, the backward-predict-
ed block is assumed to have been computed into an ar-
ray back[], the forward-predicted block is assumed to
have been computed into forward[], and the IDCT results
are assumed to have been computed into idct[].

a
e
i
m

b
f
j
n

c
g
k
o

d
h
l
p

a
b
c
d

e
f
g
h

i
j
k
l

m
n
o
p

Row Major Column Major

mergemsb

mergemsb

a e b f

i m j n

mergelsb

mergelsb

c g d h

k o l p

pack16msb

pack16lsb

pack16msb

pack16lsb

Figure 4-2. Application of merge and pack instructions to the byte-matrix transposition of Figure 4-1.

ld32d(0) r100 → r10
ld32d(4) r100 → r11
ld32d(8) r100 → r12
ld32d(12) r100 → r13

mergemsb r10 r11 → r14
mergemsb r12 r13 → r15
mergelsb r10 r11 → r16
mergelsb r12 r13 → r17
pack16msb r14 r15 → r18
pack16lsb r14 r15 → r19
pack16msb r16 r17 → r20
pack16lsb r16 r17 → r21

st32d(0) r101 r18
st32d(4) r101 r19
st32d(8) r101 r20
st32d(12) r101 r21

char matrix[4][4];
 .
 .
 .
int *m = (int *) matrix;

temp0 = MERGEMSB(m[0], m[1]);
temp1 = MERGEMSB(m[2], m[3]);
temp2 = MERGELSB(m[0], m[1]);
temp3 = MERGELSB(m[2], m[3]);
m[0] = PACK16MSB(temp0, temp1);
m[1] = PACK16LSB(temp0, temp1);
m[2] = PACK16MSB(temp2, temp3);
m[3] = PACK16LSB(temp2, temp3);
 .
 .
 .

Figure 4-3. On the left is a complete list of operations to perform the byte-matrix transposition of Figure 4-1
and Figure 4-2. On the left is an equivalent C-language fragment.
4-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Custom Operations for Multimedia
A straightforward coding of the reconstruction algorithm
might look as shown in Figure 4-4. This implementation
shares many of the undesirable properties of the first ex-
ample of byte-matrix transposition. The code accesses
memory a byte at a time instead of a word at a time,
which wastes 75% of the available bandwidth. Also, in
light of the many quad-byte-parallel operations intro-
duced in Section 4.1.2, “Introduction to Custom Opera-
tions,” it seems inefficient to spend three separate addi-
tions and one shift to process a single eight-bit pixel.
Perhaps even more unfortunate for a VLIW processor
like PNX1300 is the branch-intensive code that performs
the saturation testing; eliminating these branches could
reap a significant performance gain.

Since MPEG decoding is the kind of task for which
PNX1300 was created, there are two custom opera-
tions—quadavg and dspuquadaddui—that exactly fit this
important MPEG kernel (and other kernels). These cus-
tom operations process four pairs of 8-bit pixel values in
parallel. In addition, dspuquadaddui performs saturation
tests in hardware, which eliminates any need to execute
explicit tests and branches.

For readers familiar with the details of MPEG algorithms,
the use of eight-bit IDCT values later in this example may
be confusing. The standard MPEG implementation calls
for nine-bit IDCT values, but extensive analysis has
shown that values outside the range [–128..127] occur
so rarely that they can be considered unimportant. Pur-
suant to this observation, the IDCT values are clipped
into the eight-bit range [–128..127] with saturating arith-
metic before the frame reconstruction code runs. The as-
sumption that this saturation occurs permits some of
PNX1300’s custom operations to have clean, simple def-
initions.

The first step in seeing how custom operations can be of
value in this case, is to unroll the loop by a factor of four.
The unrolled code is shown in Figure 4-5. This creates
code that is parallel with respect to the four pixel compu-
tations. As it is easily seen in the code, the four groups of
computations (one group per pixel) do not depend on
each other.

After some experience is gained with custom operations,
it is not necessary to unroll loops to discover situations
where custom operations are useful. Often, a good pro-
grammer with knowledge of the function of the custom
operations can see by simple inspection opportunities to
exploit custom operations.

To understand how quadavg and dspuquadaddui can be
used in this code, we examine the function of these cus-
tom operations.

The quadavg custom operation performs pixel averaging
on four pairs of pixels in parallel. Formally, the operation
of quadavg is as follows:

quadavg rscr1 rsrc2 -> rdest

takes arguments in registers rsrc1 and rsrc2, and it com-
putes a result into register rdest. rsrc1 = [abcd], rsrc2 =
[wxyz], and rdest = [pqrs] where a, b, c, d, w, x, y, z, p, q,
r, and s are all unsigned eight-bit values. Then, quadavg
computes the output vector [pqrs] as follows:

p = (a + w + 1) >> 1
q = (b + x + 1) >> 1
r = (c + y + 1) >> 1
s = (d + z + 1) >> 1

The pixel averaging in Figure 4-5 is evident in the first
statement of each of the four groups of statements. The
rest of the code—adding idct[i] value and performing the
saturation test—can be performed by the dspuquadad-
dui operation. Formally, its function is as follows:

dspuquadaddui rsrc1 rsrc2 -> rdest

takes arguments in registers rsrc1 and rsrc2, and it com-
putes a result into register rdest. rsrc1 = [efgh], rsrc2 =
[stuv], and rdest = [ijkl] where e, f, g, h, i, j, k, and l are
unsigned 8-bit values; s, t, u, and v are signed 8-bit val-
ues. Then, dspuquadaddui computes the output vector
[ijkl] as follows:

i = uclipi(e + s, 255)
j = uclipi(f + t, 255)
k = uclipi(g + u, 255)
l = uclipi(h + v, 255)

The uclipi operation is defined in this case as it is for the
separate PNX1300 operation of the same name de-
scribed in Appendix A, “PNX1300/01/02/11 DSPCPU
Operations,”. Its definition is as follows:

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
 int i, temp;

 for (i = 0; i < 64; i += 1)
 {
 temp = ((back[i] + forward[i] + 1) >> 1) + idct[i];

 if (temp > 255)
 temp = 255;
 else if (temp < 0)
 temp = 0;

 destination[i] = temp;
 }
}

Figure 4-4. Straightforward code for MPEG frame reconstruction.
PRELIMINARY SPECIFICATION 4-5

PNX1300/01/02/11 Data Book Philips Semiconductors
uclipi (m, n)
{
 if (m < 0) return 0;
 else if (m > n) return n;
 else return m;
}

To make is easier to see how these operations can sub-
sume all the code in Figure 4-5, Figure 4-6 shows the
same code rearranged to group the related functions.
Now it should be clear that the quadavg operation can re-
place the first four lines of the loop assuming that we can
get the individual 8-bit elements of the back[] and for-
ward[] arrays positioned correctly into the bytes of a 32-
bit word. That, of course, is easy: simply align the byte ar-
rays on word boundaries and access them with word (in-
teger) pointers.

Similarly, it should now be clear that the dspuquadaddui
operation can replace the remaining code (except, of
course, for storing the result into the destination[] array)
assuming, as above, that the 8-bit elements are aligned
and packed into 32-bit words.

Figure 4-7 shows the new code. The arrays are now ac-
cessed in 32-bit (int-sized) chunks, the loop iteration con-
trol has been modified to reflect the ‘four-at-a-time’ oper-
ations, and the quadavg and dspuquadaddui operations
have replaced the bulk of the loop code. Finally,
Figure 4-8 shows a more compact expression of the loop
code, eliminating the temporary variable. Note that
PNX1300 C compiler does the optimization by itself.

Again, note that the code in Figure 4-7 and Figure 4-8
assumes that the character arrays are 32-bit word

aligned and padded if necessary to fill an integral number
of 32-bit words.

The original code required three additions, one shift, two
tests, three loads, and one store per pixel. The new code
using custom operations requires only two custom oper-
ations, three loads, and one store for four pixels, which is
more than a factor of six improvement. The actual perfor-
mance improvement can be even greater depending on
how well the compiler is able to deal with the branches in
the original version of the code, which depends in part on
the surrounding code. Reducing the number of branches
almost always improves the chances of realizing maxi-
mum performance on the PNX1300 CPU.

The code in Figure 4-8 illustrates several aspects of us-
ing custom operations in C-language source code. First,
the custom operations require no special declarations or
syntax; they appear to be simple function calls. Second,
there is no need to explicitly specify register assignments
for sources, destinations, and intermediate results; the
compiler and scheduler assign registers for custom oper-
ations just as they would for built-in language operations
such as integer addition. Third, the scheduler packs cus-
tom operations into PNX1300 VLIW instructions as effec-
tively as it packs operations generated by the compiler
for native language constructs.

Thus, although the burden of making effective use of
custom operations falls on the programmer, that burden
consists only of discovering the opportunities for exploit-
ing the operations and then coding them using standard
C-language notation. The compiler and scheduler take
care of the rest.

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
 int i, temp;

 for (i = 0; i < 64; i += 4)
 {
 temp = ((back[i+0] + forward[i+0] + 1) >> 1) + idct[i+0];
 if (temp > 255) temp = 255;
 else if (temp < 0) temp = 0;
 destination[i+0] = temp;

 temp = ((back[i+1] + forward[i+1] + 1) >> 1) + idct[i+1];
 if (temp > 255) temp = 255;
 else if (temp < 0) temp = 0;
 destination[i+1] = temp;

 temp = ((back[i+2] + forward[i+2] + 1) >> 1) + idct[i+2];
 if (temp > 255) temp = 255;
 else if (temp < 0) temp = 0;
 destination[i+2] = temp;

 temp = ((back[i+3] + forward[i+3] + 1) >> 1) + idct[i+3];
 if (temp > 255) temp = 255;
 else if (temp < 0) temp = 0;
 destination[i+3] = temp;
 }
}

Figure 4-5. MPEG frame reconstruction code using PNX1300 custom operations; compare with Figure 4-4.
4-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Custom Operations for Multimedia
4.4 EXAMPLE 3: MOTION-ESTIMATION
KERNEL

Another part of the MPEG coding algorithm is motion es-
timation. The purpose of motion estimation is to reduce
the cost of storing a frame of video by expressing the
contents of the frame in terms of adjacent frames. A giv-
en frame is reduced to small blocks, and a subsequent
frame is represented by specifying how these small
blocks change position and appearance; usually, storing
the difference information is cheaper than storing a

whole block. For example, in a video sequence where
the camera pans across a static scene, some frames can
be expressed simply as displaced versions of their pre-
decessor frames. To create a subsequent frame, most
blocks are simply displaced relative to the output screen.

The code in this example is for a match-cost calculation,
a small kernel of the complete motion-estimation code.
As with the previous example, this code provides an ex-
cellent example of how to transform source code to make
the best use of PNX1300’s custom operations.

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
 int i, temp0, temp1, temp2, temp3;

 for (i = 0; i < 64; i += 4)
 {
 temp0 = ((back[i+0] + forward[i+0] + 1) >> 1);
 temp1 = ((back[i+1] + forward[i+1] + 1) >> 1);
 temp2 = ((back[i+2] + forward[i+2] + 1) >> 1);
 temp3 = ((back[i+3] + forward[i+3] + 1) >> 1);

 temp0 += idct[i+0];
 if (temp0 > 255) temp0 = 255;
 else if (temp0 < 0) temp0 = 0;

 temp1 += idct[i+1];
 if (temp1 > 255) temp1 = 255;
 else if (temp1 < 0) temp1 = 0;

 temp2 += idct[i+2];
 if (temp2 > 255) temp2 = 255;
 else if (temp2 < 0) temp2 = 0;

 temp3 += idct[i+3];
 if (temp3 > 255) temp3 = 255;
 else if (temp3 < 0) temp3 = 0;

 destination[i+0] = temp0;
 destination[i+1] = temp1;
 destination[i+2] = temp2;
 destination[i+3] = temp3;
 }
}

Figure 4-6. Re-grouped code of Figure 4-5.

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
 int i, temp;

 int *i_back = (int *) back;
 int *i_forward = (int *) forward;
 int *i_idct = (int *) idct;
 int *i_dest = (int *) destination;

 for (i = 0; i < 16; i += 1)
 {
 temp = QUADAVG(i_back[i], i_forward[i]);

 temp = DSPUQUADADDUI(temp, i_idct[i]);

 i_dest[i] = temp;
 }
}

Figure 4-7. Using the custom operation dspquadaddui to speed up the loop of Figure 4-6.
PRELIMINARY SPECIFICATION 4-7

PNX1300/01/02/11 Data Book Philips Semiconductors
Figure 4-9 shows the original source code for the match-
cost loop. Unlike the previous example, the code is not a
self-contained function. Somewhere early in the code,
the arrays A[][] and B[][] are declared; somewhere be-
tween those declarations and the loop of interest, the ar-
rays are filled with data.

4.4.1 A Simple Transformation

First, we will look at the simplest way to use a PNX1300
custom operation.

We start by noticing that the computation in the loop of
Figure 4-9 involves the absolute value of the difference
of two unsigned characters (bytes). By now, we are fa-
miliar with the fact that PNX1300 includes a number of
operations that process all four bytes in a 32-bit word si-
multaneously. Since the match-cost calculation is funda-
mental to the MPEG algorithm, it is not surprising to find

a custom operation—ume8uu—that implements this op-
eration exactly.

To understand how ume8uu can be used in this case, we
need to transform the code as in the previous example.
Though the steps are presented here in detail, a pro-
grammer with a even a little experience can often per-
form these transformations by visual inspection.

To use a custom operation that processes 4 pixel values
simultaneously, we first need to create 4 parallel pixel
computations. Figure 4-10 shows the loop of Figure 4-9
unrolled by a factor of 4. Unfortunately, the code in the
unrolled loop is not parallel because each line depends
on the one above it. Figure 4-11 shows a more parallel
version of the code from Figure 4-10. By simply giving
each computation its own cost variable and then sum-
ming the costs all at once, each cost computation is com-
pletely independent.

void reconstruct (unsigned char *back,
 unsigned char *forward,
 char *idct,
 unsigned char *destination)
{
 int i;

 int *i_back = (int *) back;
 int *i_forward = (int *) forward;
 int *i_idct = (int *) idct;
 int *i_dest = (int *) destination;

 for (i = 0; i < 16; i += 1)
 i_dest[i] = DSPUQUADADDUI(QUADAVG(i_back[i], i_forward[i]), i_idct[i]);
}

Figure 4-8. Final version of the frame-reconstruction code.

unsigned char A[16][16];
unsigned char B[16][16];
 .
 .
 .
for (row = 0; row < 16; row += 1)
{
 for (col = 0; col < 16; col += 1)
 cost += abs(A[row][col] – B[row][col]);
}

Figure 4-9. Match-cost loop for MPEG motion estimation.

unsigned char A[16][16];
unsigned char B[16][16];
 .
 .
 .
for (row = 0; row < 16; row += 1)
{
 for (col = 0; col < 16; col += 4)
 {
 cost += abs(A[row][col+0] – B[row][col+0]);
 cost += abs(A[row][col+1] – B[row][col+1]);
 cost += abs(A[row][col+2] – B[row][col+2]);
 cost += abs(A[row][col+3] – B[row][col+3]);

Figure 4-10. Unrolled, but not parallel, version of the loop from Figure 4-9.
4-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Custom Operations for Multimedia
Excluding the array accesses, the loop body in
Figure 4-11 is now recognizable as the function per-
formed by the ume8uu custom operation: the sum of 4
absolute values of 4 differences. To use the ume8uu op-
eration, however, the code must access the arrays with
32-bit word pointers instead of with 8-bit byte pointers.

Figure 4-13 shows the loop recoded to access A[][] and
B[][] as one-dimensional instead of two-dimensional ar-
rays. We take advantage of our knowledge of C-lan-
guage array storage conventions to perform this code
transformation. Recoding to use one-dimensional arrays
prepares the code for transformation to 32-bit array ac-
cesses.

(From here on, until the final code is shown, the declara-
tions of the A and B arrays will be omitted from the code
fragments for the sake of brevity.)

Figure 4-14 shows the loop of Figure 4-13 recoded to
use ume8uu. Once again taking advantage of our knowl-
edge of the C-language array storage conventions, the
one-dimensional byte array is now accessed as a one-di-
mensional 32-bit-word array. The declarations of the
pointers IA and IB as pointers to integers is the key, but
also notice that the multiplier in the expression for row
offset has been scaled from 16 to 4 to account for the fact
that there are 4 bytes in a 32-bit word.

Of course, since we are now using one-dimensional ar-
rays to access the pixel data, it is natural to use a single
for loop instead of two. Figure 4-12 shows this stream-
lined version of the code without the inner loop. Since C-
language arrays are stored as a linear vector of values,
we can simply increase the number of iterations of the
outer loop from 16 to 64 to traverse the entire array.

The recoding and use of the ume8uu operation has re-
sulted in a substantial improvement in the performance
of the match-cost loop. In the original version, the code
executed 1280 operations (including loads, adds, sub-
tracts, and absolute values); in the restructured version,
there are only 256 operations—128 loads, 64 ume8uu
operations, and 64 additions. This is a factor of five re-
duction in the number of operations executed. Also, the

unsigned char A[16][16];
unsigned char B[16][16];
 .
 .
 .
for (row = 0; row < 16; row += 1)
{
 for (col = 0; col < 16; col += 4)
 {
 cost0 = abs(A[row][col+0] – B[row][col+0]);
 cost1 = abs(A[row][col+1] – B[row][col+1]);
 cost2 = abs(A[row][col+2] – B[row][col+2]);
 cost3 = abs(A[row][col+3] – B[row][col+3]);

 cost += cost0 + cost1 + cost2 + cost3;

Figure 4-11. Parallel version of Figure 4-10.

Figure 4-12. The loop of Figure 4-14 with the inner
loop eliminated.

unsigned int *IA = (unsigned int *) A;
unsigned int *IB = (unsigned int *) B;

for (i = 0; i < 64; i += 1)
 cost += UME8UU(IA[i], IB[i]);

Figure 4-13. The loop of Figure 4-11 recoded with one-dimensional array accesses.

unsigned char A[16][16];
unsigned char B[16][16];
 .
 .
 .
unsigned char *CA = A;
unsigned char *CB = B;

for (row = 0; row < 16; row += 1)
{
 int rowoffset = row * 16;

 for (col = 0; col < 16; col += 4)
 {
 cost0 = abs(CA[rowoffset + col+0] – CB[rowoffset + col+0]);
 cost1 = abs(CA[rowoffset + col+1] – CB[rowoffset + col+1]);
 cost2 = abs(CA[rowoffset + col+2] – CB[rowoffset + col+2]);
 cost3 = abs(CA[rowoffset + col+3] – CB[rowoffset + col+3]);

 cost += cost0 + cost1 + cost2 + cost3;
PRELIMINARY SPECIFICATION 4-9

PNX1300/01/02/11 Data Book Philips Semiconductors
overhead of the inner loop has been eliminated, further
increasing the performance advantage.

4.4.2 More Unrolling

The code transformations of the previous section
achieved impressive performance improvements, but
given the VLIW nature of the PNX1300 CPU, more can
be done to exploit PNX1300’s parallelism.

The code in Figure 4-12 has a loop containing only 4 op-
erations (excluding loop overhead). Since PNX1300’s
branches have a 3-instruction delay and each instruction
can contain up to 5 operations, a fully utilized minimum-
sized loop can contain 16 operations (20 minus loop
overhead).

The PNX1300 compilation system performs a wide vari-
ety of powerful code transformation and scheduling opti-
mizations to ensure that the VLIW capabilities of the
CPU are exploited. It is still wise, however, to make pro-
gram parallelism explicit in source code when possible.
Explicit parallelism can only help the compiler produce a
fast running program.

To this end, we can unroll the loop of Figure 4-12 some
number of times to create explicit parallelism and help
the compiler create a fast running loop. In this case,
where the number of iterations is a power-of-two, it
makes sense to unroll by a factor that is a power-of-two
to create clean code.

Figure 4-15 shows the loop unrolled by a factor of eight.
The compiler can apply common sub-expression elimi-
nation and other optimizations to eliminate extraneous
operations in the array indexing, but, again, improve-
ments in the source code can only help the compiler pro-
duce the best possible code and fastest-running pro-
gram.

Figure 4-16 shows one way to modify the code for sim-
pler array indexing.

Figure 4-14. The loop of Figure 4-13 recoded with 32-bit array accesses and the ume8uu custom operation.

unsigned int *IA = (unsigned int *) A;
unsigned int *IB = (unsigned int *) B;

for (row = 0; row < 16; row += 1)
{
 int rowoffset = row * 4;

 for (col4 = 0; col4 < 4; col4 += 1)
 cost += UME8UU(IA[rowoffset + col4], IB[rowoffset + col4]);
}

unsigned int *IA = (unsigned int *) A;
unsigned int *IB = (unsigned int *) B;

for (i = 0; i < 64; i += 8)
{
 cost0 = UME8UU(IA[i+0], IB[i+0]);
 cost1 = UME8UU(IA[i+1], IB[i+1]);
 cost2 = UME8UU(IA[i+2], IB[i+2]);
 cost3 = UME8UU(IA[i+3], IB[i+3]);
 cost4 = UME8UU(IA[i+4], IB[i+4]);
 cost5 = UME8UU(IA[i+5], IB[i+5]);
 cost6 = UME8UU(IA[i+6], IB[i+6]);
 cost7 = UME8UU(IA[i+7], IB[i+7]);

 cost += cost0 + cost1 + cost2 +
 cost3 + cost4 + cost5 +
 cost6 + cost7;
}

Figure 4-15. Unrolled version of Figure 4-12. This
code makes good use of PNX1300’s VLIW capabili-
ties.

unsigned char A[16][16];
unsigned char B[16][16];
 .
 .
 .
unsigned int *IA = (unsigned int *) A;
unsigned int *IB = (unsigned int *) B;

for (i = 0; i < 64; i += 8, IA += 8, IB +=
8)
{
 cost0 = UME8UU(IA[0], IB[0]);
 cost1 = UME8UU(IA[1], IB[1]);
 cost2 = UME8UU(IA[2], IB[2]);
 cost3 = UME8UU(IA[3], IB[3]);
 cost4 = UME8UU(IA[4], IB[4]);
 cost5 = UME8UU(IA[5], IB[5]);
 cost6 = UME8UU(IA[6], IB[6]);
 cost7 = UME8UU(IA[7], IB[7]);

 cost += cost0 + cost1 + cost2 +
 cost3 + cost4 + cost5 +
 cost6 + cost7;
}

Figure 4-16. Code from Figure 4-15 with simplified
array index calculations.
4-10 PRELIMINARY SPECIFICATION

Cache Architecture Chapter 5

by Eino Jacobs

5.1 MEMORY SYSTEM OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The high-performance video and audio throughput of
PNX1300 is implemented by its DSPCPU and autono-
mous I/O and co-processing units, but the foundation of
this processing is the PNX1300 memory hierarchy. To
get the full potential of the chip’s processing units, the
memory hierarchy must read and write data (and DSP
CPU instructions) fast enough to keep the units busy.

To meet the requirements of its target applications,
PNX1300’s memory hierarchy must satisfy the conflict-
ing goals of low cost, simple system design (e.g., low
parts count), and high performance. Since multimedia
video streams can require relatively large temporary
storage, a significant amount of external DRAM is re-
quired. Minimizing the cost of bulk memory is important.

PNX1300’s memory system achieves a good compro-
mise between cost and performance by coupling sub-
stantial on-chip caches with a glueless interface to syn-
chronous DRAM (SDRAM). SDRAM provides higher
bandwidth than standard DRAM for only a small cost pre-
mium. A block diagram of the memory system is shown
in Figure 5-1. SDRAM permits PNX1300 to use a nar-
rower and simpler interface than would be required to
achieve similar performance with standard DRAM.

The separate on-chip data and instruction caches serve
only the DSPCPU since the data access patterns of the
autonomous I/O and graphics units exhibit little or no lo-
cality of reference (they access each piece of the multi-
media data stream only once in each operation).

Without the caches, the CPU would not be able to
achieve its performance potential. SDRAM has enough
bandwidth to handle serial streams of multimedia data,
but its bandwidth and latency are insufficient to satisfy
the CPU’s high rate of random data accesses and re-
peated instruction accesses.

Table 5-1 shows bandwidth parameters for the PNX1300
DSPCPU and the main-memory interface. Although 400
MB/s is a lot of bandwidth, it is clear that the SDRAM
alone cannot keep up with the CPU’s maximum require-
ments for instructions and data. Luckily, multimedia algo-
rithms resemble other computer programs in terms of lo-
cality of reference, so the on-chip caches typically supply

VLIW
CPU

Three
Branch
Units

Decompressor

32KB, 8-way
Instruction

Cache

Two
Memory

Units

16KB, 8-way
Data

Cache

Three sets, each has address,
opcode, condition, and guard

224 bits of decompressed
instruction

Two sets, each has a guard,
opcode, data, and two
address components

Main
Memory
Interface

SDRAM
Main

Memory

Internal data highway:
32-bit address, 32-bit
data

To on-chip
peripherals

Main-memory bus:
glueless, SDRAM
control with 32-bit
data

Figure 5-1. The main components of the PNX1300 memory system.

Table 5-1. 100-MHz PNX1300 memory bandwidth
parameters

Magnitude Use

2800 MB/s Instruction bandwidth (224 bits/instruction)

800 MB/s Data bandwidth (two 32-bit memory ports)

400 MB/s Main-memory bandwidth (one 32-bit port)
PRELIMINARY SPECIFICATION 5-1

PNX1300/01/02/11 Data Book Philips Semiconductors
the majority of instructions and data to the DSPCPU. The
wide paths to the caches are matched to the bandwidth
requirements of the DSPCPU.

To improve cache behavior and thus program perfor-
mance, the caches have a locking mechanism. In addi-
tion, the instruction cache is coupled with an instruction
decompression unit. The compressed instruction format
improves the cache hit rate and reduces the bus band-
width required between main memory and cache. In-
structions in main memory and cache use the com-
pressed format.

PNX1300’s processing units access the external
SDRAM through the on-chip central “data highway” bus.
The highway consists of separate 32-bit address and
data buses, and use of the bus is mediated by the main-
memory interface unit. The main-memory interface con-
tains the SDRAM controller and a central arbiter that de-
termines how much of the available SDRAM memory
bandwidth is allocated to each unit. Unused bandwidth is
always made available to the VLIW CPU for cache refill
and memory accesses that bypass the caches.

Table 5-2 gives a summary description of each compo-
nent of PNX1300’s memory system.

5.2 DRAM APERTURE

PNX1300 implements a 32-bit linear address space of
bytes. Within that address space, PNX1300 supports
several different apertures for specific purposes. The
DRAM aperture describes the part of the address space
into which the external SDRAM is mapped. SDRAM
must consist of a single, contiguous region of memory,
which is the most practical configuration for PNX1300
systems.

The location and size of the DRAM aperture is defined by
two registers, DRAM_BASE and DRAM_LIMIT. These
registers are both readable and writeable as MMIO reg-
isters and as PCI configuration space registers. The view
of the registers in MMIO space is shown in Figure 5-2.
The view of the registers in PCI configuration space is
described in Chapter 11, “PCI Interface.” In normal oper-
ation, the base address registers are assigned once dur-
ing boot and not changed when the DSPCPU is running.
Refer to Chapter 11, “PCI Interface,” and Chapter 13,
“System Boot,” for a description of this process.

DRAM_LIMIT must be set equal to DRAM_BASE plus
the actual size of SDRAM present. The amount of the
SDRAM is not required to be a power of 2, but it must be
a multiple of 64 KB. Note that the size of the aperture as
set in the PCI configuration space can be larger, be-
cause it must be a power of 2.

A memory operation will access SDRAM if its address
satisfies:

[DRAM_BASE] ≤ address < [DRAM_LIMIT]

Any address outside this range cannot access SDRAM.

When PNX1300 is reset, DRAM_BASE_FIELD is set to
0x0 and DRAM_LIMIT is set to 0x0010 0000 (1-MB
DRAM aperture starting at address 0x0). The boot pro-
cess described in Chapter 13, “System Boot,” overrides
these initial settings.

Table 5-2. Summary of memory system
characteristics

Unit Description

Branch units Branch units execute branch operations. Up to
three branch operations can be executed in
parallel, but the program must guarantee that
only one branch is taken.

Decompres-
sion unit

Instructions are stored in memory and in the
instruction cache in a space-saving, com-
pressed format. The decompression unit
expands instructions to their full, 28-byte size
before they are issued to the CPU.

Instruction
cache

The instruction cache holds 32 KB, is 8-way
set-associative, and has a 64-byte block size.
A miss in a block causes the entire block to be
read from SDRAM. The cache can sustain an
issue rate of one instruction per cycle on
cache hits.

Memory units Memory units execute load and store opera-
tions. The data cache is dual ported to allow
the memory units to operate concurrently.

Data cache The data cache holds 16 KB, is 8-way set-
associative, has a 64-byte block size, and
implements a copyback, allocate-on-write pol-
icy. A miss in a block causes the entire block
to be read from SDRAM. The cache supports
memory-mapped I/O through non-cacheable
address regions.

Data highway The on-chip data highway bus serves all on-
chip units. The highway has separate 32-bit
data and address buses. Bus bandwidth is
allocated by the highway arbiter according to
one of several modes.

Main-memory
interface

The main-memory interface contains the data-
highway access arbiter, the SDRAM control-
ler, and MMIO logic.

SDRAM main
memory

External SDRAM connects gluelessly to
PNX1300 over the 32-bit main-memory bus.

31 0371115192327

DRAM_BASE (r/w)0x10 0000 DRAM_BASE_FIELD

DRAM_LIMIT (r/w)0x10 0004 DRAM_LIMIT_FIELD

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

MMIO_BASE
offset:

0000

Figure 5-2. Formats of the DRAM_BASE and DRAM_LIMIT registers.
5-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Cache Architecture
5.3 DATA CACHE

The data cache serves only the DSPCPU and is con-
trolled by two memory units that execute the load and
store operations issued by the DSPCPU. The following
sections describe the data cache and its operation;
Table 5-3 summarizes the important characteristics for
easy reference.

5.3.1 General Cache Parameters

The PNX1300 data cache is 16 KB in size with a 64-byte
block size. Thus, it contains 256 blocks each with its own
address tag. The cache is 8-way set-associative, so
there are 32 sets, each containing 8 tags. A single valid
bit is associated with a block, so each block and associ-
ated address tag is either entirely valid in the cache or in-
valid. On a cache miss, 64 bytes are read from SDRAM
to make the entire block valid.

Each block also contains a dirty bit, which is set whenev-
er a write to the block occurs. Each set contains 10 bits
to support the hierarchical LRU replacement policy.

The geometry of the data cache is available to software
by reading the MMIO register DC_PARAMS. Figure 5-3
shows the format of the DC_PARAMS register;
Table 5-4 lists its field values. The product of block size,
associativity, and number of sets gives the total cache
size (16 KB in this case).

5.3.2 Address Mapping

PNX1300 data addresses are mapped onto the data
cache storage structure as shown in Figure 5-4. A data
address is partitioned into four fields as described in
Table 5-5.

Table 5-3. Summary of data cache characteristics

Characteristic PNX1300 Implementation

Cache size 16 KB

Cache associativity 8-way set-associative

Block size 64 bytes

Valid bits One valid bit per 64-byte block

Dirty bits One dirty bit per 64-byte block

Miss transfer order Miss transfers begin with the critical
word first

Replacement poli-
cies

Copyback, allocate on write, hierarchical
LRU

Endianness Either little- or big-endian, determined
by PCSW bit

Ports The cache is quasi dual ported; two
accesses can proceed concurrently if
they reference different banks (deter-
mined by bits [4:2] of the computed
addresses)

Alignment Access must be naturally aligned (32-bit
words on 32-bit boundaries, 16-bit half-
words on 16-bit boundaries); the appro-
priate number of LSBs of un-naturally
aligned addresses are set to zero.
For misaligned stores, PCSW.MSE is
asserted to generate an exception

Partial word opera-
tions

The cache implements 8-bit and 16-bit
accesses with the same performance as
32-bit accesses

Operation latency Three cycles for both load and store
operations

Coherency enforce-
ment

Software uses special operations to
enforce cache coherency

Cache locking Up to 1/2 (four out of 8 blocks of each
set) of the cache contents can be
locked; granularity is 64-byte

Non-cacheable
region

One non-cacheable aperture in the
DRAM address space is supported.

Table 5-4. DC_PARAMS field values

Field Name Value

BLOCK SIZE 64

ASSOCIATIVITY 8

NUMBER_OF_SETS 32

Table 5-5. Data address field partitioning

Field Address
Bits Purpose

Byte 1..0 Byte offset within a word for byte or half-
word accesses

Word 5..2 Selects one of the words in a set (one of
16 words in the case of PNX1300)

Set 10..6 Selects one of the sets in the cache (one
of 32 in the case of PNX1300)

Tag 31..11 Compared against address tags of set
members

31 0371115192327

DC_PARAMS (r/o)0x10 001C ASSOCIATIVITY NUMBER_OF_SETS

MMIO_BASE
offset:

BLOCKSIZE

Figure 5-3. Format of the DC_PARAMS register.

0

Word ByteSetTag

31 12561011

Data Cache Address

Figure 5-4. Data cache address partitioning.
PRELIMINARY SPECIFICATION 5-3

PNX1300/01/02/11 Data Book Philips Semiconductors
5.3.3 Miss Processing Order

When a miss occurs, the data cache fills the block con-
taining the requested word from the critical word first.
The CPU is stalled until the first word is transferred. The
block is then filled up while the CPU keeps running.

5.3.4 Replacement Policies, Coherency

The cache implements a copyback replacement policy
with one dirty bit per 64-byte block. Thus, when a miss
occurs and the block selected for replacement has its
dirty bit set, the dirty block must be written to main mem-
ory to preserve its modified contents. On PNX1300, the
dirty block is written to memory before the needed block
is fetched.

Coherency is not maintained in any way by hardware be-
tween the data cache, the instruction cache, and main
memory. Special operations are available to implement
cache coherency in software. See Section 5.6, “Cache
Coherency,” for a discussion of coherency issues.

Write misses are handled with an allocate-on-write poli-
cy—the write that caused the miss stores its data in the
cache after the missing block is fetched into the cache.

The cache implements a hierarchical LRU replacement
algorithm to determine which of the eight elements
(blocks) in a set is replaced. The algorithm partitions the
eight set elements into four groups, each group with two
elements. The hierarchical LRU replacement victim is
determined by selecting the least-recently used group of
two elements and then selecting the least-recently used
element in that group. This hierarchical algorithm yields
performance close to full LRU but is simpler to imple-
ment.

See Section 5.5, “LRU Algorithm,” for a full discussion of
the LRU algorithm.

5.3.5 Alignment, Partial-Word Transfers,
Endian-ness

The cache implements 32-bit word, 16-bit half-word, and
8-bit byte transfers. All transfers, however, must be to
addresses that are naturally aligned; that is, 32-bit words
must be aligned on 32-bit boundaries, and 16-bit half-
words must be aligned on 16-bit boundaries.

Like other PNX1300 processing units, the CPU has the
capability to use either big- or little-endian byte order. It
is recommended that all units and the CPU run with the
same endian-ness. Detailed endian-ness description
can be found in Appendix C, “Endian-ness.”

5.3.6 Dual Ports

To allow two accesses to proceed in parallel, the data
cache is quasi-dual ported. The cache is implemented as
eight banks of single-ported memory, but the hardware
allows each bank to operate independently. Thus, when
the addresses of two simultaneous accesses select two
different banks, both accesses can complete simulta-
neously. Bank selection is determined by the three low-
order address bits [4..2] of each address. Thus, the

words in a 64-byte cache block are distributed among the
eight blocks, which prevents conflicts between two simul-
taneously issued accesses to adjacent words in a cache
block. The PNX1300 compiling system attempts to avoid
bank conflicts as much as possible.

The dual-ported cache can execute the load and store
opcodes (ild8d, uld8d, ild16d, uld16d, ld32d, h_st8d,
h_st16d, h_st32d, ild8r, uld8r, ild16r, uld16r, ld32r,
ild16x, uld16x, ld32x) in either or both of the two ports.

The special opcodes alloc, dcb, dinvalid, pref, rdtag and
rdstatus can only be executed in the second port, not in
the first port. Whenever any of these special opcodes is
issued in the second port, there should not be a concur-
rent load or store operation in the first. This is a special
scheduling constraint.

5.3.7 Cache Locking

The data cache allows the contents of up to one-half of
its blocks to be locked. Thus, on PNX1300, up to 8 KB of
the cache can be used as a high-speed local data mem-
ory. Only four out of eight blocks in any set can be
locked.

A locked block is never chosen as a victim by the re-
placement algorithm; its contents remain undisturbed un-
til either (1) the block’s locked status is changed explicitly
by software, or (2) a dinvalid operation is executed that
targets the locked block.

Cache locking occurs only for the data in the address
range described by the MMIO registers
DC_LOCK_ADDR and DC_LOCK_SIZE. The granulari-
ty of the address range is one 64-byte cache block. The
MMIO register DC_LOCK_CTL contains the cache-lock-
ing enable bit DC_LOCK_ENABLE. Figure 5-5 shows
the layout of the data-cache lock registers. Locking will
occur for an address if locking is enabled and both of the
following are true:

1. The address is greater than or equal to the value in
DC_LOCK_ADDR.

2. The address is less than the sum of the values in
DC_LOCK_ADDR and DC_LOCK_SIZE.

Programmers (or compilers) must combine all data that
needs to be locked into this single linear address range.

Setting DC_LOCK_ENABLE to ‘1’ causes the following
sequence of events:

1. All blocks that are in cache locations that will be used
for locking are copied back to main memory (if they
are dirty) and removed from the cache.

2. All blocks in the lock range are fetched from main
memory into the cache. If any block in the lock range
was already in the cache, it’s first copied back into
main memory (if it’s dirty) and invalidated.

3. The LRU status of any set that contains locked blocks
is set to the initialization value.

4. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.

This sequence of events is triggered by writing ‘1’ to
DC_LOCK_ENABLE even if the enable is already set to
5-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Cache Architecture
‘1’. Setting DC_LOCK_ENABLE to ‘0’ causes no action
except to allow the previously locked blocks to be re-
placement victims.

To program a new lock range, the following sequence of
operations is used:

1. Disable cache locking by writing ‘0’ to
DC_LOCK_ENABLE.

2. Define a new lock range by writing to
DC_LOCK_ADDR and DC_LOCK_SIZE.

3. Enable cache locking by writing ‘1’ to
DC_LOCK_ENABLE.

Dirty locked blocks can be written back to main memory
while locking is enabled by executing copyback opera-
tions in software.

Programmer’s note: Software should not execute din-
valid operations on a locked block. If it does, the block
will be removed from the cache, creating a ‘hole’ in the
lock range (and the data cache) that cannot be reused
until locking is deactivated.

Cache locking is disabled by default when PNX1300 is
reset.

The RESERVED field in DC_LOCK_CTL should be ig-
nored on reads and written as all zeroes.

Locking should not be enabled by PCI accesses to the
MMIO registers.

5.3.8 Memory Hole and PCI Aperture
Disable

Bits 6 and 5 in DC_LOCK_CTL comprise the
APERTURE_CONTROL field. This field can be used to
change the memory map as seen by the DSPCPU. The
hardware RESET value of the field corresponds to the
memory map as described in Section 3.4.1, “Memory
Map.”

5.3.9 Non-cacheable Region

The data cache supports one non-cacheable address re-
gion within the DRAM address space aperture. The base
address of this region is determined by the value in the
DRAM_CACHEABLE_LIMIT MMIO register, which is
shown in Figure 5-6. Since uncached memory opera-
tions always incur many stall cycles, the non-cacheable
region should be used sparingly.

A memory operation is non-cacheable if its target ad-
dress satisfies:

[dram_cacheable_limit] <= address < [dram_limit]

Thus, the non-cacheable region is at the high end of the
DRAM aperture. The format of the
DRAM_CACHEABLE_LIMIT register forces the size of
the non-cacheable region to be a multiple of 64 KB.

When PNX1300 is reset, DRAM_CACHEABLE_LIMIT is
set equal to DRAM_LIMIT, which results in a zero-length
non-cacheable region.

Programmer’s note: When DRAM_CACHEABLE_LIMIT
is changed to enlarge the region that is non-cacheable,
software must ensure coherency. This is accomplished
by explicitly copying back dirty data (using dcb opera-
tions) and invalidating (using dinvalid operations) the
cache blocks in the previously unlocked region.

DC_LOCK_ADDR (r/w)0x10 0014 DC_LOCK_ADDRESS

DC_LOCK_SIZE (r/w)0x10 0018 DC_LOCK_SIZE

0 0 0 0 0 0

0 0 0 0 0 0

31 0371115192327

DC_LOCK_CTL (r/w)0x10 0010 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 00 0 0 0 0 0

DC_LOCK_ENABLE

MMIO_BASE
offset:

0 00 00 00 0

00 00 00 00 0 00 00 00 00 0 0

APERTURE_CONTROL

reserved
6 5

Figure 5-5. Formats of the registers in charge of data-cache locking.

Table 5-6. Aperture control field

Value Memory map properties

00 (RESET) Normal operation memory map (Section 3.4.1):
• loads to 0..0xff always return 0 and cause no

PCI read (memory hole is enabled)
• PCI aperture(s) are enabled

01 • loads to address 0..0xff cause a PCI read, i.e.
the memory hole is disabled

• PCI aperture(s) are enabled

10 PCI apertures are disabled for loads
• loads return a 0 and cause no PCI read

11 RESERVED for future extensions

31 0371115192327

DRAM_CACHEABLE_LIMIT
(r/w)

0x10 0008 DRAM_CACHEABLE_LIMIT_FIELD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MMIO_BASE
offset:

Figure 5-6 Formats of the DRAM_CACHEABLE_LIMIT register.
PRELIMINARY SPECIFICATION 5-5

PNX1300/01/02/11 Data Book Philips Semiconductors
5.3.10 Special Data Cache Operations

A program can exercise some control over the operation
of the data cache by executing special operations. The
special operations can cause the data cache to initiate
the copyback or invalidation of a block in the cache.
These operations are typically used by software to keep
the cache coherent with main memory.

In addition, there are special operations that allow a pro-
gram to read tag and status information from the data
cache.

Special data cache operations are always executed on
the memory port associated with issue slot 5.

5.3.10.1 Copyback and invalidate operations

The data cache controller recognizes a copyback and an
invalidate operation as shown in Table 5-7.

The dcb and dinvalid operations both compute a target
word address that is the sum of a register and seven-bit
offset. The offset can be in the range [–256..252] and
must be divisible by four.

dcb operation. The dcb operation computes the target
address, and if the block containing the address is found
in the data cache, its contents are written back to main
memory if the block is both valid and dirty. If the block is
not present, not valid, or not dirty, no action results from
the dcb operation. If the dcb causes a copyback to occur,
the CPU is stalled until the copyback completes. If the
block is not in cache, the operation causes no stall cy-
cles. If the block is in cache but not dirty, the operation
causes 4 stall cycles. If the block is dirty, the dcb opera-
tion causes a writeback and takes at least 19 stall cycles.

The dcb operation clears the dirty bit but leaves a valid
copy of the written-back block in the cache.

dinvalid operation. The dinvalid operation computes
the target address, and if the block containing the ad-
dress is found in the data cache, its valid and dirty bits

are cleared. No copyback operation will occur even if the
block is valid and dirty prior to executing the dinvalid op-
eration. The CPU is stalled for 2 cycles, if the target block
is in the cache; otherwise, no stall cycles occur.

A dinvalid or dcb operation updates the LRU information
to least recently used in its set.

Programmer’s note: Software should not execute din-
valid operations on locked blocks; otherwise, a ‘hole’ is
created that cannot be reused until locking is deactivated.

5.3.10.2 Data cache tag and status
operations

The data cache controller recognizes two DSPCPU op-
erations for reading cache status as shown in Table 5-8.

The rdtag and rdstatus operations both compute a target
word address that is the sum of a register and scaled
seven-bit offset. The offset must be divisible by four and
in the range [–256..252].

rdtag operation. The target address computed by rdtag
selects the data cache block by specifying the cache set
and set element directly. Address bits [10..6] specify the
cache set (one of 32), and bits [13..11] specify the set el-
ement (one of eight). All other target address bits are ig-
nored. This operation causes no CPU stall cycles.

The result of the rdtag operation is a full 32-bit word with
the format shown in Figure 5-7.

rdstatus operation. The target address computed by rd-
status selects the data cache set by specifying the set
number directly. Address bits [10..6] specify the cache
set (one of 32); all other target address bits are ignored.
This operation causes 1 CPU stall cycle.

The result of the rdstatus operation is a full 32-bit word
with the format shown in Figure 5-7. See Section 5.6.7,
“LRU Bit Definitions,” for a description of the LRU bits.

Table 5-7. Copyback and invalidate operations

Mnemonic Description

dcb(offset) rsrc1 Data-cache copyback block. Causes
the block that contains the target
address to be copied back to main
memory if the block is valid and dirty.

dinvalid(offset) rsrc1 Data-cache invalidate block. Causes
the block that contains the target
address to be invalidated. No copy-
back occurs even if the block is dirty.

Table 5-8. Cache read-status operations

Mnemonic Description

rdtag(offset) rsrc1 Read data-cache tag. The target
address selects a data-cache block
directly; the operation returns a 32-bit
result containing the 21-bit cache tag
and the valid bit.

rdstatus(offset) rsrc1 Read data-cache status. The target
address selects a data-cache set
directly; the operation returns a 32-bit
result containing the set’s eight dirty
bits and ten LRU bits.

31 0371115192327

VALID

rdtag Result Format TAG

rdstatus Result Format LRUDIRTY0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

Figure 5-7. Result formats for rdtag and rdstatus operations.
5-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Cache Architecture
5.3.10.3 Data cache allocation operation

The data cache controller recognizes allocation opera-
tions as shown in Table 5-9. The allocation operations al-
locate a block and set the status of this block to valid. No
data is fetched from main memory. The allocated block
is undefined after this operation. The programmer has to
fill it with valid data by store operations. Allocation oper-
ations to apertures other than cacheable DRAM will be
discarded. Allocation of a non-dirty block causes 3 stall
cycles. Allocation of a dirty block will cause writeback of
this block to the SDRAM and take at least 11 stall cycles.

5.3.10.4 Data cache prefetch operation

The data cache controller recognizes prefetch opera-
tions as shown in Table 5-10. The prefetch operations
load a full cache block from memory concurrently with
other computation. If the prefetched block is already in
cache, no data is fetched from main memory. Prefetch
operations to other apertures than cacheable DRAM are
discarded. This operation is not guaranteed to execute,
it will not execute if the cache is already occupied with
two cache misses when the operation is issued. The
prefetch operations cause 3 stall cycles if there is no
copyback of a dirty block. If a dirty block is the target of
the prefetch, the dirty block will be written back to
SDRAM, and at least 11 stall cycles are taken.

5.3.11 Memory Operation Ordering

The PNX1300 memory system implements traditional or-
dering for memory operations that are issued in different
clock cycles. That is, the effects of a memory operation
issued in cycle j occur before the effects of a memory op-
eration issued in cycle j+1.

For memory operations issued in the same cycle, howev-
er, it is not possible to execute memory operations in a
traditional order. So long as the simultaneous memory
operations access different addresses (aliasing is not
possible in PNX1300), no problems can occur. If two si-
multaneous operations do access the same address,
however, PNX1300 behavior is undefined. Specifically,
two cases are possible:

1. When multiple values are written to the same address
in the same cycle, the resulting value in memory is un-
defined.

2. When a read and a write occur to the same address
in the same clock cycle, the value returned by the
read is undefined.

The behavior of simultaneous accesses to the same ad-
dress is undefined regardless of whether one or both
memory operations hit in the cache.

Hidden Memory System Concurrency. Some cache
operations may be overlapped with CPU execution. In
general, a program cannot determine in what order
cache misses will complete nor can a program determine
when and in what order copyback operations will com-
plete. A program can, however, enforce the completion
of copyback transactions to main memory because copy-
back and invalidate operations can complete only if
pending copyback transactions for the same block have
completed. Thus, a program can synchronize to the com-
pletion of a copyback operation by dirtying a block, issu-
ing a copyback operation for the block, and then issuing
an invalidate operation for the block.

Ordering Of Special Memory Operations. The follow-
ing are special memory operations:

1. Loads or stores to MMIO addresses.
2. Non-cached loads or stores.
3. Any copyback or invalidate operation.
4. Loads or stores that cause a PCI-bus access.

The CPU is stalled until these special memory opera-
tions are completed; there is no overlap of CPU execu-
tion with these special memory operations. Thus, a pro-
grammer can assume that traditional memory operation
ordering applies to special memory operations. Note,
however, that ordering is undefined for two special mem-
ory operations issued in the same cycle.

Table 5-9. Data cache allocation operations

Mnemonic Description

allocd(offset) rsrc1 Data-cache allocate block with dis-
placement. Causes the block with
address (rsrc1+offset) &
(~(cache_block_size - 1)) to be allo-
cated and set valid.

allocr rsrc1 rsrc2 Data-cache allocate block with index.
Causes the block with address
(rsrc1+rsrc2) & (~(cache_block_size -
1)) to be allocated and set valid.

allocx rsrc1 rsrc2 Data-cache allocate block with scaled
index. Causes the block with address
(rsrc1 + 4 * rsrc2) &
(~(cache_block_size - 1)) to be allo-
cated and set valid.

Table 5-10. Data cache prefetch operations

Mnemonic Description

prefd(offset) rsrc1 Data-cache prefetch block with dis-
placement. Causes the block with
address (rsrc1+offset) &
(~(cache_block_size - 1)) to be
prefetched

prefr rsrc1 rsrc2 Data-cache prefetch block with index.
Causes the block with address
(rsrc1+rsrc2) & (~(cache_block_size -
1)) to be prefetched.

pref16x rsrc1 rsrc2 Data-cache prefetch block with scaled
16-bit index. Causes the block with
address (rsrc1 + 2 * rsrc2) &
(~(cache_block_size - 1)) to be
prefetched.

pref32x rsrc1 rsrc2 Data-cache prefetch block with scaled
32-bit index. Causes the block with
address (rsrc1 + 4 * rsrc2) &
(~(cache_block_size - 1)) to be
prefetched.
PRELIMINARY SPECIFICATION 5-7

PNX1300/01/02/11 Data Book Philips Semiconductors
5.3.12 Operation Latency

Load and store operations have an operation latency of
three cycles, regardless of the size of the data transfer.

5.3.13 MMIO Register References

Memory operations that reference MMIO registers are
not cached, and the CPU is stalled until the MMIO refer-
ence completes. A MMIO register reference occurs when
an address is in the range:

[MMIO_BASE] ≤ address < ([MMIO_BASE] + 0x200000)

The size of the MMIO aperture is hardwired at 2 MB.

5.3.14 PCI Bus References

Any CPU memory operation that references an address
outside the SDRAM and MMIO address apertures is as-
sumed to reference a device or memory on the PCI bus.
PCI-bus data transfers are not cached, and the CPU is
stalled until the PCI transfer completes.

5.3.15 CPU Stall Conditions

The data cache causes the CPU to stall when:

1. Any cache miss occurs.
2. Two simultaneously issued, cacheable memory oper-

ations need to access the same cache bank (bank
conflict).

3. An access that references an address in the MMIO
aperture is issued.

4. An access to the PCI bus is issued.
5. A non-trivial copyback or invalidate operation is is-

sued.
6. An access to the non-cacheable region in the DRAM

aperture is issued.

5.3.16 Data Cache Initialization

When PNX1300 is reset, the data cache executes an ini-
tialization sequence. The cache asserts the CPU stall
signal while it sequentially resets all valid and dirty bits.
The cache de-asserts the stall signal after completing the
initialization sequence.

5.4 INSTRUCTION CACHE

The instruction cache stores compressed CPU instruc-
tions; instructions are decompressed before being deliv-
ered to the CPU. The following sections describe the in-
struction cache and its operation; Table 5-11
summarizes instruction-cache characteristics.

5.4.1 General Cache Parameters

The PNX1300 instruction cache is 32 KB in size with a
64-byte block size. Thus, the cache contains 512 blocks
each with its own address tag. The cache is 8-way set-
associative, so there are 64 sets, each containing 8 tags.
A single valid bit is associated with a block, so each block
and associated address tag is either entirely valid or in-
valid; on a cache miss, 64 bytes are read from SDRAM
to make the entire block valid.

The geometry of the instruction cache is available to soft-
ware by reading the MMIO register IC_PARAMS.
Figure 5-8 shows the format of the IC_PARAMS register;
Table 5-12 lists its field values.

The product of the block size, associativity, and number
of sets gives the total cache size (32 KB in this case).

5.4.2 Address Mapping

PNX1300 instruction addresses are mapped onto the
data cache storage structure as shown in Figure 5-9. An
instruction address is partitioned into three fields as de-
scribed in Table 5-13

Table 5-11. Instruction cache characteristics

Characteristic PNX1300 Implementation

Cache size 32 KB

Cache associativity 8-way set-associative

Block size 64 bytes

Valid bits One valid bit per 64-byte block

Replacement policy Hierarchical LRU (least-recently used)
among the eight blocks in a set

Operation latency Branch delay is three cycles

Coherency enforce-
ment

Software uses a special operation to
enforce cache coherency

Cache locking Up to 1/2 (four out of eight blocks of
each set) of the cache contents can be
locked; granularity is 64 bytes

Table 5-12. IC_PARAMS field values

Field Name Value

BLOCKSIZE 64

ASSOCIATIVITY 8

NUMBER_OF_SETS 64

31 0371115192327

IC_PARAMS (r/o)0x10 0020 ASSOCIATIVITY NUMBER_OF_SETS

MMIO_BASE
offset:

BLOCKSIZE

Figure 5-8. Format of the instruction-cache parameters register.
5-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Cache Architecture
5.4.3 Miss Processing Order

When a miss occurs, the instruction cache starts filling
the requested block from the beginning of the block. The
DSPCPU is stalled until the entire block is fetched and
stored in the cache.

5.4.4 Replacement Policy

The hierarchical LRU replacement policy implemented
by the instruction cache is identical to that implemented
by the data cache. See Section 5.3.4, “Replacement Pol-
icies, Coherency,” for a description of the hierarchical
LRU algorithm.

5.4.5 Location of Program Code

All program code must first be loaded into SDRAM. The
instruction cache cannot fetch instructions from other
memories or devices. In particular, the cache cannot
fetch code from on-chip devices or over the PCI bus.

5.4.6 Branch Units

The instruction cache is closely coupled to three branch
units. Each unit can accept a branch independently, so
three branches can be processed simultaneously in the
same cycle.

Branches in PNX1300 are called ‘delayed branches’ be-
cause the effect of a successful (taken) branch is not
seen in the flow of control until some number of cycles af-
ter the successful branch is executed. The number of cy-
cles of latency is called the branch delay. On PNX1300,
the branch delay is three cycles.

Although three branches can be executed simultaneous-
ly, correct operation of the DSPCPU requires that only
one branch be successful (taken) in any one cycle.
DSPCPU operation is undefined if more than one con-
current branch operation is successful.

Each branch unit takes four inputs from the DSPCPU:
the branch opcode, a guard bit, a branch condition, and
a branch target address. A branch is deemed successful
if and only if the opcode is a branch opcode, the guard bit
is TRUE (i.e., = 1), and the condition (determined by the
opcode) is satisfied.

5.4.7 Coherency: Special iclr Operation

A program can exercise some control over the operation
of the instruction cache by executing the special iclr op-
eration. This operation causes the instruction cache to
clear the valid bits for all blocks in the cache, including
locked blocks. The LRU replacement status of all blocks
is reset to its initial value. The CPU is stalled while iclr is
executing.

See Section 5.6, “Cache Coherency,” for further discus-
sion of coherency issues.

5.4.8 Reading Tags and Cache Status

The instruction cache supports read access to its tag and
status bits, but not through special operations as with the
data cache. Since the instruction cache and branch units
can execute only resultless operations, access to the in-
struction-cache tags and status bits is implemented us-
ing normal load operations executed by the DSPCPU
that reference a special region in the MMIO address ap-
erture. The region is 64 KB long and starts at
MMIO_BASE. Instruction cache tags and status bits are
read-only; store operations to this region have no effect.
MMIO operations to this special region are only allowed
by the DSPCPU, not by any other masters of the on-chip
data highway, such as external PCI initiators.

Programmer’s note: Tag and status information cannot
be read by PCI access, but only by DSPCPU access.
Tag and status read cannot be scheduled in the same cy-
cle with or one cycle after an iclr operation.

Reading A Tag And Valid Bit. To read the tag and valid
bit for a block in the instruction cache, a program can ex-
ecute a ld32 operation directed at the instruction-cache
region in the MMIO aperture. The top of Figure 5-10
shows the required format for the target address. The
most-significant 16 bits must be equal to MMIO_BASE,
the least-significant 15 bits select the block (by naming
the set and set member), and bit 15 must be set to zero
to perform a tag read. Note that in PNX1300, valid set
numbers range from 0 to 63. Space to encode set num-
bers 64 to 511 is provided for future extensions.

A ld32 with an address as specified above returns a 32-
bit result with the format shown at the top of Figure 5-11.
Bit 20 contains the state of the valid bit, and the least-sig-
nificant 20 bits contain the tag for the block addressed by
the ld32.

Reading The LRU Bits. To read the LRU bits for a set in
the instruction cache, a program can execute a ld32 op-
eration as above but using the address format shown at
the bottom of Figure 5-10. In this format, bit 15 is set to
one to perform the read of the LRU bits, and the
tag_i_mux field is set to zeros because it is not needed.

Table 5-13. Instruction Address Field Partitioning

Field Address
Bits Purpose

Offset 5..0 Byte offset into a set

Set 11..6 Selects one of the sets in the cache (one
of 64 in the case of PNX1300)

Tag 31..12 Compared against address tags of set
members

0

OffsetSetTag

31 561112
Instruction Cache

Address

Figure 5-9. Instruction-cache address partitioning.
PRELIMINARY SPECIFICATION 5-9

PNX1300/01/02/11 Data Book Philips Semiconductors
Reading the LRU bits produces a 32-bit result with the
format shown at the bottom of Figure 5-11. The least-sig-
nificant ten bits contain the state of the LRU bits when the
ld32 was executed. See Section 5.6.7, “LRU Bit Defini-
tions,” for a description of the LRU bits.

Note that the tag_i_mux and set fields in the address for-
mats of Figure 5-10 are larger than necessary for the in-
struction cache in PNX1300. These fields will allow fu-
ture implementations with larger instruction caches to
use a compatible mechanism for reading instruction
cache information. The tag_i_mux field can accommo-
date a cache of up to 16-way set-associativity, and the
set field can accommodate a cache with up to 512 sets.
For PNX1300, the following constraints of the values of
these fields must be observed:

1. 0 ≤ tag_i_mux ≤ 7
2. 0 ≤ set ≤ 63

5.4.9 Cache Locking

Like the data cache, the instruction cache allows up to
one-half of its blocks to be locked. A locked block is nev-
er chosen as a victim by the replacement algorithm; its
contents remain undisturbed until the locked status is
changed explicitly by software. Thus, on PNX1300, up to
16 KB of the cache can be used as a high-speed instruc-
tion ‘ROM.’ Only four out of eight blocks in any set can be
locked.

The MMIO registers IC_LOCK_ADDR, IC_LOCK_SIZE,
and IC_LOCK_CTL—shown in Figure 5-12—are used to
define and enable instruction locking in the same way
that the similarly named data-cache locking registers are
used. Section 5.3.7, “Cache Locking,” describes the de-
tails of cache locking; they are not repeated here.

Setting the IC_LOCK_ENABLE bit (in IC_LOCK_CTL) to
‘1’ causes the following sequence of events:

1. The instruction cache invalidates all blocks in the
cache.

2. The instruction cache fetches all blocks in the lock
range (defined by IC_LOCK_ADDR and
IC_LOCK_SIZE) from main memory into the cache.

3. Cache locking is activated so that the locked blocks
cannot be victims of the replacement algorithm.

The only difference between this sequence and the ini-
tialization sequence for data-cache locking is that dirty
blocks (which cannot exist in the instruction cache) are
not written back first.

Programmer’s note: Programmers (or compilers) must
combine all instructions that need to be locked into the
single linear instruction-locking address range.

The special iclr operation also removes locked blocks
from the cache. If blocks are locked in the instruction
cache, then instruction cache locking should be disabled
in software (by writing ‘0’ to IC_LOCK_CTL) before an
iclr operation is issued.

Locking should not be enabled by PCI accesses to the
MMIO register.

5.4.10 Instruction Cache Initialization and
Boot Sequence

When PNX1300 is reset, the instruction cache executes
an initialization and processor boot sequence. While re-
set is asserted, the instruction cache forces NOP opera-
tion to the DSPCPU, and the program counter is set to
the default value reset_vector. When reset is deassert-
ed, the initialization and boot sequence is as follows.

31 0371115192327

To Read Tag & Valid Bit

To Read LRU Bits SET

MMIO_BASE

1 0 0 0 0

0

MMIO_BASE

TAG_I_MUX SET

0 0

0 0

Figure 5-10. Required address format for reading instruction-cache tags and status.

31 0371115192327

VALID

I-Cache Tag-Read Result Format

I-Cache Status-Read Result Format LRU0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0

0

0 0 0 0 0 0 0 0

TAG

Figure 5-11. Result formats for reads from the instruction-cache region of the MMIO aperture.

IC_LOCK_ADDR (r/w)0x10 0214 IC_LOCK_ADDRESS

IC_LOCK_SIZE (r/w)0x10 0218 IC_LOCK_SIZE

0 0 0 0 0 0

0 0 0 0 0 0

31 0371115192327

IC_LOCK_CTL (r/w)0x10 0210 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 00 0 0 0 0 0

IC_LOCK_ENABLE

MMIO_BASE
offset:

0 0 0 0 0 00 00

0 00 0 0 0 0 00 00 0 0 0 0 0 0 0

reserved

Figure 5-12. Formats of the registers that control instruction-cache locking.
5-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Cache Architecture
1. The stall signal is asserted to prevent activity in the
DSPCPU and data cache.

2. The valid bits for all blocks in the instruction cache are
reset.

3. At the completion of the block invalidation scan, the
stall signal to the DSPCPU and data cache are deas-
serted.

4. The DSPCPU begins normal operation with an in-
struction fetch from the address reset_vector.

The initialization process takes 512 clock cycles. Reset
sets reset_vector equal to DRAM_BASE so that program
execution starts at the initial value of DRAM_BASE. The
initial value of DRAM_BASE is determined as described
in Section 5.2, “DRAM Aperture.”

5.5 LRU ALGORITHM

When a cache miss occurs, the block containing the re-
quested data must be brought into the cache to replace
an existing cache block. The LRU algorithm is responsi-
ble for selecting the replacement victim by selecting the
least-recently-used block.

The 8-way set-associative caches implement a hierarchi-
cal LRU replacement algorithm as follows. Eight sets are
partitioned into four groups of two elements each. To se-
lect the LRU element:

• First, the LRU pair is selected out of the four pairs
using a four-way LRU algorithm.

• Second, the LRU element of the pair is selected
using a two-way LRU algorithm.

5.5.1 Two-Way Algorithm

The two-way LRU requires an administration of one bit
per pair of elements. On every cache hit to one of the two
blocks, the cache writes once to this bit (just a write, not
a read-modify-write). If the even-numbered block is ac-
cessed, the LRU bit is set to ‘1’; if the odd-numbered
block is accessed, the LRU bit is set to ‘0’. On a miss, the
cache replaces the LRU element, i.e. if the LRU bit is ‘0’,
the even numbered element will be replaced; if the LRU
bit is ‘1’, the odd numbered element will be replaced.

5.6 CACHE COHERENCY

The PNX1300 hardware does not implement coherency
between the caches and main memory. Generalized co-
herency is the responsibility of software, which can use
the special operations dcb, dinvalid, and iclr to enforce
cache/memory synchronization.

5.6.1 Example 1: Data-Cache/Input-Unit
Coherency

Before the CPU commands the video-in unit to capture a
video frame, the CPU must be sure that the data cache
contains no blocks that are in the address region that the
video-in unit will use to store the input frame. If the video-
in unit performs its input function to an address region

and the data cache does hold one or more blocks from
that region, any of the following may happen:

• A miss in the data cache may cause a dirty block to
be copied back to the address region being used by
the video-in unit. If the video-in unit already stored
data in the block, the write-back will corrupt the frame
data.

• The CPU will read stale data from the cache instead
of from the block in main memory. Even though the
video-in unit stored new video data in the block in
main memory, the cache contents will be used
instead because it is still valid in the cache.

To prevent erroneous copybacks or the use of stale data,
the CPU must use dinvalid operations to invalidate all
blocks in the address region that will be used by the VI
unit.

5.6.2 Example 2: Data-Cache/Output-Unit
Coherency

Before the CPU commands the video-out unit to send a
frame of video, the CPU must be sure that all the data for
the frame has been written from the data cache to the re-
gion of main memory that the video-out unit will output.
Explicit action is necessary because the data cache—
with its copyback write policy—will hold an exclusive
copy of the data until it is either replaced by the LRU al-
gorithm or the CPU explicitly forces it to be copied back
to main memory.

Before an output command is issued to the video-out
unit, the CPU must execute dcb operations to force co-
herency between cache contents and main memory.

5.6.3 Example 3: Instruction-Cache/Data-
Cache Coherency

If code prepared by a program running on the CPU must
be subsequently executed, coherency between the in-
struction and data caches must be enforced. This is ac-
complished by a two-step process:

1. Coherency between the data cache and main memo-
ry must be enforced since the instruction cache can
fetch instructions only from main memory.

2. Coherency between the instruction cache and main
memory is enforced by executing an iclr operation.

The CPU will now be able to fetch and execute the new
instructions.

5.6.4 Example 4: Instruction-Cache/Input-
Unit Coherency

When an input unit is used to load program code into
main memory, the iclr operation must be issued before
attempting to execute the new code.

5.6.5 Four-Way Algorithm

For administration of the four-way algorithm, the cache
maintains an upper-left triangular matrix ‘R’ of 1-bit ele-
ments without the diagonal. R contains six bits (in gener-
PRELIMINARY SPECIFICATION 5-11

PNX1300/01/02/11 Data Book Philips Semiconductors
al, n×(n–1)/2 bits for n-way LRU). If set element k is ref-
erenced, the cache sets row k to ‘1’ and column k to ‘0’:

R[k, 0..n–1] ← 1,
R[0..n–1, k] ← 0

The LRU element is the one for which the entire row is ‘0’
(or empty) and the entire column is ‘1’ (or empty):

R[k, 0..n–1] = 0 and R[0..n–1, k] = 1

For a 4-way set-associative cache, this algorithm re-
quires six bits per set of four cache blocks. On every
cache hit, the LRU info is updated by setting three of the
six bits to ‘0’ or ‘1’, depending on the set element that
was accessed. The bits need only be written, no read-
modify-write is necessary. On a miss, the cache reads
the six LRU bits to determine the replacement block.

PNX1300 combines the two-way and four-way algo-
rithms into an 8-way hierarchical LRU algorithm. A total
of ten administration bits are required: six to maintain the
four-way LRU plus four bits maintain the four two-way
LRUs.

The hierarchical algorithm has performance close to full
eight-way LRU, but it requires far fewer bits—ten instead
of 28 bits—and is much simpler to implement.

To update the LRU bits on a cache hit to element j (with
0 <= j <= 7), the cache applies m = (j div 2) to the four-
way LRU administration and (j mod 2) is applied to the
two-way administration of pair m. To select a replace-
ment victim, the cache first determines the pair p from
the four-way LRU and then retrieves the LRU bit q of pair
p. The overall LRU element is the p×2+q.

5.6.6 LRU Initialization

Reset causes the LRU administration bits to initialized to
a legal state:

R[1,0] ← R[2,0] ← R[3,0] ← 1
R[2,1] ← R[3,1] ← R[3,2] ← 0
2_way[3] ← 2_way[2] ← 2_way[1] ← 2_way[0] ← 0

5.6.7 LRU Bit Definitions

The ten LRU bits per set are mapped as shown in
Figure 5-13. This is the format of the LRU field as re-
turned by the special operation rdstatus for the data
cache and a ld32 from MMIO space (see Section 5.4.8,
“Reading Tags and Cache Status”) for the instruction
cache.

5.6.8 LRU for the Dual-Ported Cache

For the PNX1300 dual-ported data cache, two memory
operations to the same set are possible in a single clock
cycle. To support this concurrency, two updates of the
LRU bits of a single set must be possible.

The following rules are used by PNX1300:

1. LRU bits that are changed by exactly one port receive
the value according to the algorithm described above.

2. LRU bits that are changed by both ports receive a val-
ue as if the algorithm were first applied for the access
in port zero and then for the access in port one.

5.7 PERFORMANCE EVALUATION
SUPPORT

The caches implement support for performance evalua-
tion. Several events that occur in the caches can be
counted using the PNX1300 timer/counters, by selecting
the source CACHE1 and/or CACHE2, as described in
Section 3.8, “Timers.” Two different events can be
tracked simultaneously by using 2 timers.

The MMIO register MEM_EVENTS determines which
events are counted. See Figure 5-14 for the format of
MEM_EVENTS. Table 5-14 lists the events that can be
tracked and the corresponding values for the
MEM_EVENTS fields. Event1 selects the actual source

LRU bit 0

R[3,1] R[3,0]R[3,2]R[2,0]R[1,0] R[2,1]2_way[1] 2_way[0]2_way[3] 2_way[2]

LRU bit 1LRU bit 2LRU bit 3LRU bit 4LRU bit 5LRU bit 6LRU bit 7LRU bit 8LRU bit 9

Figure 5-13. LRU bit definitions; 2_way[k] is the two-way LRU bit of pair k = (j div 2) for set element j.

31 0371115192327

MEM_EVENTS (r/w)0x10 000C 0 Event2

MMIO_BASE
offset:

0 Event1

Figure 5-14. Format of the memory_events MMIO register.
5-12 PRELIMINARY SPECIFICATION

Philips Semiconductors Cache Architecture
for the TIMER CACHE1 source. Event2 selects the
source for TIMER CACHE2.

If the memory bus is available:

• On read data cache miss the minimum waiting time is
12 SDRAM clock cycles, if critical word first is
granted by the Main Memory Interface (MMI). If not,
then data cache waits from 12 to 18 SDRAM cycles
(16 SDRAM cycles are required to fetch 64 bytes
from SDRAM.

• On write data cache miss, the missing line needs to
be fetched, thus it implies the same SDRAM cycles
as a read data cache miss. If the victimized cache
line is dirty, the cache line is copied back to memory

after the read of the missing line is done and thus
does not add extra stall cycles.

• Prefetch delay is the same as read data cache if
memory bus is available. As a reminder the prefetch
may be discarded if the data cache state machine is
“full”, and there is a 3 stall cycle penalty when the
prefetch is issued.

5.8 MMIO REGISTER SUMMARY

Table 5-15 lists the MMIO registers that pertain to the op-
eration of PNX1300’s instruction and data caches.

Table 5-14. Trackable cache-performance events

Encoding Event

0 No event counted

1 Instruction-cache misses

2 Instruction-cache stall cycles (including data-
cache stall cycles if both instruction-cache and
data-cache are stalled simultaneously)

3 Data-cache bank conflicts

4 Data-cache read misses

5 Data-cache write misses

6 Data-cache stall cycles (that are not also instruc-
tion-cache stall cycles)

7 Data-cache copyback to SDRAM

8 Copyback buffer full

9 Data-cache write miss with all fetch units occu-
pied

10 Data cache stream miss

11 Prefetch operation started and not discarded

12 Prefetch operation discarded (because it hits in
the cache or there is no fetch unit available)

13 Prefetch operation discarded (because it hits in
the cache)

14–15 Reserved

Table 5-15. MMIO register summary

Name Description

DRAM_BASE Sets location of the DRAM aperture

DRAM_LIMIT Sets size of the DRAM aperture

DRAM_CACHEABLE
_LIMIT

Divides DRAM aperture into cache-
able and non-cacheable portions

MEM_EVENTS Selects which two events will be
counted by timer/counters

DC_LOCK_CTL Data-cache locking enable and aper-
ture control

DC_LOCK_ADDR Sets low address of the data-cache
address lock aperture

DC_LOCK_SIZE Sets size of the data-cache address
lock aperture

DC_PARAMS Read-only register with data-cache
parameter information

IC_PARAMS Read-only register with instruction-
cache parameter information

IC_LOCK_CTL Instruction-cache locking enable

IC_LOCK_ADDR Sets low address of the instruction-
cache address lock aperture

IC_LOCK_SIZE Sets size of the instruction-cache
address lock aperture

MMIO_BASE Sets location of the MMIO aperture
PRELIMINARY SPECIFICATION 5-13

PNX1300/01/02/11 Data Book Philips Semiconductors
5-14 PRELIMINARY SPECIFICATION

Video In Chapter 6

by Gert Slavenburg

6.1 VIDEO IN OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The Video In (VI) unit provides the following functions:

• Digital video input from a digital camera or analog
camera (using a video decoder).

• High-bandwidth (81 MB/sec) raw input data channel.
• Direct 8-10 bit interface for video A/D converters at

up to 81-MHz sample rate.
• Receiver port for PNX1300-to-PNX1300 unidirec-

tional message passing

The VI unit operates in one of the modes per Table 6-1.

Digital video input is in YUV 4:2:2 with 8-bit resolution
multiplexed in CCIR656 format1 from a digital camera or
CCIR656-capable video decoder (such as the Philips
SAA7111 or SAA7113), across an 8-bit-wide interface.
Resolutions up to CCIR601 are accepted at 50 or 60
fields per second. A programmable rectangular image is
captured from a video frame and written in planar format
to PNX1300 SDRAM. The video camera or decoder can
be programmed using the PNX1300 I2C bus. In fullres
capture mode, luminance (Y) and chrominance (U, V)
pass unmodified. In halfres capture mode, luminance

and chrominance are horizontally decimated by a factor
of two to convert to CIF-like resolution with YUV 4:2:2 or
MPEG sampling rules. If vertical subsampling on chromi-
nance is desired, it can be performed by software on the
DSPCPU or by the on-chip image coprocessor (ICP).

When operating as raw input data channel, VI accepts 8-
bit-wide data. The operation mode is raw8 capture. No
data selection or data interpretation is done. Data is writ-
ten in packed form, four bytes to a word, to local SDRAM.
There is no hardware control over the rate at which the
source sends data. Instead, VI maintains two pointer/
counter registers to ensure that no data is lost when the
local SDRAM memory buffer fills. Data is accepted at the
clock of the sender. If desired, VI_CLK can be pro-
grammed as an output to drive the data transfer at a pro-
grammable rate.

VI can accept raw data from up to 10-bit A/D converters,
at sampling rates up to 81 MHz. VI can operate in raw8,
raw10u, or raw10s capture mode for eight-bit, unsigned
10-bit or signed 10-bit data. In the 10-bit modes, data is
zero- or sign-extended to 16 bits and stored in packed
form in local SDRAM. As with the raw8-capture mode, VI
maintains two pointer/counter registers to ensure that no
data is lost when the local SDRAM memory buffer fills.
Data is accepted at the externally set sampling rate. If
desired, VI_CLK can be programmed as an output to
serve as a programmable sampling clock.

VI can act as receiver from the Enhanced Video Out
(EVO) unit of another PNX1300. One EVO unit can
broadcast to multiple receiving VIs. In this message
passing mode, no data selection or data interpretation is
done. Each message of the sender is written as byte-
packed data to a separate local SDRAM memory buffer.
Message start and end is indicated by the sender. The
receiving VI will accept data until the sender indicates
message end or until the current memory buffer is full. If
the memory buffer fills before message end is encoun-
tered, the received data is truncated and an error condi-
tion is raised.

6.1.1 Interface

Besides the VI-specific pins in Table 6-2, the PNX1300
I2C interface is typically used to control the external cam-
era or video decoder.

Figure 6-1 through Figure 6-4 illustrate typical connec-
tions for commonly used external sources. Note that
VI_DVALID is only used in special circumstances, e.g.
when sending data through a channel that results in
clock periods both with and without data transfers.

Table 6-1. VI unit mode selection.

Mode Function Explanation

0000 fullres capture YUV 4:2:2 capture, no decimation

0001 halfres capture YUV 4:2:2 capture, decimate by 2

0010 raw8 capture raw 8-bit data capture, pack 4
bytes to a word

0011 raw10s capture raw 10-bit data capture, sign
extend to 16 bits, pack 2 to a word

0100 raw10u capture raw 10-bit data capture, zero-
extend to 16 bits, pack 2 to a word

0101 message passing message reception from EVO

0110
..

1111

Reserved

1. Refer to CCIR recommendation 656: interfaces for dig-
ital component video signals in 525-line and 625-line
television systems. Recommendation 656 is included in
the Philips Desktop Video Data Handbook.
PRELIMINARY SPECIFICATION 6-1

PNX1300/01/02/11 Data Book Philips Semiconductors
6.1.2 Diagnostic Mode

The VI logic can be set to operate in diagnostic mode,
which connects the inputs of VI to the outputs of the EVO

unit. This mode provides boot diagnostics with the ability
to verify major operational aspects of the chip before
handing control to an operating system.

Diagnostic mode is entered by writing a control word with
a ‘1’ in the DIAGMODE bit position to the VI_CTL register
(see Figure 6-11). The EVO unit has to be setup to pro-
vide a clock before starting DIAGMODE. After a VI soft-
ware reset, the DIAGMODE bit has to be set back to ‘1’.
In diagnostic mode, the VI signals are exactly as shown
in Figure 6-2, except that the inputs come from the on-
chip EVO unit. Note that the inputs are truly taken from
the PNX1300 EVO external pins, i.e. if an external (board
level) source is driving EVO pins, diagnostic mode is not
capable of testing the EVO unit.

Note that the diagnostic mode only controls an input mul-
tiplexer. VI can be programmed and operated in all usual
modes. The raw modes are particularly attractive for di-
agnostics purposes, since they allow VI to operate al-
most as an on-chip logic analyzer.

6.1.3 Power Down and Sleepless

The VI unit enters power down state whenever PNX1300
is put in global power down mode, except if the SLEEP-
LESS bit in VI_CTL is set. In the latter case, the block
continues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated.

The EVO block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

It is recommended that the EVO unit be stopped (by ne-
gating VI_CTL.CAPTURE_ENABLE) before block-level
power down is started, or that SLEEPLESS mode be
used when global power down is activated.

6.1.4 Hardware and Software Reset

Video In is reset by a PNX1300 hardware reset (pin
TRI_RESET#) or by a VI software reset. The latter is ac-
complished by writing a control word of 0x00080000 to
the VI_CTL register. After a software reset, allow for 5
video clock cycles delay before enabling VI capture.
Upon hardware or software reset, the VI_CTL,
VI_STATUS, and VI_CLOCK registers are set to all ’0’s.
The state of the other registers after RESET is unde-

Table 6-2. VI unit interface pins

VI_CLK I/O-5 • If configured as input (power up
default): a positive transition on this
incoming video clock pin samples
all other VI_DATA input signals
below if VI_DVALID is HIGH. If
VI_DVALID is LOW, VI_DATA is
ignored. Clock and data rates of up
to 81 MHz are supported. PNX1300
supports an additional mode where
VI_DATA[9:8] in message passing
mode are not affected by the
VI_DVALID signal, Section 6.6.1.

• If configured as output: programma-
ble output clock to drive an external
video A/D converter. Can be pro-
grammed to emit integral dividers of
DSPCPU_CLK.

• See Section 6.2 for clock program-
ming details.

VI_DVALID IN-5 VI_DVALID indicates that valid data is
present on the VI_DATA lines. If HIGH,
VI_DATA will be accepted on the next
VI_CLK positive edge. If LOW, no
VI_DATA will be sampled. PNX1300
supports an additional mode where
VI_DATA[9:8] in message passing
mode are not affected by the
VI_DVALID signal, Section 6.6.1.

VI_DATA[7:0] IN-5 CCIR656 style YUV 4:2:2 data from a
digital camera, or general purpose
high speed data input pins. Sampled
on positive transitions of VI_CLK if
VI_DVALID HIGH.

VI_DATA[9:8] IN-5 Extension high speed data input bits to
allow use of 10-bit video A/D convert-
ers in raw10 modes. VI_DATA[8]
serves as START and VI_DATA[9] as
END message input in message pass-
ing mode. Sampled on positive transi-
tions of VI_CLK if VI_DVALID HIGH.
PNX1300 supports an additional mode
where VI_DATA[9:8] in message pass-
ing mode are not affected by the
VI_DVALID signal, Section 6.6.1.
6-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Video In
fined. Note that the VI clock has to be present while ap-
plying the software reset.

DATA[7:0]

CLOCK

SDA, SCL GND Cable Connector

VI_DATA[7:0]
VI_DVALID
VI_CLK

VSS

SDA, SCL

PNX1300

logic ‘1’

VI_DATA[9:8]GND

Termination &
Receivers

I2C bus 2

Figure 6-1. VI connected to an 8-bit CCIR656 digital camera.

VI_DATA[7:0]

VI_DVALID

VI_CLK

PNX1300 2

logic ‘1’

VI_DATA[8]
VI_DATA[9]

VO_DATA[7:0]

VO_CLK

(STMSG) VO_IO1
(ENDMSG) VO_IO2

PNX1300 1

Figure 6-2. VI unit connected to an EVO unit of another PNX1300.

VI_DATA[7:0]
VI_DVALID
VI_CLK

IIC_SCL
IIC_SDA

PNX1300

logic ‘1’

VI_DATA[9:8]GND

VPO[15:8]

LLC

SCL
SDA

SAA7111

Analog video
 1–2 S-VHS Y/C
 1–4 CVBS

To other I2C devices

I2C bus

24.576 MHz

Figure 6-3. VI unit connected to a video decoder.
PRELIMINARY SPECIFICATION 6-3

PNX1300/01/02/11 Data Book Philips Semiconductors
6.2 CLOCK GENERATOR

The VI block can operate in two distinct clocking modes,
as controlled by the VI_CLOCK control register (see
Figure 6-11).

SELFCLOCK = 0: ‘External clocking mode’. This is the
most common mode of operation. In this mode, the
VI_CLK pin is an asynchronous clock input. All other in-
puts are sampled on positive edges of the VI_CLK clock
signal. On-chip synchronizers ensure reliable asynchro-
nous capture. This mode can be combined with DIAG-
MODE, in which case the EVO clock acts as the asyn-
chronous clock source. In external clocking mode, the
value of DIVIDER is ignored.

SELFCLOCK = 1: ‘Internal clocking mode”. This
mode is typically intended for use with external A/D con-
verters or other sources that require a clock. In this
mode, VI_CLK is an output pin. Positive edges of
VI_CLK are used to sample all other inputs. The gener-
ated clock frequency can be programmed using the DI-
VIDER field in the VI_CLOCK register.

On RESET, VI_CLOCK is set to zero, i.e. external clock-
ing mode is the default with DIVIDER ignored.

6.3 FULLRES CAPTURE MODE

In fullres capture mode, the VI unit receives all three vid-
eo components Y, U, and V, as well as synchronization
information (SAV and EAV codes) on the VI_DATA[7:0]
pins in CCIR656 format. See Figure 6-8. The three video
components Y, U, and V are separated into three differ-
ent streams. Each component is written in packed form
into separate Y, U, and V buffers in the SDRAM. This is
commonly called a planar format1 (see Figure 6-10).

The CCIR656 standard specifies that the camera has to
obey the sampling rules illustrated in Figure 6-5. VI is ca-
pable of chrominance resampling, and can produce sam-
ples in memory in two ways:

VI_CTL.SC=0. ‘Co-sited sampling’ places luminance
and chrominance samples in memory without any modi-
fication. Hence, a planar format results with sampling po-
sitions as per co-sited luminance and chrominance YUV
4:2:2 convention.

VI_DATA[9:0]
VI_DVALID

VI_CLK

PNX1300

logic ‘1’

Analog video 10-bit Video A/D

Figure 6-4. VI connected to a 10-bit video A/D converter.

fVICLK

fDSPCPU
DIVIDER
------------------------=

1. The planar format is most suitable as input to software
compression algorithms.

Chrominance (U,V)
samples

Luminance
samples

Figure 6-5. Camera YUV 4:2:2 sampling (co-sited luminance/chrominance).
6-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Video In
VI_CTL.SC=1: ‘Interspersed sampling’ serves to gen-
erate a sampling structure in memory where chromi-
nance samples are spatially midway between luminance
samples, as shown in Figure 6-6. This ‘interspersed’ for-
mat is suitable for use in MPEG-1 encoding.

The VI hardware applies a (–1 13 5 –1)/16 filter as illus-
trated in Figure 6-6 to the chrominance samples before
writing them to memory. This filter computes chromi-
nance values at sample points midway between lumi-
nance samples1. Computed video data is clamped to

01h if the filter result is less than 01h and clamped to FFh
if greater than FFh. Interspersed data format is preferred
by some video compression standards. The MPEG-1
standard, for example, requires YUV 4:2:0 data with
chrominance sampling positions horizontally and verti-
cally midway between luminance samples. This can be
achieved from the horizontally interspersed sampling for-

YUV 4:2:2 CCIR656
input samples

a b c d e f g h i j k l

a b c d e f g h i j k l
Resampled sample

values

Yg' Yg=

Uef U– c 13Ue 5Ug Ui–+ +() 16⁄=

Vef Vc– 13Ve 5Vg Vi–+ +() 16⁄=

Figure 6-6. Chrominance re-sampling to achieve interspersed sampling.

Active area

a b c d e f g h i jd c b zu zv zw zx zy zz zy zx zwzs zt

• • •

Figure 6-7. Filtering at the edge of the active area.

Preamble

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 F V H P P P P

Timing reference code

Protection bits
(error correction)

H = 0 for SAV
H = 1 for EAV

V = 1 during field blanking
V = 0 elsewhere

F = 0 during field 1
F = 1 during field 2

Figure 6-8. Format of CCIR656 SAV and EAV timing reference codes.

Captured Image

START_X

WIDTH

H
E

IG
H

T

START_Y

Pixel 0 Pixel M–1
Line 0

Line N–1

Figure 6-9. VI capture parameters.

1. All filters perform full precision intermediate computa-
tions and saturation upon generating the result bits.
PRELIMINARY SPECIFICATION 6-5

PNX1300/01/02/11 Data Book Philips Semiconductors
mat by vertical subsampling with a (1 1) / 2 or more so-
phisticated filter. Vertical filtering can be performed in
software using the DSPCPU’s efficient multimedia oper-
ations or by hardware in the on-chip ICP.

The filtering process exercises special care at the left
and right edges of the active area of the CCIR656 data
stream, as defined by the SAV, EAV code positions. See
Figure 6-7. Since no pixels exist to the left of the first pix-
el or to the right of the last pixel, filtering can result in ar-
tifacts. To minimize artifacts, the image is extended by
mirroring pixels around the left-most and right-most pixel.
Note that the image is mirrored around pixel ‘a’, the first
pixel after the SAV code and around pixel ‘zz’, the last
pixel before the EAV1 code. Pixel ‘a’ in Figure 6-7 is the
(chroma, luma) pair defined by the first three camera
bytes of the UYVYUYVY... stream after SAV.

Refer to Figure 6-11 for an overview of the memory
mapped I/O (MMIO) registers that are used to control
and observe the operation of VI in fullres capture mode.
To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read and written
as’0’s.

Upon hardware or software reset (Section 6.1.4, “Hard-
ware and Software Reset”), the VI_CTL, VI_STATUS,
and VI_CLOCK registers are set to all zeros.

At any point in time, the VI_STATUS register fields (see
Figure 6-11) indicate the current camera status:

• CUR_X: The pixel index (0 to M–1) of the most
recently received camera pixel. CUR_X gets set to
zero for the first pixel following receipt of a SAV
code2, and incremented on every valid Y sample
received thereafter.

• CUR_Y: The line index (0 to N–1) within the current
field of the camera line that is currently being
received. CUR_Y gets set to zero upon receipt of a
negative edge of V, i.e., upon the first SAV code con-
taining V=0 after one or more SAV codes containing
V=1. This is equivalent to the first line after the end of
vertical retrace. CUR_Y gets incremented upon
every successive SAV code.

• FIELD2: Indicates whether the field currently being
received is a field1 or 2. This flag gets updated based
on the F field of every received SAV code. Note that
field1 is the ‘top’ field, i.e. the field containing the top-
most visible line. Field1 contains lines 1,3,5 etc.
Field2 contains lines 2,4,6,8 etc.

Table 6-3 illustrates common digital camera standards
and the number of active pixels per line, lines per field,
and fields per second. Note that any source is accept-
able to VI, as long as the maximum VI_CLK rate is not
exceeded.

Figure 6-9 shows the details of an incoming field and the
captured image. The incoming field consists of N hori-

zontal lines, each line having M pixels labeled 0 through
M–1. Lines are numbered from 0 through N–1. The cap-
tured image is a subset of the incoming image. It is de-
fined by the capture parameters (START_X, START_Y,
WIDTH, HEIGHT) held in the VI_CAP_START and
VI_CAP_SIZE MMIO registers (see Figure 6-11).

• START_X: defines the starting pixel number (X-coor-
dinate of the starting pixel). START_X must be even,
and greater than or equal to ‘0’.

• START_Y: defines the starting line number (Y-coordi-
nate of the starting pixel). START_Y must be greater
than or equal to ‘0’.

• WIDTH: Defines the width of the captured image in
pixels. WIDTH must be even.

• HEIGHT: Defines the height of the captured image in
lines.

Image capture starts after the following conditions are
met:

• VI_CTL.CAPTURE ENABLE is asserted.
• VI_STATUS.CAPTURE COMPLETE is de-asserted,

indicating that any previously captured image has
been acknowledged.

• CUR_Y = START_Y occurs.

Once image capture is started, HEIGHT ‘lines’ are cap-
tured. Each line capture starts if:

• The previous line capture, if any, is completed.
• CUR_X = START_X

Once line capture starts, it continues for 2*WIDTH pixel
clocks3 in which VI_DVALID is asserted, irrespective of
the presence of one or more EAV codes.

Note that capture continues regardless of any horizontal
or vertical retrace and associated CUR_Y or CUR_X re-
set. This provides special applications with the ability to
capture information embedded inside the horizontal or
vertical blanking interval. If it is desirable to capture pix-
els in the horizontal blanking interval, a minimum time
separation of 1 µs is required between the last pixel cap-
tured on line y and the first pixel captured on line y+1. An
exception to this rule is allowed if and only if the storage
parameters below are chosen such that the last and first1. EAV codes with multiple bit errors are accepted and en-

able the mirroring function.

2. Note that VI uses the SAV protection bits to implement
single error correction and double error detection. An
SAV code with double error is ignored.

Table 6-3. Common video source parameters.

Video Source M
(# active pixels)

N
(# active lines)

Field
Rate
(Hz)

CCIR601
50 Hz/625 lines

720 288 50

CCIR601
60 Hz/525 lines

720 240 60

square pixel
50 Hz/625 lines

768 288 50

square pixel
60 Hz/525 lines

640 240 60

3. Four clocks for each Cb,Y,Cr,Y group representing two
luminance pixels
6-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Video In
pixel end up in adjacent memory locations. Note that
blanking information capture only makes sense in fullres
mode with co-sited sampling. All other modes apply filter-
ing, which will distort the numeric sample values.

The captured image is stored in SDRAM at a location de-
fined by the storage parameters in MMIO registers
(Y_BASE_ADR, Y_DELTA, U_BASE_ADR, U_DELTA,
V_BASE_ADR, V_DELTA). Note that the base-address
registers force alignment to 64-byte boundaries (six
LSBs are always zero). The default memory packing is
big-endian although little-endian packing is also support-
ed by setting the LITTLE_ENDIAN bit in the VI_CTL reg-
ister.

• Y_BASE_ADR: The desired starting (byte) address
in SDRAM memory where the first Y (luminance)
sample of the captured image will be stored. This
address is forced to be 64-byte aligned (six LSBs
always ‘0’).

• Y_DELTA: The desired address difference between
the last sample of a line and the address of the first
sample on the next line. Note that the value of

Y_DELTA must be chosen so that all line-start
addresses are 64-byte aligned.

• U_BASE_ADR, U_DELTA, V_BASE_ADR,
V_DELTA: Same functions and alignment restrictions
as above, but for chrominance-component samples.

Horizontally-adjacent samples are stored at successive
byte addresses, resulting in a packed form (four 8-bit
samples are packed into one 32-bit word). Upon horizon-
tal retrace, pixel storage addresses are incremented by
the corresponding DELTA to compute the starting byte
address for the next line. Note that DELTA is a 16-bit un-
signed quantity. This process continues until HEIGHT
lines of WIDTH samples have been stored in memory for
luminance (Y). For chrominance, HEIGHT lines of half
the WIDTH are stored1. See Figure 6-10.

Modifications to Y_BASE_ADR, U_BASE_ADR and
V_BASE_ADR have no effect until the start of next cap-
ture, i.e. VI hardware maintains a separate pointer to
track the current address. Modifications to Y_DELTA,
U_DELTA and V_DELTA do affect the next horizontal re-
trace. Hence, under normal circumstances, the DELTA
variables should not be changed during capture.

When capture is complete, i.e. any internal VI buffers
have been flushed and the entire captured image is in lo-
cal SDRAM, VI raises the STATUS register flag CAP-
TURE COMPLETE. If enabled in the VI_CTL register,
this event causes a DSPCPU interrupt to be requested.

The programmer can determine whether the captured
image is a field1 or field2 by inspection of the FIELD2 flag
in VI_STATUS. Note that the FIELD2 flag changes at the
start of the vertical blanking interval of the next field.

The CAPTURE COMPLETE flag is cleared by writing a
word to VI_CTL with a ‘1’ in the CAPTURE COMPLETE
ACK bit position. This action has the following effect:

• it tells the hardware that a new Y,U , and V DMA buffer
is available (or the old one has been copied)

• it clears the CAPTURE COMPLETE flag
• it tells VI to capture the next image

The user can program the Y_THRESHOLD field to gen-
erate pre-completion (or post-completion) interrupts.
Whenever CUR_Y reaches Y_THRESHOLD, the
THRESHOLD REACHED flag in the STATUS register is
set. If enabled in the VI_CTL register, this event causes
a DSPCPU interrupt request. The THRESHOLD
REACHED flag is cleared by writing a word to VI_CTL
with a ‘1’ in the THRESHOLD REACHED ACK bit posi-
tion. Note that, due to internal buffering in the VI unit, it is
NOT guaranteed that all samples from lines up to and in-

1. Note that consecutive pixel components of each line
are stored in consecutive memory addresses but con-
secutive lines need not be in consecutive memory ad-
dresses

WIDTH pixels

H
E

IG
H

T
 li

n
es

pix0 pix1 pix2
pix

W–1• • •
.

. .
Y_BASE_ADR

WIDTH/2 pixels

H
E

IG
H

T
 li

n
es

pix0 pix2 • • •

.
. .

U_BASE_ADR

(Repeated for V_BASE_ADDR,
V_DELTA)

Y_DELTA

U_DELTA

Figure 6-10. VI YUV 4:2:2 planar memory format.
PRELIMINARY SPECIFICATION 6-7

PNX1300/01/02/11 Data Book Philips Semiconductors
cluding CUR_Y have been written to local SDRAM upon
THRESHOLD REACHED. The implementation guaran-
tees a fixed maximum time of 2 µs between raising the
interrupt and completion of all writes to SDRAM. The

THRESHOLD interrupt mechanism works regardless of
CAPTURE ENABLE. Hence, it can also be used to skip
a desired number of fields without constant DSPCPU
polling of VI_STATUS.

If VI internal buffers overflow due to insufficient internal
data-highway bandwidth allocation, the HIGHWAY
BANDWIDTH ERROR condition is raised in the
VI_STATUS register. If enabled, this causes assertion of
a VI interrupt request. Capture continues at the correct
memory address as soon as the internal buffers can be
written to memory, but one or more pixels may have
been lost, and the corresponding memory locations are
not written. The HBE condition can be cleared by writing
a ‘1’ to the HIGHWAY BANDWIDTH ERROR ACK bit in
VI_CTL. Refer to Section 6.7, “Highway Latency and
HBE” for more information.

Any interrupt event of VI (CAPTURE COMPLETE,
THRESHOLD REACHED, HIGHWAY BANDWIDTH ER-
ROR) leads to the assertion of a single VI interrupt

(SOURCE 9) to the PNX1300 Vectored Interrupt Control-
ler. The interrupt handler routine should check the STA-
TUS register to determine the set of VI events associated
with the request. The vectored interrupt controller should
always be set to have VI (SOURCE 9) operate in level
sensitive mode. This ensures that each event is handled.

VI asserts the interrupt request line as long as one or
more enabled events are asserted. The interrupt handler
clears one or more selected events by writing a ‘1’ to the
corresponding ACK field in VI_CTL. The clearing of the
last event leads to immediate (next DSPCPU clock edge)
de-assertion of the interrupt request line to the Vectored
Interrupt Controller. See Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” for informa-
tion on how to program interrupt handler routines.

VI_STATUS (r)0x10 1400
31 0

MMIO_base
offset:

VI_CLOCK (r/w)0x10 1408

VI_CAP_START (r/w)0x10 140C

VI_CAP_SIZE (r/w)0x10 1410

CUR_Y(12)
371115192327

DIVIDER

START_Y

WIDTH

CUR_X(12)

FIELD2
Threshold reached

Capture complete

VI_CTL (r/w)0x10 1404 Y_THRESHOLD MODE

Capture complete
INT enable

Threshold reached ACK
(write ‘1’ to ACK)

Capture complete ACK

Threshold reached
INT enable

SC (Sampling conventions)
 0 ⇒ Co-sited
 1 ⇒ Interspersed

Little endian

Capture enable

software RESET

DIAGMODE

SELFCLOCK

START_X

HEIGHT

VI_Y_BASE_ADR (r/w)0x10 1414 Y_BASE_ADR

VI_U_BASE_ADR (r/w)0x10 1418 U_BASE_ADR

VI_V_BASE_ADR (r/w)0x10 141C V_BASE_ADR

VI_UV_DELTA (r/w)0x10 1420 U_DELTA(16)

VI_Y_DELTA (r/w)0x10 1424 Y_DELTA(16)

V_DELTA(16)

HBE (highway bandwidth error)

HBE INT enable

Highway bandwidth error ACK
SLEEPLESS

000000

000000

000000

RESERVED

Figure 6-11. YUV capture view of VI MMIO registers.
6-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Video In
6.4 HALFRES CAPTURE MODE

Halfres capture mode is identical in operation to fullres
capture mode except that horizontal resolution is re-

duced by a factor of two on both luminance and chromi-
nance data.

Referring to Figure 6-9 and Figure 6-11, if VI is pro-
grammed to capture HEIGHT lines of WIDTH pixels in

WIDTH/2 pixels

H
E

IG
H

T
 li

n
es

pix0 pix1 pix2
pix

W/2–1• • •

.
. .

Y_BASE_ADR

WIDTH/4 pixels

H
E

IG
H

T
 li

n
es

pix0 pix2 • • •

.
. .

U_BASE_ADR

(Repeated for V_BASE_ADDR,
V_DELTA)

Y_DELTA

U_DELTA

Figure 6-12. VI halfres planar memory format.

YUV 4:2:2 CCIR656
input samples

a b c d e f g h i j k l

Halfres capture
sample results

Uf' 3Uc– 19Ue 19Ug 3Ui–+ +() 32⁄=

Vf' 3Vc– 19Ve 19Vg 3Vi–+ +() 32⁄=

Yh' 3Ye– 19Yg 32Yh 19Yi 3Yk–+ + +() 64⁄=

Figure 6-13. Halfres co-sited sample capture.

YUV 4:2:2 CCIR656
input samples

a b c d e f g h i j k l

Halfres capture
sample results

Yg' 3Yd– 19Yf 32Yg 19Yh 3Yj–+ + +() 64⁄=

Uf' 3Uc– 19Ue 19Ug 3Ui–+ +() 32⁄=

Vf' 3Vc– 19Ve 19Vg 3Vi–+ +() 32⁄=

Figure 6-14. Halfres interspersed sample capture.
PRELIMINARY SPECIFICATION 6-9

PNX1300/01/02/11 Data Book Philips Semiconductors
halfres mode, the resulting captured planar data is as
shown in Figure 6-12. Note that WIDTH/2 luminance and
WIDTH/4 chrominance samples are captured. In this
mode, START_X and WIDTH must be a multiple of four.

Horizontal-resolution reduction is performed as shown in
Figure 6-13 or Figure 6-14. The spatial sampling con-
ventions of the pixels in memory depends on the SC
(sampling convention) bit in the VI_CTL register. Assum-
ing that the camera sampling positions obey the conven-
tions shown in Figure 6-5, two possible spatial formats
are supported in memory:

• If SC=0, co-sited luminance and chrominance sam-
ples result as shown in Figure 6-13. This corre-
sponds to the standard YUV 4:2:2 sampling
conventions.

• If SC=1, interspersed chrominance samples result,
as shown in Figure 6-14. This form is (after vertical
subsampling of the chroma components) identical to
the MPEG-1 sampling conventions. If vertical sub-
sampling is desired, it can either be performed in
software on the DSPCPU or in hardware by the ICP.

The filtering process applies mirroring at the edge of the
active video area, as per Figure 6-7.

For both filters, computed video data is clamped to 01h if
result of the filter is less than 01h and clamped to FFh if
greater than FFh.

6.5 RAW CAPTURE MODES

All raw capture modes (raw8, raw10s and raw10u) be-
have similarly. VI_DATA information is captured at the
rate of the sender’s clock, without any interpretation or
start/stop of capture on the basis of the data values. Any
clock cycle in which VI_DVALID is asserted leads to the
capture of one data sample. Samples are 8 or 10 bits
long (raw8 versus raw10 modes). For the 8-bit capture
mode, four samples are packed to a word. For the 10-bit
capture modes, two 16-bit samples are packed to a
word. The extension from 10 to 16 bits uses sign exten-
sion (raw10s) or zero extension (raw10u).

For 8-bit and 16-bit capture, successive captured values
are written to increasing memory addresses. For 16-bit
capture, the byte order with which the 16-bit data is writ-
ten to memory is governed by the LITTLE ENDIAN bit.
The VI LITTLE ENDIAN bit should be set the same as the
DSPCPU endianness (PCSW.BSX). This ensures that
the DSPCPU sees correct 16-bit data.

Figure 6-15 illustrates the ‘raw-mode’ view of the VI
MMIO registers. Figure 6-16 shows the major VI states
associated with raw-mode capture. The initial state is
reached on software or hardware reset as described in
Section 6.1.4, “Hardware and Software Reset”. Upon re-
set, all status and control bits are set to ‘0’. In particular,
CAPTURE_ENABLE is set to ‘0’ and no capture takes
place.

Once the software has programmed BASE1 and BASE2
(with the start addresses of two SDRAM buffer areas1)

21

VI_STATUS (r)0x10 1400
31 0

MMIO_BASE
offset:

VI_CLOCK (r/w)0x10 1408

VI_BASE1 (r/w)0x10 1414

VI_BASE2 (r/w)0x10 1418

371115192327

DIVIDER

BUF1ACTIVE

BUF2FULL
BUF1FULL

VI_CTL (r/w)0x10 1404 MODE

BUF1FULL

ACK2
ACK1

BUF2FULL
Little endian

Capture enable

software RESET

DIAGMODE

SELFCLOCK

BASE1

BASE2

VI_SIZE (r/w)0x10 141C SIZE (in samples)

OVERFLOW
(message mode only)

OVERRUN

ACK_OVF
ACK_OVR

OVF
OVR

Interrupt enables

Highway bandwidth error

Highway bandwidth error
INT enable

Highway bandwidth error ACK
SLEEPLESS

000000

000000

000000

RESERVED
31 15192327

VALID

Figure 6-15. Raw and message passing modes view of VI MMIO registers.
6-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Video In
and SIZE (in number of samples), it is safe to enable cap-
ture by setting CAPTURE_ENABLE. Note that SIZE is in
samples and must be a multiple of 64, hence setting a
minimum buffer size of 64 bytes for raw8 mode and 128
bytes for raw10 modes. At this point, buffer1 is the active
capture buffer. Data is captured in buffer1 until capture is
disabled or until SIZE samples have been captured. After
every sample, a running address pointer is incremented
by the sample size (one or two bytes). If SIZE samples
have been captured, capture continues (without missing
a sample) in buffer2. At the same time, BUF1FULL is as-
serted. This causes an interrupt on the DSPCPU, if en-
abled by BUF1FULL INTERRUPT ENABLE.

Buffer2 is now the active capture buffer and behaves as
described above. In normal operation, the DSPCPU will
respond to the BUF1FULL event by assigning a new
BASE1 and (optionally) SIZE and performing an ACK1.
If the DSPCPU fails to assign a new buffer1 and per-
forms an ACK1 before buffer2 also fills up, the OVER-
RUN condition is raised and capture stops. Capture con-
tinues upon receipt of an ACK1, ACK2, or both,
regardless of the OVERRUN state. The buffer in which
capture resumes is as indicated in Figure 6-16. The
OVERRUN condition is ‘sticky’ and can only be cleared
by software, by writing a ‘1’ to the ACK_OVR bit in the
VI_CTL register.

If insufficient bandwidth is allocated from the internal
data highway, the VI internal buffers may overflow. This

leads to assertion of the HIGHWAY BANDWIDTH ER-
ROR condition. One or more data samples are lost. Cap-
ture resumes at the correct memory address as soon as
the internal buffer is written to memory. The HBE error
condition is sticky. It remains asserted until it is cleared
by writing a ‘1’ to HIGHWAY BANDWIDTH ERROR
ACK. Refer to Section 6.7, “Highway Latency and HBE.”

Note that VI hardware uses copies of the BASE and SIZE
registers once capture has started. Modifications of
BASE or SIZE, therefore, have no effect until the start of
the next use of the corresponding buffer.

Note also that the VI_BASE1 and VI_BASE2 addresses
must be 64-byte aligned (the six LSBs are always ‘0’).

6.6 MESSAGE-PASSING MODE

In this mode, VI receives 8-bit message data over the
VI_DATA[7:0] pins. The message data is written in
packed form (four 8-bit message bytes per 32-bit word)
to SDRAM. Message data capture starts on receipt of a
START event on VI_DATA[8]. Message data is received
until EndOfMessage (EOM) is received on VI_DATA[9]
or the receive buffer is full. Note that the VI_SIZE MMIO
register determines the buffer size, and hence maximum
message length. It should not be changed without a VI
(soft) reset.

Figure 6-17 illustrates an example of an 8-byte message
transfer. The first byte (D0) is sampled on the rising edge
of the VI_CLK clock after a valid START was sampled on
the preceding rising clock edge. The last byte (D7) is1. SDRAM buffers must start on a 64-byte boundary.

ACTIVE = BUF2
BUF1FULL

ACTIVE = BUF1

ACTIVE = BUF2

ACTIVE = BUF1
BUF2FULL

BUF1FULL
BUF2FULL

raise OVERRUN*

* OVERRUN is a sticky flag. It is set but does not af-
fect operation. It can only be cleared by software, by
writing a ‘1’ to ACK_OVR.
(See text in Section 6.5)

ACK1 & ~ACK2

ACK1 & ACK2

~ACK1 & ACK2

Buffer2 Full

Buf
fe

r1
 F

ul
l

Buffer1
Full

ACK1

Buffer2
Full

ACK2

RESET

Figure 6-16. VI raw mode major states.
PRELIMINARY SPECIFICATION 6-11

PNX1300/01/02/11 Data Book Philips Semiconductors
sampled on the rising clock edge where EOM is sampled
asserted.

The message passing mode view of the VI MMIO regis-
ters is shown in Figure 6-15. The major states are shown
in Figure 6-18. The operation is almost identical to the
operation in raw-capture mode, except that transitions to
another active buffer occur upon receipt of EOM rather
than on buffer full. OVERRUN is raised if the second
buffer receives a complete message before a new buffer
is assigned by the DSPCPU.

OVERFLOW is raised if a buffer is full and no EOM has
been received. If enabled, it causes a DSPCPU interrupt.
Since digital interconnection between devices is reliable,
overflow is indicative of a protocol error between the two
PNX1300s involved in the exchange (failure to agree on
message size). Detection of overflow leads to total halt of
capture of this message. Capture resumes in the next
buffer upon receipt of the next START event on
VI_DATA[8]. The OVERFLOW flag is sticky and can only
be cleared by writing a ‘1’ to ACK_OVF.

Highway bandwidth error behavior in message passing
mode is identical to that of raw mode.

6.6.1 VI_DVALID in Message Passing Mode

PNX1300 offers a new mode where the VI_DVALID pin
does not control the sampling of the VI_DATA[9:8] pins.
These pins are used for END and START of a message.
This new mode is controlled by a new field, VALID, in the
VI_CLOCK MMIO register. The default value after RE-
SET is ‘0’.

When VI_CLOCK.VALID is set to ‘0’ (the RESET value)
then PNX1300 behaves as in TM-1300. In this case the
START and END of messages are sampled only if the
VI_DVALID pin is HIGH.

When VI_CLOCK.VALID is set to ‘1’ then PNX1300 acti-
vates the new behavior. In this case the START and END
of messages are always sampled independently of the
state of the VI_DVALID pin.

VI_CLOCK.VALID cannot be read back, therefore it al-
ways read 0.

VI_DATA[7:0]

VI_DATA[8]

VI_DATA[9]

VI_CLK

XX D0 D1 D2 D3 D4 D5 D6 D7 XX XX

Start of
message

End of
message

Figure 6-17. VI message passing signal example.

ACTIVE = BUF2
BUF1FULL

ACTIVE = BUF1

ACTIVE = BUF2

ACTIVE = BUF1
BUF2FULL

BUF1FULL
BUF2FULL

raise OVERRUN*

* OVERRUN and OVERFLOW are sticky flags. They are set,
but do not affect operation. They can only be cleared by soft-
ware, by writing a ‘1’ to ACK_OVR or ACK_OVF.
(See text in Section 6.6)

ACK1 & ~ACK2

ACK1 & ACK2

~ACK1 & ACK2

EOM

EO
M

EOM

ACK1

EOM

ACK2

RESET

No EOM ⇒ raise OVERFLOW*
(See text in Section 6.6)

No EOM ⇒ raise OVERFLOW*
(See text in Section 6.6)

Figure 6-18. VI message passing mode major states.
6-12 PRELIMINARY SPECIFICATION

Philips Semiconductors Video In
6.7 HIGHWAY LATENCY AND HBE

Refer to Chapter 20, “Arbiter,” for a description of the ar-
biter terminology used here. The VI unit uses internal
buffering before writing data to SDRAM. There are two
internal buffers, each 16 entries of 32 bits.

In fullres mode, each internal buffer is used for 128 Y
samples, 64 U samples, and 64 V samples. Once the first
internal buffer is filled, 4 highway transactions must oc-
cur before the second buffer fills completely. Hence, the
requirement for not losing samples is:

• 4 requests must be served within 256 VI clock cycles.

For the typical CCIR601-resolution NTSC or PAL 27-
MHz VI clock rate, the latency requirement is 4 requests
in 9481 ns (25600/27). This can be used as one request
every 2370 ns or, with a PNX1300 SDRAM clock speed
of 100 MHz, every 237 SDRAM clock cycles. The one re-
quest latency is used to define the priority raising value
(see Section 20.6.3 on page20-8).

In halfres mode, the Y, U, and V decimation by 2 takes
place before writing to the internal buffers. So, the re-
quirement for not loosing samples is:

• 4 requests served within 512 VI clock cycles.

For halfres subsampling, NTSC or PAL 27-MHz VI clock
rate and PNX1300 SDRAM clock speed of 100 MHz, la-
tency is 4 requests in 51200/27 = 18962 ns (1896 high-
way clock cycles) or one request every 4740 ns (474
SDRAM clock cycles).

For raw8 capture and message passing modes, each in-
ternal buffer stores 64 samples at the incoming VI clock
rate. The latency requirement is one request served ev-
ery 64 VI clock cycles.

For the raw10 capture modes, each internal buffer stores
32 samples. Hence, the requirement for not losing sam-
ples is one request served every 32 VI clock cycles.

For a 38-MHz data rate on the incoming 10-bit samples
and a PNX1300 SDRAM clock speed of 100 MHz, high-
way latency should be set to guarantee less than 3200/
38 = 842 ns (84 SDRAM clock cycles) per clock cycle.
This cannot be met if any other peripherals are enabled.

Table 6-4 summarizes the maximum allowed highway la-
tency (in SDRAM clock cycles) needed to guarantee that
no samples are lost. The general formula uses ‘F’ to rep-
resent the VI clock frequency (in MHz).

In fullres mode, bandwidth requirements (in bytes) per
video line with active image for VI is:

• Bfullr = ceil(WIDTH*2/256) * 4 * 64

ceil(X) function is the least integral value greater than or
equal to X.

In halfres mode, the bandwidth is:

• Bhalfr = ceil(WIDTH*2/512) * 4 * 64

Raw8 mode and message passing mode bandwidth de-
pends only on VI clock speed. For raw10 mode each 10-
bit value counts as 2 bytes for bandwidth computations.

Table 6-4. VI highway latency requirements (27-MHz
data rate, 100-MHz PNX1300 highway clock)

Mode Max latency setting
(27 MHz, 100 MHz) Formula

fullres capture 237 6,400/F

halfres capture 474 12,800/F

raw8 237 6,400/F

raw10s 118 3,200/F

raw10u 118 3,200/F

message passing 237 6,400/F
PRELIMINARY SPECIFICATION 6-13

PNX1300/01/02/11 Data Book Philips Semiconductors
6-14 PRELIMINARY SPECIFICATION

Enhanced Video Out Chapter 7

by Marc Duranton, Dave Wyland, Gert Slavenburg

7.1 ENHANCED VIDEO OUT SUMMARY

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 Enhanced Video Out (EVO) improves on
the design of the TM-1000 Video Out (VO) unit while
maintaining binary-compatibility. PNX1300 EVO is fully
backward compatible with TM-1100, and has been ex-
tended to support byte data rates up to 81-MHz and im-
prove the Genlock mode. The summary of new EVO fea-
tures versus TM-1000 includes:

• Internal clock generator (DDS) has reduced jitter
• Full alpha blending supports 129-levels
• Chroma keying
• Frame synchronization can be internally or externally

generated (Genlock mode)
• External frame sync. follows the field number gener-

ated in the EAV/SAV code
• Programmable YUV output clipping
• Data-valid signal generated in data-streaming mode
• In message passing mode, message length can

range from one word (4 bytes) up to 16 MB.

7.2 ABOUT THIS DOCUMENT

This chapter describes the PNX1300 EVO unit which ex-
tends and improves the design of the TM-1000 VO unit,
and consolidates the changes introduced in the TM-
1100. Please refer to the TM-1000 databook for a de-
scription of the VO unit’s functionality.

7.3 BACKWARD COMPATIBILITY

The EVO is functionally compatible with the TM-1000 VO
unit. All TM-1000 VO features are supported exactly in
the same fashion by the PNX1300 EVO. Software written
for the TM-1000 VO can control the PNX1300 EVO with-
out modification (with the exception of the Genlock mode
which now requires EVO_CTL. GENLOCK to be set to 1
in addition to VO_CTL. SYNC_MASTER = 0).

All new features (with respect to TM-1000) and improve-
ments are selectively enabled by setting bits in the
EVO_CTL MMIO register, described in Section 7.16.4. A
method to determine the existence of EVO registers is
given in Section 7.16.1.

The PNX1300 EVO features are disabled on hardware
reset in order to remain hardware-compatible with the
TM-1000 VO. So it is assumed throughout this chapter
that all new functions controlled by EVO_CTL are en-
abled by software. Any new software should use the new
EVO modes.

7.4 FUNCTION SUMMARY

The PNX1300 EVO generates and transmits continuous
digital video images. It can connect to an off-chip video
subsystem such as a digital video encoder chip (e.g., the
Philips SAA7125 DENC digital encoder), a digital video
recorder, or the video input of another PNX1300 through
a CCIR 656-compatible byte-parallel video interface.
See Figure 7-1, Figure 7-2, and Figure 7-3.

The EVO can either supply video pixel clock and syn-
chronization signals to the external interface or synchro-
nize to signals received from the external interface (Gen-
lock mode).

PAL, NTSC, 16:9 and other video formats including dou-
ble pixel-rate, non-interlaced video formats are support-
ed through programmable registers which control pixel
clock frequency and video field or frame format.

The EVO can combine a background video image from
SDRAM with an optional foreground graphics overlay im-
age from SDRAM using 129-level, per-pixel alpha blend-
ing. The composite result is sent out as continuous vid-
eo. Video image data is taken from a planar memory
format, with separate Y, U and V planes in memory in
YUV 4:2:2 or 4:2:0 format. The optional graphics overlay
is taken from a pixel-packed YUV 4:2:2+α data structure
in memory.

The EVO can also be used to stream continuous data
(data-streaming mode) or send unidirectional messages
(message-passing mode) from one PNX1300 to another.

In data-streaming mode, the EVO generates a continu-
ous stream of arbitrary byte data using internal or exter-
nal clocking. Dual buffers allow continuous data stream-
ing in this mode by allowing the DSPCPU to set up a
buffer while another is being emptied by the EVO. Data-
valid signals are generated on VO_IO1 and VO_IO2 to
synchronize data streaming to other PNX1300 data re-
ceivers.

In message-passing mode, unidirectional messages can
be sent to the Video In (VI) port(s) of one or more
PNX1300s. Start and end-of-message signals are pro-
PRELIMINARY SPECIFICATION 7-1

PNX1300/01/02/11 Data Book Philips Semiconductors
vided to synchronize message passing to other
PNX1300 message receivers.

7.4.1 Detailed Feature Descriptions

The EVO provides the following key functions.

• Continuous digital video output of PAL or NTSC for-
mat data according to CCIR 601.

• Transmission of YUV 4:2:2 co-sited pixel data across
a standard 8-bit parallel CCIR 6561 interface.
Embedded SAV and EAV synchronization codes and
separate sync control signals compatible with Philips
DENC encoders are available.

• Supports the nominal PAL/NTSC data rate of 27
MB/sec. (13. 5 Mpix/sec.), or any byte data rate up to
an 81-MHz EVO clock.

• Custom video formats can be programmed with
frames or fields of up to 4095 lines of up to 4095 pix-
els, subject only to the data rate limitation above.

• Support for video images in planar YUV 4:2:2 co-
sited, planar YUV 4:2:2 interspersed, or planar YUV
4:2:0 memory formats.

• Optional 129-level alpha blending. Graphics overlay
image is in pixel-packed YUV 4:2:2+α format, and is
alpha blended on top of the video image. Each pixel
has a 1-bit alpha, which selects one of two global 8-
bit alpha values which provide 129 layers of transpar-
ency. With overlay enabled, the output byte data rate
is limited to 45% of the SDRAM clock, or up to an 81-
MHz EVO clock, whichever is smaller.

• Optional horizontal 2X upscaling of the video image
for display. The overlay is always in display format.

• In data-streaming mode, the EVO acts as a high
bandwidth continuous-output data channel. The byte
data rate is limited to an 81-MHz EVO clock.

• In message-passing mode, the EVO can send mes-
sages from 1 word (4 bytes) up to 16 MB. The byte
data rate is limited to an 81-MHz EVO clock.

• For diagnostic purposes, EVO output data can be
internally looped back to the VI port. This is con-
trolled by the VI DIAGMODE bit.

7.4.2 Summary of Operation

The EVO normally supplies continuous video data to its
outputs. The EVO is programmed and started by the
PNX1300 DSPCPU. The EVO issues an interrupt to the
DSPCPU at the end of each transmitted field, and/or at a
programmable vertical position in the field. The DSPCPU
updates the EVO video image data pointers with pointers
to the next field during the vertical blanking interval so as
to maintain continuous video output. During video output,

the EVO supplies embedded CCIR 656 SAV (Start Ac-
tive Video) and EAV (End Active Video) sync codes and
optionally supplies horizontal and frame sync signals.
The EVO can either supply pixel clock and horizontal and
frame timing signals or it can lock to external timing sig-
nals such as those supplied by a Philips SAA7125 DENC
digital encoder or similar sync source.

7.5 INTERFACE

Table 7-1 lists the interface pins of the EVO unit.
Figure 7-1, Figure 7-2, and Figure 7-3 illustrate typical
connections for commonly-used external devices that in-
terface to the EVO.

The most common way to generate analog video is
shown in Figure 7-1. In this setup, an SAA7125 Digital
Encoder (DENC) can be programmed to derive sync ei-
ther from the VO_DATA stream EAV/SAV codes, or from
its RCV1/2 pins.

Figure 7-2 illustrates how a byte-parallel ECL-level stan-
dard CCIR 656 interface can be created. In certain pro-
fessional applications, serial D1 video is also used. In
that case, the EVO can be connected to a Gennum
GS9022 Digital Video Serializer or similar part (not
shown).

Figure 7-3 shows the EVO unit of one PNX1300 con-
nected to the VI unit of a second PNX1300.

1. Refer to CCIR recommendation 656: Interfaces for dig-
ital component video signals in 525 line and 625 line
television systems. Recommendation 656 is included in
the Philips Desktop Video Data Handbook.

PNX1300

VO_DATA[7:0]

(HS) VO_IO1

(FS) VO_IO2

VO_CLK
SAA7125

MP[7:0]

RCV1

RCV2

LLC

Figure 7-1. EVO connected to a digital video encod-
er (DENC).

PNX1300

VO_DATA[7:0]

VO_CLK

8

1

16

2

TTL to ECL

CCIR 656
Subminiature

“D” Connector

Data A,B[7:0]

Clock A,B

Figure 7-2. EVO connected to a CCIR 656 video-
output connector.
7-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.6 BLOCK DIAGRAM

Figure 7-4 shows a block diagram of the EVO unit. It con-
sists of a clock generator, a video frame timing generator
and an image or data generator. The image generator
produces either a CCIR 656 digital video data stream
with optional YUV overlay or a continuous-data or mes-
sage-data stream. It also performs optional format con-
version and optional 2:1 horizontal scaling.

The frame timing generator provides programmable im-
age timing including horizontal and vertical blanking,

SAV and EAV code insertion, overlay start and end tim-
ing, and horizontal and frame timing pulses. It also sup-
plies data-valid timing signals in data-streaming mode
and start-of-message and end-of-message timing sig-
nals in message-passing mode. The sync timing pulses
can be generated by the frame timing unit, or the frame
timing unit can be driven by externally-supplied sync tim-
ing pulses, when VO_CTL. SYNC_MASTER = 0 and
EVO_CTL. GENLOCK = 1.

The video clock generator produces a programmable
video clock. The video clock generator can supply the
video clock for the frame timing generator and external
devices, or it can be driven by an external clock signal.

7.7 CLOCK SYSTEM

Positive edges of VO_CLK drive all EVO output events.
A block diagram of the EVO clock system is shown in
Figure 7-5. The EVO clock is either supplied externally or
internally generated by the EVO, as controlled by the
VO_CTL. CLKOUT bit. When CLKOUT = 0, the EVO
clock is supplied by an external source through the
VO_CLK pin as an input. This is the default mode, en-
tered at hardware reset. When CLKOUT = 1, an internal
clock generator supplies the EVO clock and drives the
VO_CLK pin as an output .

The internal clock generator system is a square wave Di-
rect Digital Synthesizer (DDS) which can be pro-
grammed to emit frequencies from 1 Hz to 50 MHz. The
output of the DDS is sent to a phase-locked loop filter
(PLL) which removes clock jitter from the DDS output
signal. The PLL can also be used to divide or double the
DDS frequency. The PLL VCO operates from 8-MHz to

Table 7-1. EVO unit interface pins

Signal Name Type Description

VO_DATA[7:0] OUT CCIR 656-style YUV 4:2:2 digital out-
put data, or general-purpose high
speed data output channel. Output
changes on positive edge of VO_CLK.

VO_IO1 I/O-5 Horizontal Sync (HS) output or Start
Message (STMSG) output. See
Figure 7-18.

VO_IO2 I/O-5 Frame Sync (FS) input, FS output or
ENDMSG output.
• If set as FS input, it can be set to

respond to positive or negative edge
transitions.

• If the EVO operates in Genlock mode
and the selected transition occurs,
the EVO sends two fields of video
data.

• In message-passing mode, this pin
acts as the ENDMSG output. See
Figure 7-18.

VO_CLK I/O-5 The EVO unit emits VO_DATA on a
positive edge of VO_CLK. VO_CLK
can be configured as an input (the
hardware reset default) or output.
• If configured as an input, VO_CLK is

received from external display-clock
master circuitry.

• If configured as output, the PNX1300
emits a low-jitter clock frequency
programmable between approx. 4
and 81 MHz.

PNX1300 A

VO_DATA[7:0]

(STMSG) VO_IO1

(ENDMSG) VO_IO2

VO_CLK

PNX1300 B

VI_DATA[7:0]

VI_DATA[8]

VI_DATA[9]

VI_CLK

VI_DVALIDlogic ‘1’

Figure 7-3. EVO unit connected to the VI unit of a
second PNX1300.

Video Frame
Timing

Generator

Video Clock
Generator

Image Generator
Overlay Generator

Message/Data Generator

VO_IO1
(HS, Start Msg, or
valid data pulse)

VO_IO2
(VS, End Msg, or
valid data level)

VO_CLK

VO_DATA[0:7]

S
D

R
A

M
 H

ig
h

w
ay

Figure 7-4. EVO unit block diagram.

Square-Wave DDS

FREQUENCY

PLL
Filter

VO_CLK

VO_CLK Internal
(to Frame Timing Gen.)

CLKOUT9 × CPU Clock

03

Figure 7-5. EVO clock system.
PRELIMINARY SPECIFICATION 7-3

PNX1300/01/02/11 Data Book Philips Semiconductors
90 MHz. The PLL is enabled and programmed as de-
scribed in Section 7.19.

DDS clock rate is set by the VO_CLOCK. FREQUENCY
field according to the equation shown in Figure 7-6. The
VO_CLK frequency can be a divider or multiplier of fDDS,
as determined by the PLL subsystem settings.

Low-jitter clock mode is automatically entered whenever
FREQUENCY[31] = 1. If FREQUENCY[31] = 0, the DDS
operates at 1/3 the rate (for compatibility with TM-1000
code), and FREQUENCY must be set as shown in
Figure 7-7.

The DDS synthesizer maximum jitter can be computed
as follows:

Example of jitter values can be found in Table 7-2.

7.8 IMAGE TIMING

The EVO emits a serial byte-data stream used by
CCIR 656 devices to generate a displayed image.
Figure 7-9 shows an NTSC-compatible, 525-line inter-
laced image. The field and line numbers are shown for
reference.

Interlaced images are generated by the display hardware
by controlling the vertical retrace timing. For reference,
Figure 7-8 shows a timing diagram of NTSC-compatible
interlaced frame timing illustrating the analog vertical re-
trace signal. The vertical retrace signal for the second
field begins in the middle of the horizontal line that ends
the first field. This causes the first line of the second field
to begin halfway across the display screen and the lines
of the second field to be scanned between the lines of the
first field, resulting in an interlaced display.

The analog timing required to generate the interlaced
signal is supplied by the display device. The CCIR 656
digital video signals generated by the EVO use frame
synchronization timing and do not generate any vertical
retrace timing.

7.8.1 CCIR 656 Pixel Timing

The EVO generates pixels according to CCIR 656 timing
in YUV 4:2:2 co-sited format and outputs these pixels as
shown in Figure 7-10. Pixels are generated in groups of
two, with four bytes per two pixels. Each pair of pixels
has two luminance bytes (Y0, Y1) and one pair of chromi-
nance bytes (U0, V0) arranged in the sequence shown.
The chrominance samples U0 and V0 are sampled spa-
tially co-sited with luminance sample Y0. For PAL or
NTSC video, pixels are generated at a nominal rate of
13. 5 Mpix/sec. (27 MB/sec.). Pixels are clocked out on
the positive edge of VO_CLK.

7.8.2 CCIR 656 Line Timing

The CCIR 656 line timing is shown in Figure 7-11. Each
line begins with an EAV code, a blanking interval and an
SAV code, followed by the line of active video. The EAV
code indicates end of active video for the previous line,
and the SAV code indicates start of active video for the
current line.

Table 7-2. Jitter values for common DSPCPU MHz

fDSPCPU
(MHz)

jitter
(nSec)

fDSPCPU
(MHz)

jitter
(nSec)

143 0.777 180 0.617

166 0.669 200 0.555

Figure 7-6. DDS low-jitter oscillator frequency.

FREQUENCY 2
31 fDDS 2

32⋅
9 fDSPCPU⋅
-----------------------------+=

Figure 7-7. DDS slow speed oscillator frequency

FREQUENCY
fDDS 2

32⋅
3 fDSPCPU⋅
-----------------------------=

jitter
1

9 fDSPCPU⋅
-----------------------------=

1 19 20 262 263 282 525 1

One Frame

One Line

Field 2Field 1

Blanking BlankingActive Video Active Video

1/2 Line Interlace Offset

Vertical
Sync

Video
Lines

Figure 7-8. Interlaced timing—NTSC analog sync. signals.
7-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.8.3 SAV and EAV Codes

The End Active Video (EAV) and Start Active Video
(SAV) codes are issued at the start of each video line.
EAV and SAV codes have a fixed format: a 3-byte pre-
amble of 0xFF, 0x00, 0x00 followed by the SAV or EAV

code byte. The EAV and SAV code byte format is shown
in Figure 7-12 for reference. The EAV and SAV codes
define the start and end of the horizontal blanking inter-
val, and they also indicate the current field number and
the vertical blanking interval.

Line 20
Line 21 Line 282

Line 283

Line 262
Line 263 Line 524

Line 525

Field 1 Field 2

Scan Direction

Displayed Image

Figure 7-9. Interlaced display: 525-line, 60-Hz image.

U0 Y0 V0 Y1 U2 Y2 V2 Y3 U4

Byte 0

Line Scan @ 27 MHz = 13. 5 Mpix/sec.

VO_DATA[0:7]

VO_CLK

Y4

Figure 7-10. CCIR 656 pixel timing.

E S SE E

Blanking Active Video
Blanking

Active Video

Line i Line i+1

SAV, EAV Codes YUV 4:2:2 pixels

Figure 7-11. CCIR 656 line timing.

Figure 7-12. Format of SAV and EAV timing codes.

Preamble

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 F V H P P P P

Timing reference code

Protection bits
(error correction)

H = 0 for SAV
H = 1 for EAV

V = 1 during field blanking
V = 0 elsewhere

F = 0 during Field 1
F = 1 during Field 2
PRELIMINARY SPECIFICATION 7-5

PNX1300/01/02/11 Data Book Philips Semiconductors
The SAV and EAV codes have a 4-bit protection field to
ensure valid codes. The EVO generates these protection
bits as part of the SAV and EAV codes as defined by
CCIR 656. There are 8 possible valid SAV and EAV
codes shown with their correct protection bits in
Table 7-3. The EVO generates SAV and EAV sync
codes and inserts them into the video out data stream ac-
cording to the CCIR 656 specification under all condi-
tions, whether it is generating or receiving horizontal and
frame timing information.

7.8.4 Video Clipping

SAV and EAV codes are identified by a 3-byte preamble
of 0xFF, 0x00 and 0x00. This combination must be
avoided in the video data output by the EVO to prevent
accidental generation of an invalid sync code. The EVO
provides programmable maximum and minimum value
clipping on the video data to prevent this possibility. If
clipping is enabled, the EVO automatically clips the re-
sulting image data as described in Section 7.15.3.

7.8.5 CCIR 656 Frame Timing

The interlaced frame timing defined by CCIR 656 is
shown in Table 7-4. Lines are numbered from 1 to 525
for 525-line, 60-Hz systems and from 1 to 625 for 625-
line, 50-Hz systems. The Field and Vertical Blanking col-
umns indicate whether the field and vertical blanking bits,
respectively, are set in the SAV and EAV codes for the
indicated lines. The 525 and 625 formats have similar
timing but differ in their line numbering.

7.9 ENHANCED VIDEO OUT TIMING
GENERATION

The EVO generates timing for frames, active video areas
within frames, images within the active video area, and
overlays within the image area. The relationship between
these four is shown in Figure 7-13. The frame includes
the timing for both interlaced fields. Progressive scan, or
non-interlaced video, is accomplished by setting the tim-

ing parameters such that two identical successive fields
are generated.

7.9.1 Active Video Area

Shown in Figure 7-13, the active video area begins after
the horizontal and vertical blanking intervals and repre-
sents the pixels visible on the screen. The image area is
the actual displayed image within the active video area .
It can be slightly smaller than the active video area to
avoid edge effects at the top, bottom and sides of the im-
age. The overlay area is within the image area.

The EVO uses counters to generate and control image
timing. The Frame Line Counter and Frame Pixel
Counter control the overall timing for the frame and de-
fine the total number of pixels per line, lines per frame,
and interlace timing, including horizontal and vertical
blanking intervals.

Note that the Frame Line Counter has a starting value of
one, not zero, and it counts from 1 to 525 or 625, consis-
tent with CCIR 656 line numbering. The Image Line
Counter and Image Pixel Counter define the visible im-
age within the field.

The geometry of the active video area is defined by the
contents of several MMIO registers shown in
Figure 7-29. The VO_FRAME. FIELD_2_START field
defines the start line of Field 2. Field 2 is active when the
Field Line Counter contents equal or exceed this value.
The active video area is defined by the F1_VIDEO_LINE
and F2_VIDEO_LINE fields of the VO_FIELD register for
each field of the frame, and by the
VIDEO_PIXEL_START field of the VO_LINE register for
each line of the frame. The active video area begins
when the contents of the Frame Line Counter and Frame
Pixel Counter equals or exceeds these values.

Table 7-3. SAV and EAV codes

Code Binary Value Field Vertical Blanking

SAV 1000 0000 1

EAV 1001 1101 1

SAV 1010 1011 1 X

EAV 1011 0110 1 X

SAV 1100 0111 2

EAV 1101 1010 2

SAV 1110 1100 2 X

EAV 1111 0001 2 X

Table 7-4. CCIR 656 frame timing

Line Number
F bit V bit Comments

525/60 625/50

1–3 624–625 1 1 Vertical blanking for
Field 1, SAV/EAV
code still indicates
Field 2

4–19 1–22 0 1 Vertical blanking for
Field 1, change
SAV/EAV code to
Field 1

20–263 23–310 0 0 Active video, Field 1

264–265 311–312 0 1 Vertical blanking for
Field 2, SAV/EAV
code still indicates
Field 1

266–282 313–335 1 1 Vertical blanking for
Field 2, change
SAV/EAV code to
Field 2

283–525 336–623 1 0 Active video, Field 2
7-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.9.2 SAV and EAV Overlap Period

The CCIR 656-compliant 525/60 and 625/50 timing
specifications define an overlap period where the field
number in the SAV and EAV codes from Field 1 persists
into the vertical blanking interval for Field 2, and the
codes for Field 2 persist into the vertical blanking interval
for Field 1. The F1_OLAP and F2_OLAP fields of the
VO_FIELD register define these overlap intervals.

F1_OLAP and F2_OLAP are small two’s complement
values in the range -8... +7. A positive value indicates
that the overlap extends into the current field, while a
negative value indicates that it extends backward into the
previous field. See Figure 7-31 for the effect of negative
and positive values.

During the overlap interval, the vertical blanking for the
next field has begun; however, the field number flag in
the SAV and EAV codes still shows the field number for
the previous field. The field number is updated to the cor-
rect field value at the end of the overlap interval.

F1_OLAP defines the overlap from Field 1 to Field 2.
This overlap occurs during the beginning of vertical
blanking for Field 2. The SAV and EAV codes continue
to show Field 1 during this overlap interval, and they
change to Field 2 at the end of the interval.

F2_OLAP defines the overlap from Field 2 to Field 1.
This overlap occurs during the beginning of vertical
blanking for Field 1. The SAV and EAV codes continue
to show Field 2 during this overlap interval, and they
change to Field 1 at the end of the interval.

7.9.3 Control of Frame and Image Counters

The frame and image counters have different start and
stop points. The frame counters begin in the vertical
blanking interval of the first field and the horizontal blank-
ing interval of the first line. They stop counting when they
reach the height and width values of the frame. When the
EVO generates frame timing, the frame counters are re-
set to their start values when they reach their stop val-
ues. When the EVO receives frame timing signals, the
frame counters continue counting until reset by the exter-
nal signals.

The image area is defined by VO_YTHR register fields
IMAGE_VOFF and IMAGE_HOFF. These values are
added to the F1_VIDEO_LINE or F2_VIDEO_LINE and
VIDEO_PIXEL_START values to define the starting line
and pixel, respectively, of the image area. The image
area is active when the contents of the Frame Line
Counter and Frame Pixel Counter equal or exceed these
values.

The Image Line Counter and Image Pixel Counter start
counting at the first active pixel in the image area and the
first active line in the image area, respectively. The im-
age counters start at zero and stop counting when they
reach their image height and width values. The image
counters are reset by frame counter values indicating the
start of the image pixel in a line and the start of the image
line in a field.

The image counters define the active image area of the
frame, the area of interest for image processing. This al-
lows the overlay start address to be defined relative to
the active image area, for example. When the EVO is not
sending out active pixels from the image area, it sends
out blanking codes. The blanking codes are 0x80, 0x10,
0x80, and 0x10 for each 2-pixel group in YUV 4:2:2 im-
age data format, as defined by CCIR 656 and shown in
Figure 7-10.

7.9.4 Horizontal and Frame Timing Signals

The EVO can supply horizontal and frame timing signals
or receive a frame timing signal from an external source.
When VO_CTL. SYNC_MASTER = 1, the EVO gener-
ates horizontal and frame timing for the external video
device. When SYNC_MASTER = 0, the EVO operates in
Genlock mode and an external device, such as a DENC,
must provide frame sync. This section describes EVO
operation when it is sync master. See Section 7.10 for a
description of Genlock mode.

If SYNC_MASTER = 1, the VO_IO1 signal generates a
horizontal timing signal, and the VO_IO2 signal gener-
ates a frame timing signal. When EVO_ENABLE = 1 and
FIELD_SYNC = 1, the VO_IO2 signal indicates the field
number (low = Field 1, high = Field 2), according to the
SAV/EAV field indication (bit[6]) as shown in Figure 7-14.
The VO_IO2 signal toggles just before the first byte of the
preamble that protects the EAV code and after the SAV
code. Non-interlaced output can be simulated by pro-
gramming the EVO to generate fields equivalent to the
desired frames. In this case, VO_IO2 indicates odd or
even frames.

Overlay

Image Area, Field 1

Vertical Blanking, Field 1

H
o

ri
zo

n
ta

l
B

la
n

ki
n

g

Overlay

Image Area, Field 2

Vertical Blanking, Field 2

H
o

ri
zo

n
ta

l
B

la
n

ki
n

g

Image V Offset

Image V Offset

Im
ag

e
H

 O
ff

se
t

Im
ag

e
H

 O
ff

se
t

Image Width Im
ag

e
H

ei
g

h
t

Frame

Active Video Area

Active Video Area

Start Pixel

Start
Line

Figure 7-13. Active Video Area and Image Area in re-
lation to vertical and horizontal blanking intervals.
PRELIMINARY SPECIFICATION 7-7

PNX1300/01/02/11 Data Book Philips Semiconductors
The horizontal timing signal VO_IO1, shown in
Figure 7-15, corresponds to the horizontal-blanking in-
terval. It is active low from the EAV code at the start of
the line to the SAV code at the start of active video for the
line.

7.10 GENLOCK MODE

In Genlock mode, the EVO is not synchronization master
but receives frame timing signals on VO_IO2. The EVO
operates in Genlock mode when SYNC_MASTER = 0,
EVO_CTL. EVO_ENABLE = 1 and EVO_CTL. GEN-
LOCK = 1.

The active edge can be programmed using the VO_CTL.
VO_IO2_POS bit. The initial transition of the frame tim-
ing signal on VO_IO2 causes the Frame Line Counter to
be set to the value in VO_FRAME. FRAME_PRESET.
After reaching FRAME_LENGTH, the Frame Line
Counter starts counting again from 1.

EVO_SLVDLY. SLAVE_DLY is typically used to com-
pensate for any delay in the frame timing source or inter-
nal pipeline synchronization anywhere in a line. Internal-
ly, the active edge of VO_IO2 is delayed by SLAVE_DLY
VO_CLK clock cycles. Typically, it will allow FRAME_
PRESET to be loaded at the beginning of a new line.

With correct values of SLAVE_DLY and
FRAME_PRESET loaded, the PNX1300 can generate
frames totally synchronized with the active edge of
VO_IO2. All the internal MMIO registers (except of

course VO_CTL) should be programmed with the same
values as for SYNC_MASTER mode. See Figure 7-16.

In Genlock mode, the EVO is free-running according to
the values programmed in its internal registers before the
initial VO_IO2 active edge. Just after receiving the active
edge that will synchronize the EVO, output values may
be erroneous for several VO_CLK cycles, but it is guar-
anteed that the next frame will be correct.

After the first synchronizing edge, if the next one hap-
pens according to the values programmed in the EVO
MMIO registers, no change will appear in the output tim-
ing of the EVO. If the active edge of VO_IO2 does not
match the programmed value, a new synchronization
phase is performed.

Typically, this is programmed as follows: SLAVE_DLY is
loaded with the number of clock cycles for one video line
minus the number of delay cycles used by the EVO to
synchronize itself. FRAME_PRESET is programmed
with the value 2. With this programming, the active edge
of VO_IO2 will happen just before the first byte (pream-
ble) of the first line.

The first active edge of VO_IO2 is delayed internally by
SLAVE_DLY VO_CLK cycles so that it appears internally
just before the start of the second line minus the internal
EVO pipeline delay. After this internal pipeline delay, the
line counter is loaded by FRAME_PRESET, (‘2’), and the
EVO starts sending data for line 2.

For the next frame, if the internal EVO programming
matches the VO_IO2 timing, the EVO will appear to start

4 19 20 265 266 283 1 4

One Frame

One Line

Field 2Field 1

Blanking BlankingActive Video Active Video
Vertical
Sync

Video
Lines

NTSC

PAL

263 264 282 525 3

Blanking Blanking

23 310 311 312 313 335 336 623 624 625 1221

VO_IO2

Figure 7-14. EVO VO_IO2 timing in FIELD_SYNC mode.

Image Line: Image WidthBlanking

Image Width, Pixels

Field Width, Pixels

SAVEAV

VO_IO1

Image Data

EAV

Blanking

Figure 7-15. EVO VO_IO1 timing in FIELD_SYNC mode.
7-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
the first byte of the first line just after the VO_IO2 active
signal.

7.11 DATA TRANSFER TIMING

In data-streaming and message-passing modes, the
EVO supplies a stream of 8-bit data. No data selection or
data interpretation is done, and data is transferred at the
rate of one byte per VO_CLK. Data is clocked out on the
positive edge of VO_CLK.

When data-streaming mode is enabled and
EVO_ENABLE = 1 and SYNC_STREAMING = 1, the
VO_IO2 signal indicates a data-valid condition. This sig-
nal is asserted when the EVO starts outputting valid data
(that is, data-streaming mode is enabled and video out is
running), and is de-asserted when data-streaming mode
is disabled. As shown in Figure 7-17, the data-valid sig-
nal on VO_IO2 is asserted just before the first valid byte
is present on VO_DATA[7:0], and is de-asserted just af-
ter the last valid byte was sent, or if an HBE error is sig-
naled. All transitions of VO_IO2 occur on the rising edge
of VO_CLK. The VO_IO1 signal generates a pulse one
VO_CLK cycle before the first valid data is sent. The

transitions of VO_IO1 occur on the rising edge of
VO_CLK and last for one VO_CLK cycle.

In message-passing mode, the EVO issues signals on
VO_IO1 and VO_IO2 to indicate the start and end of
messages.

When message passing is started by setting VO_CTL.
VO_ENABLE, the EVO sends a Start condition on
VO_IO1. When the EVO has transferred the contents of
the buffer, it sends an End condition on VO_IO2, sets
BFR1_EMPTY, and interrupts the DSPCPU. The EVO
stops, and no further operation takes place until the
DSPCPU sets VO_ENABLE again to start another mes-
sage, or until the DSCPU initiates other EVO operation.
The timing for these signals is shown in Figure 7-18.

7.12 IMAGE DATA MEMORY FORMATS

7.12.1 Video Image Formats

The EVO accepts memory-resident video image data in
three formats: YUV 4:2:2 co-sited, YUV 4:2:2 inter-
spersed, and YUV 4:2:0. These formats are shown in
Figure 7-19 through Figure 7-21.

EAV

Image Data

EAV

Line 525/625

One Frame

VO_IO2

Delay SLAVE_DLY in VO_CLK cycles

Line 1 Line 2 Line FRAME_PRESET Line 525/625 Line 1

EAV

Line counter loaded by FRAME_PRESET

Figure 7-16. Genlock mode.

VO_DATA[7:0]

VO_IO2

VO_IO1

VO_CLK

XX XX D0 D1 D2 D3 D4 D5 Dk XX XX

DATA_VALID

Figure 7-17. Data-streaming valid data signals.

VO_DATA[7:0]

VO_IO1

VO_IO2

VO_CLK

XX D0 D1 D2 D3 D4 D5 D6 D7 XX XX

Start of
message

End of
message

Figure 7-18. Message-passing START and END signals.
PRELIMINARY SPECIFICATION 7-9

PNX1300/01/02/11 Data Book Philips Semiconductors
7.12.2 Planar Storage of Video Image Data in
Memory

Video image data is stored in memory with one table for
each of the Y, U and V components. This is called planar
format. This is shown in Figure 7-22 for YUV 4:2:2 image
data. The EVO merges bytes from each of the three ta-
bles to generate the CCIR 656-compatible output data.
The U and V tables have the same number of lines but
half the number of pixels per line as the Y table. The
transfer is the same for YUV 4:2:0 format except the U
and V tables will be 1/4 the size of the Y table. The U and
V tables have the half the number of lines and half the
number of pixels per line as the Y table.

7.12.3 Graphics Overlay Image Format

Graphics overlay image data is stored in a pixel-packed
format in SDRAM. Graphics images are stored in YUV

4:2:2+alpha format. Figure 7-23 shows this format. The
YUV overlay area is always within the image output res-
olution. The EVO does not upscale the graphics overlay
image. If the EVO is upscaling the video image by 2×, the
graphics overlay must be provided in upscaled format.
Pixel data is a 16-bit data and follows endian-ness con-
ventions based on 16-bit data. Refer to Appendix C, “En-
dian-ness” for details.

7.13 VIDEO IMAGE CONVERSION
ALGORITHMS

The memory video image data formats are converted to
the output YUV 4:2:2 co-sited format and optionally up-
scaled 2× horizontally. The conversion algorithms are
detailed below.

Chrominance (U,V)
samples

Luminance
samples

Figure 7-19. YUV 4:2:2 co-sited format.

Chrominance (U,V)
samples

Luminance
samples

Figure 7-20. YUV 4:2:2 interspersed format.

Chrominance (U,V)
samples

Luminance
samples

Figure 7-21. YUV 4:2:0 format.
7-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.13.1 YUV 4:2:2 Interspersed to YUV 4:2:2
Co-sited Conversion

The EVO accepts data from SDRAM in either YUV 4:2:2
co-sited, YUV 4:2:2 interspersed, or YUV 4:2:0 inter-
spersed formats. If the input data is in YUV 4:2:2 or YUV
4:2:0 interspersed format, interspersed-to-co-sited con-
version is performed to generate co-sited output. The
EVO uses a 4-tap, (–1, 5, 13, –1)/16 filter to perform this
conversion on the U and V chroma data. Figure 7-24
shows an example of interspersed to co-sited conversion.

7.13.2 YUV 4:2:0 to YUV 4:2:2 Co-sited
Conversion

YUV 4:2:0 to YUV 4:2:2 conversion is a variation of YUV
4:2:2 interspersed-to-co-sited conversion. The YUV
4:2:0 format has the U and V pixels positioned between
lines as well as between pixels within each line. It also
has half the number of U and V pixels compared to YUV
4:2:2 formats. The EVO converts YUV4:2:0 to YUV 4:2:2
co-sited by using the U and V chrominance pixel values
for both surrounding lines and converting the resulting U
and V pixels from interspersed to co-sited format. This is
shown in Figure 7-25. For true vertical re-sampling of U
and V, the PNX1300 ICP unit can be invoked on U and
V to convert from YUV 4:2:0 to YUV 4:2:2 interspersed.

7.13.3 YUV-2x Upscaling

In the YUV-2× modes, the EVO performs 2× horizontal
upscaling of the YUV data from SDRAM. No vertical up-
scaling is performed. The width of the result image
(IMAGE_WIDTH) should be an even number. Upscaling
is performed by 4-tap filtering. For all 3 memory formats,
Y luminance data is upscaled using a (–3,19,19,–3)/32
filter to generate the missing output pixels. Output pixels
at the same location as the input pixels use the corre-
sponding input pixel values, as shown in Figure 7-26.

The U and V chrominance values are generated in the
same way as the Y luminance signal for 2× upscaling, as-
suming that both the input and output use YUV 4:2:2 co-
sited chrominance coding. The U and V output pixels at
the same location as the U and V input pixels use the cor-
responding input pixel values. The U and V output pixels
between the U and V input pixels are generated using the
(–3,19,19,–3)/32 filter, as shown in Figure 7-26.

If the input chroma is interspersed, a (–1,13,5,–1)/16 fil-
ter is used to generate the U and V output pixels that are
displaced by half a Y pixel from the U and V input pixels,
and a (–1,5,13,–1)/16 filter is used to generate the addi-
tional upscaled U and V output pixels that are displaced
by 1. 5 pixels from the U and V input pixels. This is shown
in Figure 7-27.

7.13.4 Pixel Mirroring for Four-tap Filters

The EVO uses a 4-tap filter for upscaling and for convert-
ing from interspersed to co-sited format. One extra pixel
is needed at the beginning and two at the end of each
line processed by this filter. These pixels are supplied

WIDTH pixels

H
E

IG
H

T
 li

n
es

pix0 pix1 pix2
pix

W–1
• • •Y_BASE_ADR

WIDTH/2 pixels

H
E

IG
H

T
 li

n
es

pix0 pix2 • • •U_BASE_ADR

(Repeated for
V_BASE_ADDR,

V_OFFSET)

Y_OFFSET

U_OFFSET

Figure 7-22. Image storage in planar memory format
for YUV 4:2:2.

Figure 7-23. YUV 4:2:2+alpha overlay format.

OVERLAY_WIDTH pixels

O
V

E
R

LA
Y

_H
E

IG
H

T
 li

n
espix0 pix1 pix2
pix

W–1
• • •OL_BASE_ADR

OL_OFFSET

Y0 U0 Y1 V0

YUV 4:2:2+α

α α

Chrominance (U,V)
samples

Luminance
samples

Input Pixels: YUV

Output Pixels: YU’V’

Co-sited Chrominance Output:
U’,V’ = (–1,5,13,–1)/16×U,V

Figure 7-24. YUV interspersed to co-sited conversion.
PRELIMINARY SPECIFICATION 7-11

PNX1300/01/02/11 Data Book Philips Semiconductors
automatically by mirroring the first and last pixels of each
line. For example:

• Output pixel 1 uses input pixel 1 to generate its value.
(same location, no filtering).

• Output pixel 2 uses pixels 1,1, 2 and 3 to generate its
value.

• Output pixel 3 uses pixel 2 to generate its value.
• Output pixel 4 pixel uses pixels 1, 2, 3 and 4, etc.

Chrominance (U,V)
samples

Luminance
samples

Input Pixels: YUV 4:2:0

Output Pixels: YU’V’ 4:2:2

Co-sited Chrominance Output:
U’,V’ = (–1,5,13,–1)/16×U,V

Y0,0; U0,0; V0,0

Y0,0

U0,0; V0,0

Y0

Y1

Y2

Y3

U0, V0

U2, V2

Y0, U0, V0

Y1, U0, V0

Y2, U2, V2

Y3, U2, V2

Figure 7-25. YUV 4:2:0 to YUV 4:2:2 co-sited conversion.

Chrominance (U,V)
samples

Luminance
samples

Input Pixels: YUV

Output Pixels: Y’U’V’

Output Location Same
As Input Pixel: Y’U’V’ = YUV

Upscaled Luminance Output Between
Input Pixels: Y’ = (-3,19,19,-3)/32×Y

Upscaled Chrominance Output Between
Input Pixels: U’,V’ = (-3,19,19,-3)/32 × U,V

Figure 7-26. 2x upscaling of Y pixels.

Chrominance (U,V)
samples

Luminance
samples

Input Pixels: YUV

Output Pixels: Y’U’V’

Co-sited Chrominance Output
U’,V’ = (–1,13,5,–1)/16×U,V

Co-sited Chrominance Output
U’,V’ = (–1,5,13,–1)/16×U,V

Upscaled Luminance Output Same
As Input Pixel: Y’ = Y

Upscaled Luminance Output Between
Input Pixels: Y’ = (-3,19,19,-3)/32 × Y

Figure 7-27. 2x upscaling of U and V with interspersed to co-sited conversion.
7-12 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
• ...
• Output pixel 2N–2 uses pixels N–2, N–1, N, and N–1

to generate its value.
• Output pixel 2N–1 uses pixel N to generate its value.
• Output pixel 2N uses pixels N–1, N, N, and N–1 to

generate its value.

Figure 7-28 shows an example of six pixels upscaled to
12 pixels.

7.14 EVO OPERATING MODES

EVO operating modes belong to two groups as follows:

• Video-refresh modes
• Data-transfer modes

Data-transfer modes are further broken down into data-
streaming mode and message-passing mode.

The operating mode is set by the VO_CTL. MODE field
and the VO_CTL. OL_EN (overlay enable) control bit.
The VO_CTL. MODE field determines video-refresh,
message-passing or data-streaming mode. It further de-
fines the video image format and whether or not 2× hori-
zontal upscaling takes place. The OL_EN bit determines
whether a video-refresh mode has a graphics overlay
present. The modes are shown in Table 7-5.

7.15 VIDEO PROCESSING

If enabled, the PNX1300 implements functions for chro-
ma keying, alpha blending and programmable clipping,
as described in this section.

7.15.1 Alpha Blending

If enabled by setting EVO_ENABLE = 1 and
FULL_BLENDING = 1, the EVO provides full 129-layer
alpha blending of a background video image with a fore-
ground graphics overlay image. If either bit is 0, the EVO
implements the cruder 25% step alpha blending resolu-
tion of the TM-1000. Alpha blending can operate in con-
junction with chroma keying, as described in
Section 7.15.2.

Alpha blending combines a graphics overlay image with
the video image according to an alpha value provided
with each overlay pixel. The graphics overlay is taken
from a pixel-packed YUV 4:2:2+α data structure in mem-
ory. In the YUV 4:2:2+α format, each pixel has a single
α-bit supplied as the LSB of the U and V pixels . The U
byte LSB corresponds to the alpha for pixel Y0, the V
byte LSB for pixel Y1, respectively. When the α-bit is ‘0’,
the ALPHA_ZERO register supplies the actual 8-bit α
value. When the α-bit is ‘1’, the ALPHA_ONE register
supplies the 8-bit α value. In the YUV 4:2:2 format, only
one set of U and V values is supplied for the two Y pixels,
Y0 and Y1. In this case, the alpha bit in U0 determines
the alpha value for U, Y0 and V. The alpha blend bit in
V0 only sets the alpha value for Y1 and does not affect
the U or V values.

The EVO uses the 8-bit content of the selected alpha
blending register (ALPHA_ZERO or ALPHA_ONE) to
determine the amount by which the overlay plane is
merged with the image plane as follows. The least-signif-
icant 7 bits of the selected blending register encode 128

Table 7-5. EVO Operating Modes

Mode Function Explanation

Video-refresh modes
0 YUV 4:2:2C-1× YUV 4:2:2 co-sited, no scaling

1 YUV 4:2:2I-1× YUV 4:2:2 interspersed, no scaling

2 YUV 4:2:0-1× YUV 4:2:0, no scaling

3 Reserved

4 YUV 4:2:2C-2× YUV 4:2:2 co-sited, horizontal 2×
upscaling

5 YUV 4:2:2I-2× YUV 4:2:2 interspersed, horizontal
2× upscaling

6 YUV 4:2:0-2× YUV 4:2:0, horizontal 2× upscaling

7 Reserved

Data-transfer modes
8 data

streaming
continuous transmission of raw 8-bit
data with valid data pulse and level
timing signals

1
Input Pixels: Y

Output Pixels: Y’

2 3 4 5 6

1 3 5 7 9 112 4 6 8 10 12

Y’=Y1 Y’=Y2 Y’=Y3 Y’=Y4 Y’=Y5 2N–1:
Y’=Y6

Y’=F(Y1,Y1,Y2,Y3)

Y’=F(Y1,Y2,Y3,Y4)

Y’=F(Y2,Y3,Y4,Y5)

Y’=F(Y3,Y4,Y5,Y6)

Y’=F(Y4,Y5,Y6,Y6)

2N:
Y’=F(Y5,Y6,Y6,Y5)

Figure 7-28. Mirroring pixels in 2x upscaling.

9 message
passing

transmission of raw 8-bit data with
STMSG and ENDMSG timing sig-
nals

0xA
—

0xF

Reserved

Table 7-5. EVO Operating Modes

Mode Function Explanation
PRELIMINARY SPECIFICATION 7-13

PNX1300/01/02/11 Data Book Philips Semiconductors
blending levels from 0 to 0x7F. The MSB is used to turn
on blending (MSB = ‘0’) or to select the overlay plane as
the only output (MSB = ‘1’), so all values between 0x80
and 0xFF select 100% overlay. Therefore, the total num-
ber of blending levels is 129: 128 variable blending val-
ues from 0 to 0x7F plus one ‘blending’ value from 0x80

to 0xFF for 100% overlay. An alpha value of 0 selects
100% image plane and 0% overlay. Similarly, a value of
0x40 selects 50% image and 50% overlay blending.

The equations for the blending are illustrated below.

7.15.2 Chroma Keying

If the EVO_ENABLE and KEY_ENABLE bits are set to
‘1’ in EVO_CTL the PNX1300 activates chroma keying.
The graphics overlay is taken from a pixel-packed YUV
4:2:2+α data structure in memory. The EVO_KEY regis-
ter provides the value which signifies full transparency
for the overlay. The overlay values (Y, U and V) are com-
pared to the values stored in bit-fields of the EVO_KEY
register. EVO_KEY has three 8-bit fields: KEY_Y,
KEY_U and KEY_V, which store the values to be com-
pared to the Y, U, and V components, respectively, of the
overlay for chroma keying. Bits that correspond to bits
set in MASK_Y and MASK_UV are ignored for the com-
parison. When there is an exact match between the pixel
value and the value in EVO_KEY (disregarding any bits
masked by MASK_Y and MASK_UV), then the overlay
value is not present in the output stream, resulting in full
transparency.

The mask bits in EVO_MASK provide for varying de-
grees of precision in the chroma-key matching process.
The EVO_MASK. MASK_Y field can mask from 0 to 4
LSBs of the overlay Y component during the chroma key
process. For example, setting MASK_Y = 1 eliminates
the influence of the LSB of KEY_Y in the keying process.
This can be used to widen the range of key matching to
account for irregularities in the chroma-key video signal.
Likewise, EVO_MASK. MASK_UV is used to mask from
zero to four LSBs of the overlay U and V components
during the chroma key process. For example, setting
MASK_UV = 1 eliminates the influence of the LSB of
KEY_U and KEY_V in the keying process.

7.15.3 Programmable Clipping

If EVO_CTL. CLIPPING_ENABLE = 1 the EVO performs
fully-compliant programmable clipping. Clipping is per-
formed as the last step of the video pipeline, after chroma
keying and alpha blending. It is applied only on the image
areas (Field 1 and Field 2) defined by IMAGE_WIDTH,
IMAGE_HEIGHT, IMAGE_VOFF and IMAGE_HOFF in-
side the Active Video Area. Blanking values are not
clipped.

The EVO_CLIP MMIO register stores four 8-bit fields
used to clip output components. The Y output compo-

nent is clipped between the values stored in
LOWER_CLIPY and HIGHER_CLIPY. A value less than
or equal to LOWER_CLIPY is forced to LOWER_CLIPY
and a value greater than or equal to HIGHER_CLIPY is
forced to HIGHER_CLIPY.

The same behavior is implemented for U and V with the
values stored in the LOWER_CLIPUV and
HIGHER_CLIPUV fields.

This mode allows fully-compliant 16 to 235 Y clipping
and 16 to 240 Cb and Cr clipping to be programmed.
These are the default values of the EVO_CLIP register
after reset.

If CLIPPING_ENABLE = 0, the EVO clips Y, U and V be-
tween the default values 16 and 240, as it is implemented
in the TM-1000. When LOWER_CLIP{Y,UV} registers
are set to ‘0’ and HIGHER_CLIP{Y,UV} registers are set
to ‘255’, no clipping is performed.

7.16 MMIO REGISTERS

The MMIO registers are in two groups:

• VO registers — control basic VO functions (those
shared with the TM-1000 VO unit)

• EVO registers — control new EVO unit functions
(those new in TM-1100/TM-1300/PNX1300)

VO MMIO registers are shown in Figure 7-29. VO MMIO
register names are prefixed with “VO_”. Generally, their
functionality is unchanged except where noted in the text
(see for instance, Section 7.16.1). The register fields are
described in Table 7-6, Table 7-7 and Table 7-8. They
are discussed in section s7.16.1 through 7.18.1.

EVO MMIO registers are shown in Figure 7-30. EVO
MMIO register names are prefixed with “EVO_”. The
EVO_CTL register selectively enables new TM-
1100/TM-1300/PNX1300 functions. The register fields
are described in Table 7-9 and Table 7-10. They are dis-
cussed in sections 7.16.4 and 7.16.5.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘0’s.

if alpha[7] = 1 then
output[7:0] = overlay[7:0]

else
output[7:0] = (alpha[6:0] · overlay[7:0] + (alpha[6:0] + 1) · image[7:0]) >> 7

(or)
output[7:0] = (alpha[6:0] · (overlay[7:0] – image[7:0]) >> 7) + image[7:0]
7-14 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
VO_STATUS (r)0x10 1800

MMIO_BASE
offset:

VO_CLOCK (r/w)0x10 1808

VO_FRAME (r/w)0x10 180C

VO_FIELD (r/w)0x10 1810

FREQUENCY

FRAME_PRESET

F2_OLAP

VO_CTL (r/w)0x10 1804 MODE

FIELD_2_START

F2_VIDEO_LINE

VO_LINE (r/w)0x10 1814 VIDEO_PIXEL_START

VO_IMAGE (r/w)0x10 1818 IMAGE_HEIGHT

VO_YTHR (r/w)0x10 181C Y_THRESHOLD

VO_OLSTART (r/w)0x10 1820 OL_START_LINE

VO_OLHW (r/w)0x10 1824

OL_START_PIXEL

RESET
SLEEPLESS

CLKOUT
SYNC_MASTER

VO_IO1_POS
VO_IO2_POS

OL_EN

BFR1_ACK
BFR2_ACK

HBE_ACK

URUN_INTEN
YTR_INTEN

URUN_ACK
YTR_ACK

LTL_END
VO_ENABLE

31 0371115192327

VO_YADD (r/w)0x10 1828 Y_BASE_ADR or BFR1BASE_ADR

VO_UADD (r/w)0x10 182C U_BASE_ADR or BFR2BASE_ADR

VO_VADD (r/w)0x10 1830 V_BASE_ADR or SIZE1

VO_OLADD (r/w)0x10 1834 OL_BASE_ADR or SIZE2

VO_VUF (r/w)0x10 1838 U_OFFSET(16)

VO_YOLF (r/w)0x10 183C Y_OFFSET(16)

V_OFFSET(16)

31 0371115192327

FRAME_LENGTH

F1_VIDEO_LINEF1_OLAP

FRAME_WIDTH

IMAGE_WIDTH

IMAGE_VOFF IMAGE_HOFF

GLOBAL ALPHA 1

OVERLAY_HEIGHT OVERLAY_WIDTH

OL_OFFSET(16)

GLOBAL ALPHA 0

BFR2_INTEN
HBE_INTEN

BFR1_INTEN
CLOCK_SELECT

PLL_S
PLL_T

reserved

31 0371115192327

31 0

CUR_Y(12)
371115192327

CUR_X(12)

BFR1_EMPTY
BFR2_EMPTY

HBE
URUN

YTR
FIELD2

VBLANK

1

Indicates EVO functionality

Figure 7-29. EVO MMIO registers.
PRELIMINARY SPECIFICATION 7-15

PNX1300/01/02/11 Data Book Philips Semiconductors
7.16.1 VO Status Register (VO_STATUS)

The VO_STATUS register is a read-only register that
shows the current status of the EVO. Its fields are shown
in Figure 7-29 and Table 7-6.

VO_STATUS[4] is now hard-wired to ‘1’. This allows soft-
ware to determine if the unit is an EVO unit (containing

extra MMIO registers) or a TM-1000 VO unit, as follows.
In the TM-1000, this bit is a copy of the HBE flag
(VO_STATUS[5]). In the EVO unit, it is hard-wired to ‘1’.
Software can use this bit to determine the type of (E)VO
unit by clearing the HBE bit then reading
VO_STATUS[4]. If the bit remains ‘1’, the unit is an EVO.

Table 7-6. VO_STATUS — status register fields

Field Description

CUR_Y Current Y.
Image line index of the current line in the current field being output by the EVO. CUR_Y reflects the current state of
the Image Line Counter. CUR_X and CUR_Y form a single 24-bit output data byte counter (CUR_X is the counter
LSBs) when the EVO is in data-streaming or message-passing mode. This counter reflects the status of the SIZE
counter for the currently active buffer. The two LSBs of this counter are not valid for reading during transfers; only
the upper 22 bits (the word count) are valid.

CUR_X Current X.
Image pixel index of the most-recently-output pixel. CUR_X reflects the current state of the Image Pixel Counter.

BFR1_EMPTY
BFR2_EMPTY

Buffers 1 and 2 Empty.
These bits are valid in video-refresh, data-streaming and message-passing modes.
• In video-refresh modes, only Buffer 1 is used. BFR1_EMPTY indicates that the last byte of a field has been

transferred. It is actually raised at the completion of the transmission of the Overlap area of the field, as shown in
Figure 7-31. At this point, software should assign a new field of imagery to {Y,U,V}_BASE_ADR and perform a
BFR1_ACK. If BFR1_EMPTY is not cleared by BFR1_ACK before the active video area of the next field starts to
be emitted, the EVO sets the URUN bit.

• In data-streaming mode, BFR1_EMPTY and BFR2_EMPTY indicate that the last byte in their corresponding
buffer has been transferred. When BFR1_EMPTY or BFR2_EMPTY is set, transfer stops from the corresponding
buffer.

• In message passing mode, BFR1_EMPTY signals completion of message transmission.
These bits cause an interrupt if their interrupt-enable bits are set. One interrupt per buffer is signaled.

HBE Highway Bandwidth Error.
HBE is set when the highway fails to respond in time to a highway read request and data was not ready in time to be
set on EVO data lines. HBE can be set in both image- and data-transfer modes. HBE indicates insufficient band-
width was requested from the highway arbiter.

1 EVO unit indicator.
This bit allows software to determine if the unit is an EVO (containing extra MMIO registers) or a TM-1000 VO unit.
In the TM-1000, this bit is a copy of the HBE flag. In the EVO unit, it is hard-wired to ‘1’. Software can easily deter-
mine the type of video output unit by clearing the HBE bit then reading this bit.

YTR Y threshold.
In video-refresh modes, YTR indicates that the Image Line Counter value is equal to the Y_THRESHOLD value in
VO_YTHR. The Y_THRESHOLD value can be set to provide an interrupt on any line in the valid image area.

URUN Underrun.
In video-refresh and data-streaming mode, this bit indicates that the CPU did not perform an acknowledge to indi-
cate updated address pointers for the next field or buffer in time for continuous image or data transfer. URUN causes
an interrupt if the corresponding interrupt-enable condition is set.
• In video-refresh modes, URUN indicates that the SAV code marking beginning of active video has been gener-

ated without BFR1_ACK being set by the CPU. (Setting BFR1_ACK to ‘1’ clears BFR1_EMPTY). In this case,
video refresh continues with previous address pointers.

• In data-streaming mode, URUN indicates the last byte in the active buffer was transferred, and no BFR1_ACK or
BFR2_ACK occurred to enable the next buffer. In this case, transfer continues with previous address pointers.

FIELD2 Field 2 or Buffer 2 active.
• In data-streaming mode, FIELD2 = 0 when Buffer 1 is active; FIELD2 = 1 when Buffer 2 is active.
• In video-refresh modes, FIELD2 indicates that the EVO is actively sending out a video image for Field 2, as

defined by Figure 7-31.

VBLANK Vertical blanking.
Indicates that the EVO is in a vertical-blanking interval. VBLANK is asserted only in video-refresh modes.
7-16 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.16.2 VO Control Register (VO_CTL)

The VO_CTL register sets the operating mode, enables
interrupts, clears interrupt flags, and initiates EVO oper-
ations. Its fields are unchanged from the TM-1000, as
shown in Figure 7-29 and Table 7-7, however the pre-
cise functionality implemented by a field may be changed

if PNX1300 functionality is enabled by software. Its hard-
ware reset value is 0x32400000 which sets
CLOCK_SELECT = 3, PLL_S = 1 and PLL_T = 1, and
all other bits to ‘0’. To ensure compatibility with future de-
vices, any undefined MMIO bits should be ignored when
read, and written as ‘0’s.

Table 7-7. VO_CTL register fields

Field Description

RESET Software reset of the EVO.
The recommended software reset procedure is as follows.
• Write the desired VO_CTL state with the RESET bit set to ‘1’.
• Write the desired VO_CTL state word, this time with the RESET bit cleared to ‘0’. Both writes should have

VO_ENABLE set to 0.
• Finally, enable the newly selected mode by setting VO_ENABLE . This step should be done last, as a separate

transaction.
After a software reset, 5 VO_CLK clock cycles are required to stabilize the internal circuitry (before enabling EVO).
Note: A hardware reset clears the CLKOUT and SYNC_MASTER bits and puts VO_CLK, VO_IO1, and VO_IO2 in
the input state. This results in a VO_CTL value of 0x32400000. In contrast, a software reset does not change
device registers. So a software reset results in a state as specified by the VO_CTL word value written during the
above-described procedure.

SLEEPLESS Disable power management.
If SLEEPLESS = 1, power-down of the EVO is prevented during global PNX1300 power-down.

CLOCK_SELECT Clock select.
00 — Select PLL VCO output as the VO_CLK source.
01 — Select PLL feedback loop divider output as VO_CLK source.
10 — Select PLL input divider output as VO_CLK source.
11 — Select DDS output directly as VO_CLK source, bypassing the PLL altogether. (Hardware reset default.)

PLL_S PLL input divider division ratio.
A value of k selects division by k+1. The hardware reset defaul t =1, causing division by 2.

PLL_T PLL feedback loop divider division ratio.
A value of k selects division by k+1. The hardware reset defaul t =1, causing division by 2.

CLKOUT Clock output.
• When CLKOUT = 1, the EVO clock generator is enabled, and VO_CLK is an output.
• When CLKOUT = 0, VO_CLK is an input, and EVO clock is provided by the external device . (Hardware reset

default.)

SYNC_MASTER Sync master.
• When set, VO_IO1 and VO_IO2 are outputs. In video-refresh modes, the EVO generates horizontal and frame

timing signals on VO_IO1 and VO_IO2 respectively. In message-passing mode and data-streaming mode, this
bit should always be set so that VO_IO1 and VO_IO2 generate START and END message signals respectively.

• When zero, VO_IO2 is an input. (Hardware reset default.) In video-refresh modes, VO_IO2 serves as the frame
time reference. The active edge is selected by VO_IO2_POS.

VO_IO1_POS
VO_IO2_POS

Polarity of VO_IOx_POS.
VO_IO1_POS currently has no function.
VO_IO2_POS determines the input polarity of VO_IO2.
• When ‘0’, the corresponding input triggers on the negative (high-to-low) transition of the input signal.
• When ‘1’, the input triggers on the positive (low-to-high) transition.

OL_EN Overlay Enable.
Enables the YUV overlay function in video-refresh modes.

MODE Major operating mode.
Defines the video output major operating mode, as listed in Table 7-5 on page7-13 .

BFR1_ACK
BFR2_ACK

Buffer 1 and Buffer2 acknowledge .
When active in data-transfer modes, writing a ‘1’ to BFR1_ACK clears BFR1_EMPTY and enables Buf fer1 for
transfer until BFR1_EMPTY is set. Writing a ‘0’ to BFR1_ACK has no effect. BRF2_ACK operates similarly for
Buffer 2. Writing a ‘1’ to VO_ENABLE in data-streaming mode is the same as writing a ‘1’ to both BFR1_ACK and
BFR2_ACK, and enables both buffers 1 and 2 for transfer. Writing a ‘1’ to VO_ENABLE in message-passing mode
is the same as writing a ‘1’ to BFR1_ACK, and enables Buff er1 for transfer. BFR2_ACK is not used in message-
passing mode, since only Buffer1 is used .

HBE_ACK
URUN_ACK

Acknowledge HBE or URUN.
Writing a ‘1’ to these bits clears the HBE or URUN flags and resets their corresponding interrupt conditions.
PRELIMINARY SPECIFICATION 7-17

PNX1300/01/02/11 Data Book Philips Semiconductors
7.16.3 VO-Related Registers

The VO-related registers and their fields are shown in
Table 7-8. Their fields are unchanged from the TM-1000,

however their function may vary depending upon the
PNX1300 features that are selectively enabled by
EVO_CTL (see Section 7.16.4).

YTR_ACK Acknowledge Y threshold.
Writing a ’1’ to this bit clears the YTR flag and resets its interrupt condition. YTR signals the CPU to set new point-
ers for the next field. If YTR_ACK is not received by the time the active image area for the next field starts, the
URUN flag is set. Data transfer continues with the old pointer values.

BFR1_INTEN
BFR2_INTEN
HBE_INTEN
URUN_INTEN
YTR_INTEN

Enable interrupt conditions.
Enable corresponding interrupts to be generated when the BFR1_EMPTY, BFR2_EMPTY, HBE, URUN (under-
run/end of transfer), and YTR (end of field/buffer) flags are set, respectively.
Note: BFR2_INTEN, URUN_INTEN, YTR_INTEN must be 0 in message passing mode.

LTL_END Little-endian.
Specifies that data in SDRAM is stored in little-endian format. This only affects the overlay packed-image format
interpretation in video-refresh modes. Refer to Appendix C, “Endian-ness,” for details on byte ordering.

VO_ENABLE Enable the EVO to send image data or message data to its output.
Note: This bit should not be simultaneously asserted with the RESET bit. The correct sequence to reset and
enable the EVO is as follows.
• Set all VO_CTL control fields as desired, writing VO_CTL with RESET = 1, VO_ENABLE = 0.
• Retain all desired values of control fields, but rewrite VO_CTL with RESE T =0, VO_ENABL E =0.
• Finally, still retaining all desired control fields, rewrite VO_CTL with RESET = 0, VO_ENABLE = 1.
Setting VO_ENABLE in video-refresh modes starts the EVO sending image data beginning with the first pixel in
the image. Setting VO_ENABLE in data-streaming and message-passing modes starts the EVO sending data
beginning with the first byte in Buffer 1. In video-refresh and data-streaming modes, VO_ENABLE remains set until
cleared by the CPU. In message-passing mode, VO_ENABLE is cleared when BFR1_EMPTY is set, indicating the
end of message transfer.
Note: De-asserting VO_ENABLE in video-refresh modes causes SDRAM reads to stop, but sync framing and
BFR1_EMPTY generation and interrupts remain fully operational. The transmitted active image data is undefined
in this case. To fully halt video output, a software reset is required.

Table 7-7. VO_CTL register fields

Field Description

Table 7-8. VO register fIelds

Register Field Description

VO_CLOCK FREQUENCY VO_CLK frequency. See DDS equation in Figure 7-6, and PLL description in Section 7.19.

VO_FRAME FRAME_LENGTH Total number of lines per frame; the ending value of the Frame Line Counter; typically 525
or 625. Note: the Frame Line Counter counts from 1 to 525 or 625, consistent with
CCIR 656 line numbering.

FIELD_2_START Start line number in the Frame Line Counter; where the second field of the frame begins .
If non-interlaced pictures are desired, then the same value is programmed for Field 1 and
Field 2. Field 1 becomes Fram e1 and Field2 becomes Fr ame2 .

FRAME_PRESET Value loaded into the Frame Line Counter when frame timing edge is received on VO_IO2.

VO_FIELD F1_VIDEO_LINE Line number in the Frame Line Counter of the first active video line of Field1 of the frame .

F2_VIDEO_LINE Line number in the Frame Line Counter of the first active video line of Fiel d2 of the frame.
If non-interlaced pictures are desired, this is programmed to the same value as
F1_VIDEO_LINE

F1_OLAP Overlap of the SAV and EAV codes from Field 1 to Field 2. Overlap is defined as the delay
in lines from start of blanking for Field 2 until SAV and EAV codes for Fiel d2 are emitted.
Typical values are +2 for 525/60 and +2 for 625/50.

F2_OLAP Overlap in lines of the SAV and EAV code from Fiel d2 to Fiel d1. Overlap is defined as the
delay in lines from start of blanking for Field 1 until the SAV and EAV codes for Field 1 are
emitted. Typical values are +3 for 525/60 and –2 for 625/50. The negative value means
Field 1 blanking actually starts two lines before end of Fi eld2 of previous frame . This over-
lap is described in Table 7-4 on page7-6 , and illustrated in Figure 7-31.

VO_LINE FRAME_WIDTH Total line length in pixels including blanking. Also the ending value for the Frame Pixel
Counter. Lines always begin with a horizontal blanking interval, and the image starts after
the blanking interval and runs to the end of the line.

VIDEO_PIXEL_START Pixel number in Frame Pixel Counter of starting pixel of active video area within the line.
Note: Must be even.
7-18 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
VO_IMAGE IMAGE_HEIGHT Video Image height in lines.

IMAGE_WIDTH Video Image line (scaled) output width in pixels. Must be even for upscaling by 2×.

VO_YTHR Y_THRESHOLD Threshold image line number in the Image Line Counter for the YTR interrupt.
Can be reprogrammed on a frame-by-frame basis.

IMAGE_VOFF Image vertical offset in lines from the top of the active video window.

IMAGE_HOFF Image horizontal offset in pixels from the start of the active video window.

VO_OLSTART OL_START_LINE Starting image line of YUV overlay within the image.
Zero indicates that the overlay starts at the same line as the image.

OL_START_PIXEL Starting image pixel of the YUV overlay within the image. ‘0’ indicates that the overlay
starts at same pixel as the image. Note: Must be even.

ALPHA_ONE Alpha blend value used for YUV 4:2:2+alpha format overlays when the alph a bit=1.

VO_OLHW OVERLAY_HEIGHT Height of the YUV overlay image in lines. Note: The height of the overlay should be chosen
such that it does not extend beyond the image area.

OVERLAY_WIDTH Width of the YUV overlay image in pixels. Note: Must be even.

ALPHA_ZERO Alpha blend value used for YUV 4:2:2+alpha format overlays when the alph a bit=0.

VO_YADD Y_BASE_ADR
BFR1BASE_ADR

Y-component buffer address or Buffer 1 address.
• In video-refresh modes: Y-component starting byte address.
• In data-streaming and message-passing modes: Buf f er1 starting byte address. Note:

must be 64-byte aligned in data-streaming mode and 4-byte aligned in message pass-
ing mode.

VO_UADD U_BASE_ADR
BFR2BASE_ADR

U-component buffer address or Buffer 2 address.
• In video-refresh modes: U-component starting byte address
• In data-streaming mode: Buffer 2 starting byte address; must be 64-byte aligned
• Not used in message-passing mode

VO_VADD V_BASE_ADR
SIZE1

V-component buffer address or Buffer 1 length.
• In video-refresh modes: V-component starting byte address
• In data-streaming and message-passing modes: Buff er1 length in bytes. Note: must be

a multiple of 64 in data-streaming mode. SIZE1 is limited to 24 bits .

VO_OLADD OL_BASE_ADDR
SIZE2

Overlay-image buffer address or Buffer2 length .
• In video-refresh modes: overlay-image starting byte address. OL_BASE can be repro-

grammed on a frame-by-frame basis.
• In data-streaming mode: Buffer2 length in bytes . Note: Must be multiple of 64 in data-

streaming mode; Not used in message-passing mode.

VO_VUF U_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).

V_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).

VO_YOLF Y_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).

OL_OFFSET Offset in bytes from start of one line to start of next line (16-bits unsigned).

Table 7-8. VO register fIelds

Register Field Description
PRELIMINARY SPECIFICATION 7-19

PNX1300/01/02/11 Data Book Philips Semiconductors
7.16.4 EVO Control Register (EVO_CTL)

PNX1300 EVO features are enabled by setting the ap-
propriate fields of the EVO_CTL register shown in
Figure 7-30. The register fields are described in
Table 7-9. If features are enabled, new PNX1300 the
functionality replaces TM-1000 functions.

The hardware reset value of EVO_CTL register is
0x10000000, which means that EVO functions are dis-
abled on reset and must be enabled by software. The MS
four bits indicate the EVO revision number.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘0’s.

MMIO_BASE
offset:

EVO_MASK (r/w)0x10 1844

EVO_CLIP (r/w)0x10 1848

EVO_KEY (r/w)0x10 184C

EVO_CTL (r/w)0x10 1840

CLIPPING_ENABLE
SYNC_STREAMING

FIELD_SYNC
KEY_ENABLE

EVO_ENABLE

31 0371115192327

31 0371115192327

FULL_BLENDING

1000 RESERVED

RESERVED KEY_YKEY_V KEY_U

HIGHER_CLIPUV LOWER_CLIPUV HIGHER_CLIPY LOWER_CLIPY

MASK_Y MASK_UV

GENLOCK

RESERVED

EVO_SLVDLY (r/w)0x10 1850 RESERVED SLAVE_DLY

Figure 7-30. EVO MMIO registers.

Table 7-9. EVO_CTL Register Fields

Register Field Description

EVO_CTL EVO_ENABLE When set to 1, EVO features are enabled. When set to 0 (the hardware reset value), the EVO
behaves exactly like a TM-1000 VO unit. Default: 0.

FULL_BLENDING Activates full 8-bit alpha blending when set to 1. When set to 0, only the original five TM-1000
blending levels are implemented (0%, 25%, 50%, 75%, 100%). Default: 0.

CLIPPING_ENABLE When set to 1, the values stored in EVO_CLIP are used for the clipping of output data. Otherwise,
TM-1000 default values (240 and 16 for Y, U and V) are used . Default: 0.

SYNC_STREAMING When set to 1 in data-streaming mode, VO_IO2 generates a DATA_VALID signal. See Section
7.18.2, “Data-transfer Modes”. Default: 0.

FIELD_SYNC When set, VO_IO2 will generate frame synchronization signal that follows the field number in
SAV/EAV codes (Field1 gives a low VO_IO2, Field2 gives a high VO_IO2). Default: 0.

GENLOCK Activates Genlock mode when set to 1 and VO_CTL. SYNC_MASTER = 0. Default: 0.

KEY_ENABLE When set, this bit activates chroma key. The overlay values (Y, U and V) are compared to the val-
ues stored in the EVO_KEY register. Bits that correspond to bits set in MASK_Y and MASK_UV
are ignored for the comparison. When there is an exact match between the pixel value and the
value in EVO_KEY register (less the bits selected by MASK_Y and MASK_UV), then the overlay
value is not present in the output stream, resulting in full transparency.
The key is 24 bits (Y, U and V are 8 bits each). Default: 0.
7-20 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.16.5 EVO-Related Registers

As shown in Figure 7-30, four additional registers are in-
troduced in the PNX1300, as follows.

• EVO_MASK and EVO_KEY — used in chroma key
(see Section 7.15.2).

• EVO_CLIP — provides programmable clipping (see
Section 7.15.3).

• EVO_SLVDLY — used in Genlock mode (see
Section 7.10).

These registers are shown in Figure 7-30, and their reg-
ister fields are shown in Table 7-10.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘0’s.

7.17 ENHANCED VIDEO OUT OPERATION

As described in Section 7.14, the EVO operates in either
video-refresh or data-transfer modes. The DSPCPU
starts the EVO by setting the appropriate VO MMIO reg-
isters and the appropriate EVO MMIO registers.

VO_CTL. MODE must be set to the appropriate transfer
mode, appropriate addresses, address offsets, and im-
age timing registers and the associated control bits in the
control register must be set. Lastly, software sets
VO_CTL. VO_ENABLE to begin EVO operation. The
EVO transfers the image, data, or message as com-
manded. In video-refresh and data-streaming modes,
the EVO runs continuously. In message-passing mode,
the EVO runs only until the message has been trans-
ferred.

The EVO unit is reset by a PNX1300 hardware reset, or
by a software reset, as described in Table 7-7 for the RE-
SET bit.

The VO_CLK signal is normally set as an output to drive
the data transfer for all modes at a programmable rate.
The VO_CLK signal can be an input or output, as con-
trolled by the VO_CTL. CLKOUT bit. When
CLKOUT = 1, VO_CLK is an output, and its frequency is
set by the VO_CLOCK register value. When
CLKOUT = 0, VO_CLK is an input and the EVO gener-
ates data at the clock rate of the sender.

In video-refresh modes, the EVO receives or generates
horizontal and frame synchronization signals on the

VO_IO1 and VO_IO2 lines, as described in
Section 7.9.4.

7.17.1 Video Refresh Modes

In video-refresh mode, the EVO transfers an image from
SDRAM to the EVO port. The VO_CTL. MODE field de-
fines the video image memory data format and deter-
mines whether the EVO is to perform horizontal upscal-
ing (see Table 7-5). The EVO accepts memory image
data in YUV 4:2:2 co-sited, YUV 4:2:2 interspersed and
YUV 4:2:0 formats, and generates a CCIR 656-compati-
ble, YUV 4:2:2 co-sited image output stream. Scaling is
identified by the YUV-1× and YUV-2× modes. In YUV-1×
modes, luminance and chrominance pass unmodified. In
YUV-2× modes, luminance and chrominance are hori-
zontally upscaled by a factor of two.

During video refresh, the VO_STATUS. YTR bit is set
when the Image Line Counter reaches the
Y_THRESHOLD value. When an image field has been
transferred, the VO_STATUS. BFR1_EMPTY bit is set.
The DSPCPU is interrupted when either the YTR or
BFR1_EMPTY flag is set and its corresponding interrupt
is enabled. To maintain continuous transfer of image
fields, the DSPCPU supplies new pointers for the next
field following each BFR1_EMPTY interrupt. If the
DSPCPU does not supply new pointers before the next
field, the URUN bit is set, and the EVO uses the same
pointer values until they are updated.

Table 7-10. EVO-Related MMIO Registers Fields

Register Field Description

EVO_MASK MASK_Y This 4-bit value is used to mask the four lower bits of the overlay Y component during the
chroma key process. Example: Setting MASK_Y to ‘1’ will eliminate the influence of the
LSB of KEY_Y in the keying process.

MASK_UV This 4-bit value is used to mask the four lower bits of the overlay U and V components
during the chroma key process. Example: Setting MASK_UV to ‘1’ will eliminate the
influence of the LSB of KEY_U and KEY_V in the keying process.

EVO_CLIP LOWER_CLIPY A Y value lower or equal to LOWER_CLIPY is forced to LOWER_CLIPY. Default: 16.

HIGHER_CLIPY A Y value higher or equal to HIGHER_CLIPY is forced to HIGHER_CLIPY. Default: 235.

LOWER_CLIPUV An U or Y value less than or equal to LOWER_CLIPUV is forced to LOWER_CLIPUV.
Default: 16.

HIGHER_CLIPUV An U or and an V value higher than or equal to HIGHER_CLIPUV is forced to
HIGHER_CLIPUV. Default: 240.

EVO_KEY KEY_Y Value compared to the Y component of the overlay for chroma keying.

KEY_U Value compared to the U component of the overlay for chroma keying.

KEY_V Value compared to the V component of the overlay for chroma keying.

EVO_SLVDLY Number of VO_CLK cycles of internal delay for VO_IO2 in Genlock mode.
PRELIMINARY SPECIFICATION 7-21

PNX1300/01/02/11 Data Book Philips Semiconductors
Graphics Overlay

The graphics overlay is enabled by the VO_CTL. OL_EN
bit. The graphics overlay is typically a software-generat-
ed graphic overlaid onto the output video image stream.
The graphics overlay is either generated in YUV by the
DSPCPU or converted by the DSPCPU from an RGB to
a YUV overlay image. Because RGB-to-YUV conversion
can potentially lose information, this conversion is done
by the DSPCPU, because it has the most information
about how best to perform this conversion in the most ef-
fective manner.

The overlay height should be chosen such that the over-
lay does not vertically extend beyond the image area. A
height greater than this causes undefined results and
may result in vertical overlay wraparound.

Note: The emitted byte data rate is limited to 45% of the
SDRAM clock when overlays are enabled.

The YUV overlay logic assembles the U0, Y0, V0, Y1
bytes for a pair of YUV 4:2:2 pixels for both the main im-
age and the overlay image. The alpha bit for pixel 0 (the
LSB of the U0 byte of the overlay image) selects
ALPHA_ZERO or ALPHA_ONE as the alpha source,
and the alpha blend logic combines U0, Y0, and V0 from
the main and overlay images to generate the U0, Y0 and
V0 output values. The alpha bit for pixel 1 (the LSB of the
V0 byte of the overlay image) selects ALPHA_ZERO or
ALPHA_ONE as the alpha source for blending the Y1
pixels to generate the Y1 output value. The alpha blend-
ed U0, Y0, V0 and Y1 bytes are sent to the EVO output

port in the YUV 422 sequence. The overlay U and V val-
ues used assume an LSB of zero.

Video Image Addressing

The output image is read from SDRAM at a location de-
fined by Y_BASE_ADR, Y_OFFSET, U_BASE_ADR,
U_OFFSET, V_BASE_ADR, and V_OFFSET. The de-
fault memory packing is big-endian although little-endian
packing is also supported by setting the VO_CTL.
LTL_END bit.

Horizontally-adjacent samples are stored at successive
byte addresses, resulting in a packed form (four 8-bit
samples are packed into one 32-bit word). Upon horizon-
tal retrace, the starting byte address for the next line is
computed by adding the corresponding offset value to
the previous line’s starting byte address. Note that
{OL,Y,U,V}_OFFSET values are 16-bit unsigned quanti-
ties. This process continues until the total image—height
in lines and width in pixels per line—has been read from
memory for luminance (Y). For chrominance, the same
number of lines are read, but half the number of pixels
per line are read in YUV 4:2:2 and YUV 4:2:0 formats 1.
The YUV 4:2:0 format has half the number of U and V
lines in memory that the YUV 4:2:2 formats have, but
each line of U and V data is read and used twice. See
Figure 7-19 through Figure 7-22.

Blanking: Field 2 Overlap

Blanking: Field 1

Video Image: Field 1

Blanking: Field 1 Overlap

Blanking: Field 2

Video Image: Field 2

525 Line / 60 Hz

4

20

264

266

283

525

Blanking: Field 1

Video Image: Field 1

Blanking: Field 1 Overlap

Blanking: Field 2

Video Image: Field 2

625 Line / 50 Hz

1

23

311

313

336

623

Blanking: Field 2 Overlap
624
625

1

Figure 7-31. EVO frame timing.

1. Note that consecutive pixel components of each line
are stored in consecutive memory addresses but con-
secutive lines need not be in consecutive memory ad-
dresses
7-22 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
7.18 FRAME AND FIELD TIMING CONTROL

The frame timing for 525/60 and 625/50 timing cases is
shown pictorially in Figure 7-31. CCIR 656 line defini-
tions are used.

7.18.1 Recommended values for timing registers

The recommended values for the various fields of the
timing registers are shown in Table 7-11 for 525/60 and
625/50 timing cases. The FREQUENCY field value
shown is for 27 MHz assuming a DSPCPU clock of
143 MHz.

7.18.2 Data-transfer Modes

In data-streaming and message-passing modes, the
EVO supplies a stream of 8-bit data to the
VO_DATA[7:0] lines at rates up to 81 MHz.

Note: In the PNX1300, the data-rate is limited to an 81-
MHz EVO clock.

Data is read from SDRAM in packed form (four 8-bit
bytes per 32-bit word). No data selection or data interpre-
tation is done, and data is transferred at one byte per
VO_CLK from successive byte addresses.

Note: Unused bits of the EVO MMIO registers must be
set to 0 when operating in data transfer modes.

Data-Streaming Mode. In data-streaming mode, data is
stored in SDRAM in two buffers.

When the EVO has transferred out the contents of one
buffer, it interrupts the DSPCPU and begins transferring
out the contents of the second buffer. The DSPCPU sup-
plies pointers to both buffers. The EVO can provide a
continuous stream of data to the EVO output if the
DSPCPU updates the pointer to the next buffer before
the EVO starts transferring data from the next table.

Note: In this mode, SYNC_MASTER must be set to en-
sure correct operation of VO_IO1 and VO_IO2 as out-
puts.

When each buffer has been transferred, the correspond-
ing buffer-empty bit is set in the status register, and the
DSPCPU is interrupted if the buffer-empty interrupt is en-
abled. To maintain continuous transfer of data, the
DSPCPU supplies new pointers for the next data buffer
following each buffer-empty interrupt. If the DSPCPU
does not supply new pointers before the next field, the
URUN bit is set, and the EVO uses the same pointer val-
ues until they are updated.

When data-streaming mode is enabled and
EVO_ENABLE = 1 and SYNC_STREAMING = 1, the
VO_IO2 signal indicates a data-valid condition. This sig-
nal is asserted when the EVO starts outputting valid data
(that is, data-streaming mode is enabled and video out-
put is running) and is de-asserted when data-streaming
mode is disabled. The VO_IO1 signal generates a pulse
one VO_CLK cycle before the first valid data is sent. See
Section 7.11 for timing signal details.

Message-Passing Mode. In message-passing mode
data is stored in SDRAM in one buffer.

Note: In this mode, SYNC_MASTER must be set to en-
sure correct operation of VO_IO1 and VO_IO2 as out-
puts.

When message passing is started by setting VO_CTL.
VO_ENABLE, the EVO sends a Start condition on
VO_IO1. When the EVO has transferred the contents of
the buffer, it sends an End condition on VO_IO2 as
shown in Figure 7-18, sets BFR1_EMPTY, and inter-
rupts the DSPCPU. The EVO stops, and no further oper-
ation takes place until the DSPCPU sets VO_ENABLE
again to start another message, or until the DSCPU ini-
tiates other EVO operation. See Section 7.11 for timing
signal details.

7.18.3 Interrupts and Error Conditions

The EVO has five interrupt conditions defined by bits in
the VO_STATUS register: BFR1_EMPTY,
BFR2_EMPTY, HBE, URUN, and YTR. Each of these
conditions has a corresponding interrupt enable flag and
interrupt acknowledge bit in the VO_CTL register.

The EVO asserts a SOURCE 10 interrupt request to the
PNX1300 vectored interrupt controller as long as one or
more enabled events is asserted.

Note: The interrupt controller should always be pro-
grammed such that the EVO interrupt operates in level-
triggered mode. This ensures that no EVO events can be
lost to the interrupt handler. Refer to Section 3.5.3, “INT
and NMI (Maskable and Non-Maskable Interrupts),” for
a description of setting level-triggered mode, as well as
for recommendations on writing interrupt handlers.

The BFR1_EMPTY, BFR2_EMPTY and YTR status
flags indicate to the DSPCPU that a buffer has been
emptied or that the Y threshold has been reached.

The buffer-underrun (URUN) status flag indicates that
the DSPCPU did not acknowledge a BFR1_EMPTY or
BFR2_EMPTY interrupt before the EVO required the
next buffer. In this case, the EVO uses the old address
pointer value and continues image or data transfer.

Table 7-11. Timing register recommended values

Register Field 525/60
Value

625/50
Value

VO_CLOCK FREQUENCY 0x855E,
E191

0x855E,
E191

VO_FRAME FRAME_LENGTH 525 625

FIELD_2_START 264 311

FRAME_PRESET 1 1

VO_FIELD F1_VIDEO_LINE 20 23

F2_VIDEO_LINE 283 336

F1_OLAP 2 2

F2_OLAP 3 –2 (0xE)

VO_LINE FRAME_WIDTH 858 864

VIDEO_PIXEL_START 138 144

VO_IMAGE IMAGE_HEIGHT 240 288

IMAGE_WIDTH 720 720
(704 visible)
PRELIMINARY SPECIFICATION 7-23

PNX1300/01/02/11 Data Book Philips Semiconductors
When the DSPCPU updates the pointer, the new pointer
value will be used at the start of the next frame or buffer
transfer. Therefore, the URUN flag can be interpreted as
indicating to the DSPCPU that the EVO is using its old
pointer values because it did not receive the new ones in
time.

Note: The actual buffer pointer write operation to the
MMIO registers is not seen by the hardware—only writ-
ing a ’1’ to the appropriate BFR1_ACK or BFR2_ACK
bits signals buffer availability.

The Hardware Bandwidth Error (HBE) flag indicates that
the EVO did not get data from SDRAM via the
PNX1300’s internal data highway in time to continue
data transfer or video refresh. Data or video refresh will
continue using whatever data is in the EVO internal data
buffers. The address counter for the failing buffer(s) will
continue to count, and the EVO will continue to request
data from the SDRAM over the highway.

The EVO is a read-only device, transferring data from
SDRAM to the EVO output port. Unlike Video In, the EVO
does not modify SDRAM data. URUN and HBE are the
only EVO error conditions that can arise. In the case of
URUN or HBE, a scrambled image may be temporarily
displayed or incorrect data may be temporarily sent. The
EVO can cause no other system hardware error condi-
tions.

Even changing operating modes can not cause system
hardware error conditions to arise. For example, chang-
ing the MODE bits, the OL_EN and format bits, or the
LTL_END bit while the EVO is running may cause wrong
data to be displayed or transferred. However, the EVO
does not detect this or stop for it.

In normal operation, the user should not change the
mode or transfer-control bits while the EVO is enabled.
The EVO should be disabled before changing bits such
as the MODE bits, the OL_EN bit, or the LTL_END bit.
However if these bits are changed while the EVO is run-
ning, they will take effect at the beginning of the next field
or buffer.

7.18.4 Latency and Bandwidth Requirements

In order to avoid Hardware Bandwidth Error (HBE) con-
ditions, the internal highway bus arbiter (see Chapter 20,
“Arbiter”) must be programmed according to the latency
requirements of the EVO unit described in this section. In
the following discussion, it is assumed that data for video
lines (in Y, U, V and overlay planar memory format) is
stored in memory aligned on 64-byte boundaries. In oth-
er words, it means that the {OL,Y,U,V}_OFFSET fields
are multiples of 64 bytes. Otherwise internal EVO arbitra-
tion for OL, Y, U and V requests will be different than de-
scribed here, and the following latencies would not be
guaranteed. The EVO uses internal 64-byte buffers.

1. Latency requirements for the EVO in image mode
4:2:2 or 4:2:0 co-sited or interspersed without upscal-
ing and with overlay disabled is expressed as follows.
During 128 EVO clock cycles, the EVO block must
have 2 requests acknowledged, that is, ([2Ys, 1U and
1V] / 2). For example, if the EVO clock is 27 MHz,

then the EVO must get two requests (128 bytes) from
SDRAM in 128 / 027 = 4740 ns.
The byte bandwidth B1x per video line within the ac-
tive image for this case is:

where ceil(X) is a function returning the least integral
value greater than or equal to X, and W is the
IMAGE_WIDTH field value.

2. In the same modes but with overlay enabled, the la-
tency is as follows:

• During the first 64 EVO clock cycles at least one
request must be acknowledged for the OL data.

• During 128 EVO clock cycles, the EVO unit must
have 4 requests acknowledged ([4 OLs, 2 Ys, 1 V
and 1 U] / 2).
For example, if the EVO clock runs at 54 MHz then the
EVO must get the first request from SDRAM in 64/.
054 = 1185 ns and must average a bandwidth latency
of 4 requests in 128/.054 = 2370 ns.
Byte bandwidth B1x,OL per video line within the active
image is then as follows:

3. When the EVO is set to image mode with 2× upscal-
ing, the latency requirements are multiplied by a factor
of 2. For example, if 1× mode called for one request
per 64 EVO clock cycles, the latency becomes one re-
quest per 128 EVO clock cycles. Bandwidth is roughly
divided by 2:

4. Latency for data-streaming mode or message-pass-
ing mode is as follows:
During 64 EVO clock cycles, the EVO unit must get
one request from SDRAM. For example, if the EVO
clock runs at 38 MHz, then the latency is 64/.038 =
1684 ns and bandwidth is 38 MB/s.

7.18.5 Power Down and Sleepless

The EVO block enters in power down state whenever
PNX1300 is put in global power down mode, except if the
SLEEPLESS bit in VO_CTL is set. In the latter case, the
block continues DMA operation and will wake up the
DSPCPU whenever an interrupt is generated.

The EVO block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

B1x ceil
W
64
------() ceil

W
128
---------() 2 4+×+

 64×=

B1xOL B1x ceil
W
32
------() 4+

 + 64×=

B2x ceil
W

128
---------() ceil

W
256
---------() 2 4+×+

 64×=

B2xOL B2x ceil
W
64
------() 4+

 + 64×=
7-24 PRELIMINARY SPECIFICATION

Philips Semiconductors Enhanced Video Out
It is recommended that EVO be stopped (by negating
VO_CTL. ENABLE) before block level power down is
started, or that SLEEPLESS mode is used when global
power down is activated.

7.19 DDS AND PLL FILTER DETAILS

The PLL filter reduces the phase jitter of the DDS synthe-
sizer output. It can also be used to multiply the DDS out-
put frequency by 2×. The DDS and PLL filter together
provide a high-quality, accurately-programmable output
video clock. The PLL filter block is shown in Figure 7-32.
At hardware reset, the output multiplexer is set to 0x3,
and the PLL system is disabled. To start the PLL system,
the following steps must be performed:

1. Assign a DDS frequency. This starts the DDS. Allow
for at least 31 DSPCPU cycles for the DDS frequency
setting to take effect.

2. Choose a value for PLL_S and PLL_T. For 8-40 MHz
operation, a value of 1 (which selects division by 2) is
recommended.

3. Choose a value for CLOCK_SELECT. For 8-81 MHz
operation, CLOCK_SELECT = 00 is recommended.

4. Assign values to the VO_CTL register containing the
above choices. The first assignment with
CLOCK_SELECT not equal to 0x3 enables the PLL
system. Allow for a maximum of 50 microseconds to
achieve lock.

Once the PLL is locked, small changes to the DDS fre-
quency are allowed, and the VO_CLK output will
smoothly track the frequency change.

Note: Most consumer electronics equipment imposes
very high precision requirements on the value of the col-
or burst frequency . A video encoder will derive the color
burst frequency from VO_CLK. When changing the
VO_CLK frequency in software to phase-lock the EVO to
a master reference, special care is required to keep the
color burst signal frequency within a tolerance of about
50 ppm. When using a Philips DENC (Digital Encoder),
the color burst frequency is derived from the master
DENC frequency by a programmable synthesizer on the
DENC chip. In this case, VO_CLK changes larger than
50 ppm are allowed by changing the DENC synthesizer
over its I2C interface to compensate for the VO_CLK
change.

Table 7-12 illustrates recommended settings.

00

01

10

11

Square-Wave DDS

FREQUENCY

VCO
8–90 MHz

VO_CLK

VO_CLK Internal
(to Frame Timing Gen.)CLKOUT

9 × CPU Clock

03

Loop
Filter

Phase
Detect

PLL_S div T+1

PLL_T

CLOCK_SELECT

div S+1

Figure 7-32. PLL filter block diagram.

Table 7-12. DDS and PLL example settings

Desired
Frequency DDS frequency PLL_S PLL_T CLOCK_SELECT Usage

4 – 10 MHz 8 – 20 MHz 1 (divide by 2) 1 (divide by 2) 01 (T divider) Custom low speed video

8 – 45 MHz 8 – 45 MHz 1 (divide by 2) 1 (divide by 2) 00 (VCO) Standard or 16:9 digital video

40 – 81 MHz 20 – 40. 5 MHz 1 (divide by 2) 3 (divide by 4) 00 (VCO) High pixel rate custom video
PRELIMINARY SPECIFICATION 7-25

PNX1300/01/02/11 Data Book Philips Semiconductors
7-26 PRELIMINARY SPECIFICATION

Audio In Chapter 8

by Gert Slavenburg

8.1 AUDIO IN OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 Audio In (AI) unit connects to an off-chip
stereo A/D converter subsystem through a flexible bit-se-
rial connection. The AI unit provides all signals needed to
interface to high quality, low cost oversampling A/D con-
verters, including a generator for a precisely programma-
ble oversampling A/D system clock. Together, the AI unit
and external A/D provide the following capabilities:

• One or two channels of audio input.
• 8- or 16-bit samples per channel.
• Programmable sampling rate.
• Internal or external sampling clock source.
• Supports autonomous writes of sampled audio data

to memory using double buffering (DMA).
• Supports 8-bit mono and stereo as well as 16-bit

mono and stereo PC standard memory data formats.
• Supports little- and big-endian memory formats.

8.2 EXTERNAL INTERFACE

Four PNX1300 pins are associated with the AI unit. The
AI_OSCLK output is an accurately programmable clock
output intended to serve as the master system clock for
the external A/D subsystem. The other three pins
(AI_SCK, AI_WS and AI_SD) constitute a flexible serial
input interface. Using the AI unit’s MMIO registers, these
pins can be configured to operate in a variety of serial in-
terface framing modes, including but not limited to:

• Standard stereo I2S (MSB first, 1-bit delay from
AI_WS, left & right data in a frame).1

• LSB first with 1–16 bit data per channel.
• Complex serial frames of up to 512 bits/frame, with

‘valid sample’ qualifier bit.

The AI unit can be used with many serial A/D converter
devices, including the Philips SAA7366 (stereo A/D),
Crystal Semiconductor CS5331, CS5336 (stereo A/D’s),
CS4218 (codec), Analog Devices AD1847 (codec).

1. A definition of the Philips I2S serial interface protocol,
among others, can be found in the Philips IC01 da-
tabook.

Table 8-1. AI unit external signals

Signal Type Description

AI_OSCLK OUT Over-sampling clock. This output can be
programmed to emit any frequency up to
40-MHz with a sub Hertz resolution. It is
intended for use as the 256fs or 384fs
over sampling clock by external A/D sub-
system.

AI_SCK I/O-5 • When the AI unit is programmed as
serial-interface timing slave (power-up
default), AI_SCK is an input. AI_SCK
receives the serial bitclock from the
external A/D subsystem. This clock is
treated as fully asynchronous to
PNX1300 main clock.

• When the AI unit is programmed as the
serial-interface timing master, AI_SCK
is an output. AI_SCK drives the serial
clock for the external A/D subsystem.
The frequency is a programmable inte-
gral divide of the AI_OSCLK frequency.

AI_SCK is limited to 22 MHz. The sample
rate of valid samples embedded within
the serial stream is also limited by the
bandwidth.latency available in the sys-
tem (Section 8-10).

AI_SD IN-5 Serial data from external A/D subsystem.
Data on this pin is sampled on positive or
negative edges of AI_SCK as determined
by the CLOCK_EDGE bit in the
AI_SERIAL register.

AI_WS I/O-5 • When the AI unit is programmed as the
serial-interface timing slave (power-up
default), AI_WS acts as an input.
AI_WS is sampled on the same edge
as selected for AI_SD.

• When the AI unit is programmed as the
serial-interface timing master, AI_WS
acts as an output. It is asserted on the
opposite edge of the AI_SD sampling
edge.

AI_WS is the word-select or frame-syn-
chronization signal from/to the external A/
D subsystem.
PRELIMINARY SPECIFICATION 8-1

PNX1300/01/02/11 Data Book Philips Semiconductors
8.3 CLOCK SYSTEM

Figure 8-1 illustrates the different clock capabilities of the
AI unit. At the heart of the clock system is a square wave
DDS (Direct Digital Synthesizer). The DDS can be pro-
grammed to emit frequencies from approx. 1 Hz to 40
MHz with a resolution of better than 0.3 Hz.

The output of the DDS is always sent on the AI_OSCLK
output pin. This output is intended to be used as the
256fs or 384fs system clock source instead of a fixed fre-
quency crystal for oversampling A/D converters, such as
the Philips SAA7366T, or Analog Devices AD1847.

The PNX1300 AI DDS frequency is set by writing to the
FREQUENCY MMIO register. The programmer can
change the FREQUENCY setting dynamically, so as to
adjust the input sampling rate to track an application de-
pendent master reference.

Depending on bit 31 (MSB), the DDS runs in one of two
modes:

• bit 31 = 1 (PNX1300 improved mode)
• bit 31 = 0 (TM-1000 compatibility mode)

8.3.1 PNX1300 Improved Mode

In improved mode, a high quality, low-jitter AI_OSCLK is
generated. The setting of the FREQUENCY register to
accomplish a given AI_OSCLK frequency is given by:

This mode, and the above formula, should be used for all
new software development on PNX1300. It is not avail-
able on TM-1000.

In the improved mode the DDS synthesizer maximum jit-
ter can be computed as follows:

Example of jitter values can be found in Table 8-2.

8.3.2 TM-1000 Compatibility Mode

TM-1000 compatibility mode is provided so that TM-1000
software runs without changes. It should NOT be used
for new PNX1300 software development. TM-1000
mode is automatically entered whenever FREQUEN-
CY[31] = 0. In TM-1000 mode, AI_OSCLK frequency is
set as follows:

8.4 CLOCK SYSTEM OPERATION

AI_SCK and AI_WS can be configured as input or out-
put, as determined by the SER_MASTER control field.
As output, AI_SCK is a divider of the DDS output fre-
quency. Whether input or output, the AI_SCK pin signal
is used as the bit clock for serial-parallel conversion.

If set as output, AI_WS can similarly be programmed us-
ing WSDIV to control the serial frame length from 1 to
512 bits.

The preferred application of the clock system options is
to use AI_OSCLK as A/D master clock, and let the A/D
converter be timing master over the serial interface
(SER_MASTER=0).

In case an external codec (e.g. the AD1847 or CS4218)
is used for common audio I/O, it may not be possible to
independently control the A/D and D/A system clocks. In
that case it is recommended that the Audio Out (AO) unit

FREQUENCY

AI_OSCLK

AI_SCK

AI_WS

div N+1 SCKDIV

div N+1

Square Wave DDS

9 × DSPCPUCLK

AI_SD

SER_MASTER

Serial To Parallel Converter

16

16
LEFT[15:0]
RIGHT[15:0]
sample_clock

(e.g. 64×fs)

WSDIV

31 0

7 0

08

(e.g. 256×fs)

Figure 8-1. AI clock system and I/O interface.

FREQUENCY 2
31 fOSCLK 2

32⋅
9 fDSPCPU⋅
------------------------------+=

jitter
1

9 fDSPCPU⋅
-----------------------------=

Table 8-2. Jitter values for common DSPCPU MHz

fDSPCPU
(MHz)

jitter
(nSec)

fDSPCPU
(MHz)

jitter
(nSec)

143 0.777 180 0.617

166 0.669 200 0.555

FREQUENCY
fOSCLK 2

32⋅
3 fDSPCPU⋅
------------------------------=

SCKDIV 0 255[,]∈fAISCK

fAIOSCLK
SCKDIV 1+
----------------------------------=
8-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio In
clock system DDS is used to provide a single master A/
D and D/A clock. The AO unit, or the D/A converter, can
be used as serial interface timing master, and the AI unit
is set to be slave to the serial frame determined by AO
(AI SER_MASTER=0, AI_SCK and AI_WS externally
wired to the corresponding AO pins). In such systems, in-
dependent software control over A/D and D/A sampling
rate is not possible, but component count is minimized.

8.5 SERIAL DATA FRAMING

The AI unit can accept data in a wide variety of serial
data framing conventions. Figure 8-2 illustrates the no-
tion of a serial frame. If POLARITY=1 and
CLOCK_EDGE=0, a frame is defined with respect to the
positive transition of the AI_WS signal, as observed by a
positive clock transition on AI_SCK. Each data bit sam-
pled on positive AI_SCK transitions has a specific bit po-
sition: the data bit sampled on the clock edge after the
clock edge on which the AI_WS transition is seen has bit
position 0. Each subsequent clock edge defines a new
bit position. As defined in Table 8-5, other combinations

of POLARITY and CLOCK_EDGE can be used to define
a variety of serial frame bitposition definitions.

The capturing of samples is governed by FRAMEMODE.
If FRAMEMODE=00, every serial frame results in one
sample from the serial-parallel converter. A sample is de-
fined as a left/right pair in stereo modes or a single left
channel value in mono modes. If FRAMEMODE=1y, the
serial frame data bit in bit position VALIDPOS is exam-
ined. If it has value ‘y’, a sample is taken from the data
stream (the valid bit is allowed to precede or follow the
left or right channel data provided it is in the same serial
frame as the data).

The left and right sample data can be in a LSB-first or
MSB-first form, at an arbitrary bit position, and with an ar-
bitrary length.

Table 8-3. Sample rate settings (fDSPCPUCLK=133
MHz, improved PNX1300 mode)

fs OSCLK SCK FREQUENCY SCKDIV

44.1 kHz 256fs 64fs 2187991971 3

48.0 kHz 256fs 64fs 2191574340 3

44.1 kHz 384fs 64fs 2208246133 5

48.0 kHz 384fs 64fs 2213619686 5

Table 8-4.AI MMIO clock & interface control bits

Field Name Description

SER_MASTER 0 ⇒ (RESET default), the A/D converter
is the timing master over the serial inter-
face. AI_SCK and AI_WS are set to be
inputs.
1 ⇒ PNX1300 is timing master over the
AI serial interface. The AI_SCK and
AI_WS pins are set to be outputs.

FREQUENCY Sets the clock frequency emitted by the
AI_OSCLK output. RESET default 0.

SCKDIV Sets the divider used to derive AI_SCK
from AI_OSCLK. Set to 0..255, for divi-
sion by 1..256. RESET default 0.

WSDIV Sets the divider used to derive AI_WS
from AI_SCK. Set to 0..511 for a serial
frame length of 1..512. RESET default 0.

7654321031302928272625242322212019181716151413121110987654321

AI_SCK

AI_WS

framen

0AI_SD

framen+1

Figure 8-2. AI serial frame and bit position definition (POLARITY=1, CLOCK_EDGE=0).

Table 8-5. AI MMIO serial framing control fields

Field Name Description

POLARITY 0 ⇒ serial frame starts on AI_WS negedge
(RESET default)
1 ⇒ serial frame starts on AI_WS posedge

FRAMEMODE 00 ⇒ accept a sample every serial frame
(RESET default)
01 ⇒ unused, reserved
10 ⇒ accept sample if valid bit = 0
11 ⇒ accept sample if valid bit = 1

VALIDPOS • Defines the bit position within a serial frame
where the valid bit is found.

• Default 0.

LEFTPOS • Defines the bit position within a serial frame
where the first data bit of the left channel is
found.

• Default 0.

RIGHTPOS • Defines the bit position within a serial frame
where the first data bit of the right channel
is found.

• Default 0.

DATAMODE 0 ⇒ MSB first (RESET default)
1 ⇒ LSB first

SSPOS • Start/Stop bit position. Default 0.
• If DATAMODE=MSB first, SSPOS deter-

mines the bit index (0..15) in the parallel
word of the last data bit. Bits 15 (MSB) up
to/including SSPOS are taken in order from
the serial frame data. All other bits are set
to ‘0’.

• If DATAMODE=LSB first, SSPOS deter-
mines the bit index (0..15) in the parallel
word of the first data bit. Bits SSPOS up to/
including 15 are taken in order from the
serial frame data. All other bits are set to ‘0’.
PRELIMINARY SPECIFICATION 8-3

PNX1300/01/02/11 Data Book Philips Semiconductors
In MSB-first mode, the serial-to-parallel converter as-
signs the value of the bit at LEFTPOS to LEFT[15]. Sub-
sequent bits are assigned, in order, to decreasing bit po-
sitions in the LEFT data word, up to and including
LEFT[SSPOS]. Bits LEFT[SSPOS–1:0] are cleared.
Hence, in MSB-first mode, an arbitrary number of bits are
captured. They are left-adjusted in the 16-bit parallel out-
put of the converter.

In LSB-first mode, the serial to parallel converter assigns
the value of the bit at LEFTPOS to LEFT[SSPOS]. Sub-
sequent bits are assigned, in order, to increasing bit po-
sitions in the LEFT data word, up to and including
LEFT[15]. Bits LEFT[SSPOS–1:0] are cleared. Hence, in
LSB-first mode, an arbitrary number of bits are captured.
They are returned left-adjusted in the 16-bit parallel out-
put of the converter.

Refer to Figure 8-3 and Table 8-6 to see an example of
how the AI unit MMIO registers are set to collect 16-bit
samples using the Philips SAA7366 I2S 18-bit A/D con-
verter. This setup assumes the SAA7366 acts as the se-
rial master.

For example, if it were desirable to use only the 12 MSBs
of the A/D converter in Figure 8-3, use the settings of
Table 8-6 with SSPOS set to ‘4’. This results in
LEFT[15:4] being set with data bits 0..11, and LEFT[3:0]

being set to ’0’. RIGHT[15:4] is set with data bits 32..43
and RIGHT[3:0] is set to ’0’.

8.6 MEMORY DATA FORMATS

The AI unit autonomously writes samples to memory in
mono and stereo 8- and 16-bits per sample formats, as
shown in Figure 8-4. Successive samples are always
stored at increasing memory address locations. The set-
ting of the LITTLE_ENDIAN bit in the AI_CTL register de-

CLOCK_EDGE • if ‘0’(RESET default) the AI_SD and AI_WS
pins are sampled on positive edges of the
AI_SCK pin. If SER_MASTER =1, AI_WS is
asserted on negative edges of AI_SCK.

• if 1, AI_SD and AI_WS are sampled on neg-
ative edges of AI_SCK. As output, AI_WS
is asserted on positive edges of AI_SCK.

Table 8-5. AI MMIO serial framing control fields

Field Name Description

Figure 8-3. Serial frame of the SAA7366 18 bit I2S A/D converter (format 2 SWS).

16362525150343332311918

AI_SCK

AI_WS

AI_SD

leftn(18)

3210

rightn(18)

0

leftn+1(18)

Table 8-6. Example setup for SAA7366

Field Value Explanation

SER_MASTER 0 SAA7366 is serial master

FREQUENCY 161628209 256fs 44.1 kHz

SCKDIV 3 AI_SCK set to AI_OSCLK/4
(not needed since
SER_MASTER=0)

WSDIV 63 Serial frame length of 64 bits
(not needed since
SER_MASTER=0)

POLARITY 0 Frame starts with neg. AI_WS

FRAMEMODE 00 Take a sample each ser. frame

VALIDPOS n/a Don’t care

LEFTPOS 0 Bit position 0 is MSB of left
channel and will go to
LEFT[15]

RIGHTPOS 32 Bit position 32 is MSB of right
channel and will go to
RIGHT[15]

DATAMODE 0 MSB first

SSPOS 0 Stop with LEFT/RIGHT[0]

CLOCK_EDGE 0 Sample WS and SD on posi-

tive SCK edges for I2S

Figure 8-4. AI memory DMA formats.

adr

leftn

adr+1

leftn+1

adr+2

leftn+2

adr+3

leftn+3

adr+4

leftn+4

adr+5

leftn+5

adr+6

leftn+6

adr+7

leftn+7
8-bit
mono

adr

leftn

adr+1

rightn

adr+2

leftn+1

adr+3

rightn+1

adr+4

leftn+2

adr+5

rightn+2

adr+6

leftn+3

adr+7

rightn+3
8-bit
stereo

16-bit
mono

leftn

adr

leftn+1

adr+2

leftn+2

adr+4

leftn+3

adr+6

16-bit
stereo

leftn

adr

rightn

adr+2

leftn+1

adr+4

rightn+1

adr+6
8-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio In
termines how increasing memory addresses map to byte
positions within words. Refer to Appendix C, “Endian-ness,”
for details on byte ordering conventions.

The AI hardware implements a double buffering scheme
to ensure that no samples are lost, even if the DSPCPU
is highly loaded and slow to respond to interrupts. The
DSPCPU software assigns buffers by writing a base ad-
dress and size to the MMIO control fields described in
Table 8-7. Refer to Section 8.7 for details on hardware/
software synchronization.

In 8-bit capture modes, the eight MSBs of the serial par-
allel converter output data are written to memory. In 16-
bit capture modes, all bits of the parallel data are written
to memory. If SIGN_CONVERT is set to ’1’, the MSB of
the data is inverted, which is equivalent to translating
from two’s complement to offset binary representation.
This allows the use of an external two’s complement 16-
bit A/D converter to generate 8-bit unsigned samples,
which is often used in PC audio.

Note that the AI hardware does not generate A-law or µ-
law 8-bit data formats. If such formats are desired, the
DSPCPU can be used to convert from 16-bit linear data
to A-law or µ-law data.

Figure 8-5. AI status/control field MMIO layout.

MMIO_base
offset:

AI_STATUS (r/w)0x10 1C00

AI_CTL (r/w)0x10 1C04

AI_SERIAL (r/w)0x10 1C08 SCKDIV

AI_FRAMING (r/w)0x10 1C0C

AI_FREQ (r/w)0x10 1C10

AI_BASE1 (r/w)0x10 1C14

FREQUENCY

BUF1_ACTIVE

AI_BASE2 (r/w)0x10 1C18 BASE2

AI_SIZE (r/w)0x10 1C1C SIZE (in samples)

31 0371115192327

VALIDPOS

BASE1

OVERRUN
HBE (Highway bandwidth error)

BUF2_FULL

RESET
CAP_ENABLE

CAP_MODE
SIGN_CONVERT

LITTLE_ENDIAN

0

DIAGMODE

OVR_INTEN
HBE_INTEN

BUF2_INTEN
BUF1_INTEN

ACK_OVR
ACK_HBE

ACK2

ACK1

WSDIV

SER_MASTER
DATAMODE

FRAMEMODE

POLARITY

LEFTPOS RIGHTPOS SSPOS

00000

000000

BUF1_FULL

SLEEPLESS

CLOCK_EDGE

000000

31 0371115192327

31 0371115192327

31 0371115192327

31 0371115192327

RESERVED

Table 8-7. AI MMIO DMA control fields

Field Name Description

LITTLE_ENDIAN 0 ⇒ capture in big endian memory format
(RESET default)
1 ⇒ capture little endian

BASE1 Base address of buffer1; a 64-byte aligned
address in local SDRAM.
RESET default 0.

BASE2 Base address of buffer2; a 64-byte aligned
address in local SDRAM.
RESET default 0.

SIZE • Number of samples to be placed in
buffer before switching to other buffer

• Stereo modes: a pair of 8- or 16-bit data
is 1 sample

• Mono modes: a single value is 1 sample
• RESET default 0.

CAP_MODE 00 ⇒ mono (left ADC only), 8 bits/sample.
(RESET default).
01 ⇒ stereo, 2 times 8 bits/sample
10 ⇒ mono (left ADC only), 16 bits/sample
11 ⇒ stereo, 2 times 16 bits/sample

SIGN_CONVERT 0 ⇒ leave MSB unchanged (RESET
default)
1 ⇒ invert MSB
PRELIMINARY SPECIFICATION 8-5

PNX1300/01/02/11 Data Book Philips Semiconductors
8.7 AUDIO IN OPERATION

Figure 8-5, Table 8-8 and Table 8-9 describe the func-
tion of the control and status fields of the AI unit. To en-
sure compatibility with future devices, undefined bits in
MMIO registers should be ignored when read, and writ-
ten as ’0’s.

The AI unit is reset by a PNX1300 hardware reset, or by
writing 0x80000000 to the AI_CTL register. Upon RE-
SET, capture is disabled (CAP_ENABLE = 0), and
buffer1 is the active buffer (BUF1_ACTIVE=1). A mini-
mum of 5 valid AI_SCK clock cycles is required to allow
internal AI circuitry to stabilize before enabling capture.
This can be accomplished by programming AI_FREQ
and AI_SERIAL and then delaying for the appropriate
time interval.

Programing of the AI_SERIAL MMIO register needs to
follow the following sequence order:

• set AI_FREQ to ensure that a valid clock is gener-
ated (Only when AI is the master of the audio clock
system)

• MMIO(AI_CTL) = 1 << 31; /* Software Reset */
• MMIO(AI_SERIAL) = 1 << 31; /* sets serial-master

mode, starts AI_SCK */
• MMIO(AI_SERIAL) = (1 << 31) | (SCKDIV value); /*

then set DIVIDER values */

The DSPCPU initiates capture by providing two equal
size empty buffers and putting their base address and
size in the BASEn and SIZE registers. Once two valid (lo-
cal memory) buffers are assigned, capture can be en-
abled by writing a ‘1’ to CAP_ENABLE. The AI unit hard-
ware now proceeds to fill buffer 1 with input samples.
Once buffer 1 fills up, BUF1_FULL is asserted, and cap-
ture continues without interruption in buffer 2. If
BUF1_INTEN is enabled, a SOURCE 11 interrupt re-
quest is generated.

Table 8-8. AI MMIO control fields

Field Name Description

RESET The AI logic is reset by writing a 0x80000000
to AI_CTL. This bit always reads as a ‘0’.
See Section 8.7, “Audio In Operation” for
details on software reset.

DIAGMODE 0 ⇒ normal operation (RESET default)
1 ⇒ diagnostic mode (see Section 8.11,
“Diagnostic Mode”)

SLEEPLESS 0 ⇒ participate in global power down
(RESET default)
1 ⇒ refrain from participating in power down

CAP_ENABLE Capture Enable flag. If 1, AI unit captures
samples and acts as DMA master to write
samples to local SDRAM. If ’0’ (RESET
default), AI unit is inactive.

BUF1_INTEN Buffer 1 full Interrupt Enable. Default 0.
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if buffer 1 full

BUF2_INTEN Buffer 2 full interrupt enable. Default 0
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if buffer 2 full

HBE_INTEN HBE Interrupt Enable. Default 0.
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if a highway
bandwidth error occurs.

OVR_INTEN Overrun Interrupt Enable. Default 0
0 ⇒ no interrupt
1 ⇒ interrupt (SOURCE 11) if an overrun
error occurs

ACK1 Write a ’1’ to clear the BUF1_FULL flag and
remove any pending BUF1_FULL interrupt
request. This bit always reads as 0.

ACK2 Write a ’1’ to clear the BUF2_FULL flag and
remove any pending BUF2_FULL interrupt
request. This bit always reads as 0.

ACK_HBE Write a ’1’ to clear the HBE flag and
remove any pending HBE interrupt request.
This bit always reads as 0.

ACK_OVR Write a ’1’ to clear the OVERRUN flag and
remove any pending OVERRUN interrupt
request. This bit always reads as 0.

Table 8-9. AI MMIO status fields (read only)

Field Name Description

BUF1_ACTIVE • If ‘1’, buffer 1 will be used for the next
incoming sample. If ‘0’, buffer 2 will receive
the next sample.

• 1 after RESET.

BUF1_FULL • If ‘1’, buffer 1 is full. If BUF1_INTEN is also
‘1’, an interrupt request (source 11) is
pending. BUF1_FULL is cleared by writing
a ‘1’ to ACK1, at which point the AI hard-
ware will assume that BASE1 and SIZE
describe a new empty buffer.

• 0 after RESET.

BUF2_FULL • If ‘1’, buffer 2 is full. If BUF2_INTEN is also
‘1’, an interrupt request (source 11) is
pending. BUF2_FULL is cleared by writing
a ‘1’ to ACK2, at which point the AI hard-
ware will assume that BASE2 and SIZE
describe a new empty buffer.

• 0 after RESET.

HBE • Highway Bandwidth Error. Condition raised
when the 64-byte internal AI buffer is not
yet written to SDRAM when a new input
sample arrives. Indicates insufficient allo-
cation of PNX1300 highway bandwidth for
the audio sampling rate/mode. Refer to
Chapter 20, “Arbiter.”

• 0 after RESET.

OVERRUN • OVERRUN error occurred, i.e. the CPU did
not provide an empty buffer in time, and 1
or more samples were lost. If OVR_INTEN
is also 1, an interrupt request (source 11)
is pending. The OVERRUN flag can ONLY
be cleared by writing a ‘1’ to ACK_OVR.

• 0 after RESET.

Table 8-9. AI MMIO status fields (read only)

Field Name Description
8-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio In
Note that the buffers must be 64-byte aligned, and a mul-
tiple of 64 samples in size (the six LSBs of AI_BASE1,
AI_BASE2 and AI_SIZE are always ’0’).

The DSPCPU is required to assign a new, empty buffer
to BASE1 and perform an ACK1, before buffer 2 fills up.
Capture continues in buffer 2, until it fills up. At that time,
BUF2_FULL is asserted, and capture continues in the
new buffer 1, etc.

Upon receipt of an ACK, the AI hardware removes the re-
lated interrupt request line assertion at the next DSPCPU
clock edge. Refer to Section 3.5.3, “INT and NMI
(Maskable and Non-Maskable Interrupts),” for the rules
regarding ACK and interrupt re-enabling. The AI interrupt
should always be operated in level-sensitive mode, since
AI can signal multiple conditions that each need indepen-
dent ACKs over the single internal SOURCE 11 request
line.

In normal operation, the DSPCPU and AI hardware con-
tinuously exchange buffers without ever loosing a sam-
ple. If the DSPCPU fails to provide a new buffer in time,
the OVERRUN error flag is raised. This flag is not affect-
ed by ACK1 or ACK2; it can only be cleared by an explicit
ACK_OVR.

8.8 POWER DOWN AND SLEEPLESS

The AI unit enters power down state whenever PNX1300
is put in global power down mode, except if the SLEEP-
LESS bit in AI_CTL is set. In the latter case, the unit con-
tinues DMA operation and will wake up the DSPCPU
whenever an interrupt is generated.

The AI unit can be separately powered down by setting a
bit in the BLOCK_POWER_DOWN register. Refer to
Chapter 21, “Power Management.”

It is recommended that AI be stopped (by negating
AI_CTL.CAP_ENABLE) before block level power down
is started, or that SLEEPLESS mode is used when global
power down is activated.

8.9 HIGHWAY LATENCY AND HBE

The AI unit uses internal buffering before writing data to
SDRAM. The internal buffer consists of one stereo sam-
ple input holding register and 64 bytes of internal buffer
memory. Under normal operation, the 64-byte buffer is
written to SDRAM while the input register receives an-
other sample. This normal operation is guaranteed to be
maintained as long as the highway arbiter is set to guar-
antee a latency for the AI unit that matches the sampling
interval. Given a sample rate fs, and an associated sam-
ple interval T (in nsec), the arbiter should be set to have
a latency of at most T-20 nsec. Refer to Chapter 20, “Ar-
biter,” for information on arbiter programming. If the re-
quested latency is not adequate, the HBE (Highway
Bandwidth Error) condition may result. This error flag
gets set when the input register is full, the 64-byte buffer

has not yet been written to memory, and a new sample
arrives.

Table 8-10 shows the required arbiter latency settings for
a number of common operating modes. The rightmost
column illustrates the nature of the resulting 64-byte
highway requests. Is not necessary to compute arbiter
settings, but they may be used to compute bus availabil-
ity in a given interval.

8.10 ERROR BEHAVIOR

If either an OVERRUN or HBE error occurs, input sam-
pling is temporarily halted, and samples will be lost. In
case of OVERRUN, sampling resumes as soon as the
DSPCPU makes one or more new buffers available
through an ACK1 or ACK2 operation. In the case of HBE,
sampling will resume as soon as the internal buffer is
written to SDRAM.

HBE and OVERRUN are ‘sticky’ error flags. They will re-
main set until an explicit ACK_HBE or ACK_OVR.

8.11 DIAGNOSTIC MODE

Diagnostic mode is entered by setting the DIAGMODE
bit in the AI_CTL register. In diagnostic mode, the
AI_SCK, AI_WS and AI_SD inputs of the serial-parallel
converter are taken from the output pins of the PNX1300
AO unit. This mode can be used during the diagnostic
phase of system boot to verify correct operation of most
of the AI unit and AO unit logic circuitry.

Note that the inputs are truly taken from the PNX1300
AO external pins, i.e. if an external (board level) source
is driving AO_SCK or AO_WS, diagnostic mode is not
capable of testing Audio Out.

Special care must be taken to enable diagnostic mode.
The recommended way of entering diagnostic mode is:

• setup the AO unit such that an AO_SCK is generated
• set DIAGMODE bit followed by a 5 (AI_SCK) cycle

delay
• perform a software reset of the AI unit and immedi-

ately set the DIAGMODE bit back to ‘1’.

Table 8-10. AI highway arbiter latency requirement
examples

CapMode
fs

(kHz)
T

(nS)

max
arbiter
latency
(nsec)

access pattern

stereo
16 bits/sample

44.1 22,676 22,656
1 request every
362,812 nsec

stereo
16 bits/sample

48.0 20,833 20,813 1 request every
333,333 nsec

stereo
16 bits/sample

96.0 10,417 10,397 1 request every
166,667 nsec
PRELIMINARY SPECIFICATION 8-7

PNX1300/01/02/11 Data Book Philips Semiconductors
8-8 PRELIMINARY SPECIFICATION

Audio Out Chapter 9

by Gert Slavenburg, Santanu Dutta

9.1 AUDIO OUT OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 Audio Out (AO) unit contains many fea-
tures not available in the TM-1000 and the TM-1100. It
has up to 8 channels, and drives up to 4 external stereo
D/A converters through a flexible bit-serial connection.

It provides all signals to interface to high quality, low cost
oversampling D/A converters, including a precisely pro-
grammable oversampling D/A system clock. The AO unit
and external D/A’s together provide the following capa-
bilities:

• Up to 8 channels of audio output.
• 16-bit or 32-bit samples per channel.
• Programmable sampling rate.
• Internal or external sampling clock source.
• Autonomously reads processed audio data from

memory using double buffering (DMA).

• Supports 16-bit mono and stereo PC standard mem-
ory data formats.

• Supports little- and big-endian memory formats.
• Provides control capability for highly integrated PC

codecs such as the AD1847, CS4218 or UAD1340.
• No support for connecting several D/As to one serial

data output.

9.2 EXTERNAL INTERFACE

Seven PNX1300 pins are associated with the AO unit.
The AO_OSCLK output is an accurately programmable
clock output intended to be used as the master system
clock for the external D/A subsystem. The other pins
(AO_SCK, AO_WS and AO_SDx) constitute a flexible
serial output interface. Using the AO MMIO registers,
these pins can be configured to operate in a variety of se-
rial interface framing modes, including but not limited to:

• Standard stereo I2S (MSB first, 1-bit delay from
PRELIMINARY SPECIFICATION 9-1

PNX1300/01/02/11 Data Book Philips Semiconductors
AO_WS, left & right data in a frame).
• LSB first, with 1–16-bit data per channel.
• Complex serial frames of up to 512 bits/frame.
• Up to 8 channels of audio output.

9.3 SUMMARY OF OPERATION

The AO unit consists of three major subsystems, a pro-
grammable sample clock generator, a DMA engine and
a data serializer.

The DMA engine reads 16 or 32-bit samples from mem-
ory using a double buffered DMA approach. The
DSPCPU initially assigns two full sample buffers contain-
ing an integral number of samples for all active channels.
The DMA engine retrieves samples from the first buffer
until exhausted and continues from the second buffer,
while requesting a new first sample buffer from the
DSPCPU, etc.

The samples are given to the data serializer, which
sends them out in a MSB first or LSB first serial frame for-
mat that can also contain 1 or 2 codec control words of
up to 16 bits. The frame structure is highly programmable
by a series of MMIO fields.

9.4 INTERNAL CLOCK SOURCE

Figure 9-1 illustrates the different clock capabilities of the
AO unit. At the heart of the clock system is a square
wave DDS (Direct Digital Synthesizer). The DDS can be

Table 9-1. AO unit external signals

Signal Type Description

AO_OSCLK OUT Over sampling clock. Can be programmed
to emit any frequency up to 40 MHz, with
sub-Hz resolution. Intended for use as the
256 or 384fs oversampling clock by the
external D/A conversion subsystem.

AO_SCK IO • When AO is programmed to act as a
serial interface timing slave (RESET
default), AO_SCK acts as input. It
receives the serial clock from the exter-
nal audio D/A subsystem. The clock is
treated as fully asynchronous to the
PNX1300 main clock.

• When AO is programmed to act as
serial interface timing master, AO_SCK
acts as output. It drives the serial clock
for the external audio D/A subsystem.
Clock frequency is a programmable
integral divide of the AO_OSCLK fre-
quency.

AO_SCK is limited to 22 MHz. The sam-
ple rate of valid samples embedded within
the serial stream is limited by the
AO_SCK maximum frequency and the
available highway bandwidth.

AO_WS IO • When AO is programmed as the serial-
interface timing slave (RESET default),
AO_WS acts as an input. AO_WS is
sampled on the opposite AO_SCK
edge at which AO_SDx are asserted.

• When AO is programmed as serial-
interface timing master, AO_WS acts
as an output. AO_WS is asserted on
the same AO_SCK edge as AO_SDx.

AO_WS is the word-select or frame-sync
signal from/to the external D/A sub-
system. Each audio channel receives 1
sample for every WS period.
AO_WS can be set to change on
AO_OSCLK positive or negative edges by
the CLOCK_EDGE bit.

AO_SD1 OUT Serial data to stereo external audio D/A
subsystem. AO_SD1 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

AO_SD2 OUT Serial data to stereo external audio D/A
subsystem. AO_SD2 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

AO_SD3 OUT Serial data to stereo external audio D/A
subsystem. AO_SD3 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

AO_SD4 OUT Serial data to stereo external audio D/A
subsystem. AO_SD4 can be set to
change on AO_OSCLK positive or nega-
tive edges by the CLOCK_EDGE bit.

Table 9-1. AO unit external signals

Signal Type Description

FREQUENCY

AO_OSCLK

AO_SCK

AO_WS

div N+1 SCKDIV

div N+1

Square Wave DDS

9 × DSPCPUCLK

AO_SDx

Parallel to Serial Converter

16

16
LEFT[15:0]
RIGHT[15:0]

(e.g. 64×fs)

WSDIV

31 0

7 0

08

(e.g. 256×fs)

32 AO_CC[31:0]

Figure 9-1. AO clock system and I/O interface

SER_MASTER
9-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio Out
programmed to emit frequencies from approx. 1 Hz to 80
MHz with a sub Hertz resolution.

The output of the DDS is always sent to the AO_OSCLK
output pin. This output is intended to be used as the
256fs or 384fs system clock source for oversampling D/A
converters, such as the Philips SAA7322, or codecs
such as the AD1847, CS4218, or UAD1340.

The PNX1300 DDS frequency is set by writing to the
FREQUENCY MMIO register. The programmer is free to
change the FREQUENCY setting dynamically, in order
to adjust the outgoing audio sample rate. In ATSC trans-
port stream decoding, this is the method by which the
system software locks audio output sample rate to the
original program provider sample rate.

Depending on bit 31 (MSB), the DDS runs in one of the
two following modes:

• bit 31 = 1 (standard improved mode)
• bit 31 = 0 (TM-1000 compatibility mode)

9.4.1 PNX1300 Standard Improved Mode

This mode was first available in the TM-1100. In this
mode, a high quality, low-jitter AO_OSCLK is generated.
The setting of the FREQUENCY register to accomplish a
given AO_OSCLK frequency is given by the formula:

This mode, and the above formula, should be used for all

In the improved mode the DDS synthesizer maximum jit-
ter can be computed as follows:

Example of jitter values can be found in Table 9-3.

Table 9-2. Clock system setting (fDSPCPU=133 MHz)

fs OSCLK SCK FREQUENCY SCKDIV

44.1 kHz 256fs 64fs 2187991971 3

48.0 kHz 256fs 64fs 2191574340 3

44.1 kHz 384fs 64fs 2208246133 5

48.0 kHz 384fs 64fs 2213619686 5

Table 9-3. Jitter values for common DSPCPU MHz

fDSPCPU
(MHz)

jitter
(nSec)

fDSPCPU
(MHz)

jitter
(nSec)

143 0.777 180 0.617

166 0.669 200 0.555

FREQUENCY 2
31 fOSCLK 2

32⋅
9 fDSPCPU⋅
------------------------------+=

jitter
1

9 fDSPCPU⋅-----------------------------=
PRELIMINARY SPECIFICATION 9-3

PNX1300/01/02/11 Data Book Philips Semiconductors
9.4.2 TM-1000 Compatibility Mode

TM-1000 clock compatibility mode is provided so that
TM-1000 audio software runs without changes. It should
NOT be used for new software development, due to a 3x
higher jitter. TM-1000 mode is automatically entered
whenever FREQUENCY[31] = 0. In TM-1000 mode,
AO_OSCLK frequency is set as follows:

9.5 CLOCK SYSTEM OPERATION

The output of the DDS is always sent to the AO_OSCLK
output pin. This output is typically used as the 256fs or
384fs system clock source for oversampling D/A convert-
ers, such as the Philips SAA7322, or codecs such as the
AD1847, CS4218 or UD1340.

AO_WS and AO_SCK are sent to each external D/A con-
verter in the master mode.

AO_WS, the word strobe, determines the sample rate:
each active channel receives one sample for each
AO_WS period.

AO_SCK is the data bit clock. The number of AO_SCK
clocks in an AO_WS period is the number of data bits in
a serial frame required by the attached D/A converter.

AO_WS is a divider of the bit clock and is set using WS-
DIV to control the serial frame length. The number of bits
per frame is equal to WSDIV+1. There are some mini-
mum length requirements for a serial frame, refer to
Section 9.6.1.

AO_SCK and AO_WS can be configured as input or out-
put, as determined by the SER_MASTER control field. If
set as output, AO_SCK can be set to a divider of the DDS
output frequency.

Whether set as input or output, the AO_SCK pin signal is
always used as the bit clock for parallel-serial conver-
sion. The AO_WS pin always acts as the trigger to start
the generation of a serial frame. AO_WS can similarly be
programmed using WSDIV to control the serial frame
length. The number of bits per frame is equal to WS-
DIV+1.

The preferred use of the clock system options is to use
AO_OSCLK as D/A master clock, and let the D/A con-

verter be a timing slave of the serial interface
(SER_MASTER=1). This is important in view of compat-
ibility with future Trimedia devices, which may only sup-
port the AO unit as serial interface master.

Some D/A converters however, like the AD1847, provide
better SNR properties if they are configured as serial
master, with the AO unit as slave (SER_MASTER=0). As
illustrated by Figure 9-1, the internal parallel to serial
converter that constructs the serial frame is oblivious to
which component is timing master.

9.6 SERIAL DATA FRAMING

The AO unit can generate data in a wide variety of serial
data framing conventions. Figure 9-2 illustrates the no-
tion of a serial frame. If POLARITY=1, a frame starts with
a positive edge of the AO_WS signal. If POLARITY=0, a
serial frame starts with a negative edge on AO_WS. If
CLOCK_EDGE=0, the parallel to serial converter sam-
ples AO_WS on a positive clock edge transition, and out-
puts the first bit (bit 0) of a serial frame on the next falling
edge of AO_SCK.

If CLOCK_EDGE=1, the parallel to serial converter sam-
ples AO_WS on the negative edge of AO_SCK, while au-
dio data is output on the positive edge, i.e. the AO_SCK
polarity would be reversed with respect to Figure 9-2.

FREQUENCY
fOSCLK 2

32⋅
3 fDSPCPU⋅
------------------------------=

SCKDIV 0 255[,]∈fAOSCK

fAOOSCLK
SCKDIV 1+
----------------------------------=

Table 9-4. AO MMIO Clock & Interface Control

Field Name Description

SER_MASTER 0 ⇒ (RESET default), the D/A subsystem
is the timing master over the AO
serial interface. AO_SCK and
AO_WS act as inputs.

1 ⇒ PNX1300 is the timing master over
the serial interface. AO_SCK and
AO_WS act as outputs. This mode is
required for 4,6 or 8 channel opera-
tion.

The SER_MASTER bit should only be
changed while the AO unit is disabled, i.e.
TRANS_ENABLE = 0.

FREQUENCY Sets the clock frequency emitted by the
AO_OSCLK output. RESET default 0.

SCKDIV Sets the divider used to derive AO_SCK
from AO_OSCLK. Set to 0..255, for divi-
sion by 1..256. RESET default 0.

WSDIV Sets the divider used to derive AO_WS
from AO_SCK. Set to 0..511 for a serial
frame length of 1..512. RESET default 0.

7654321031302928272625242322212019181716151413121110987654321

framen

0

framen+1

3130

framen-1

AO_SCK

AO_WS

AO_SDx

Figure 9-2. Definition of serial frame bit positions (POLARITY = 1, CLOCKEDGE = 0)
9-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio Out
Every serial frame transmits a single left and right chan-
nel sample, and optional codec control data to each D/A
converter. The left and right sample data can be in an
LSB first or MSB first form, at an arbitrary serial frame bit
position, and with an arbitrary length.

In MSB-first mode (DATAMODE = 0), the parallel to se-
rial converter sends the value of LEFT[MSB] in bit posi-
tion LEFTPOS in the serial frame. Subsequently, bits
from decreasing bit positions in the LEFT data word, up
to and including LEFT[SSPOS], are transmitted in order.

In LSB-first mode (DATAMODE = 1), the parallel-to-seri-
al converter sends the value of LEFT[SSPOS] in bit po-
sition LEFTPOS in the serial frame. Subsequent bits
from the LEFT data word, up to and including
LEFT[MSB], are transmitted in order. Table 9-6. shows
the transmitted bits in different modes.

Frame bits that do not belong to either LEFT[MSB:SS-
POS] or RIGHT[MSB:SSPOS] or a codec control field
(Section 9.7, “Codec Control”) are shifted out as zero.
This zero extension ensures that PNX1300 can be used
in combination with D/A converters of higher precision
than the actual number of transmitted bits in the current
operating mode, e.g. 18-bit D/As operating with 16-bit
memory data.

9.6.1 Serial Frame Limitations

Due to the implementation, there is a minimum serial
frame length required that is operating mode dependent.
This is shown in Table 9-7.

Table 9-5. AO Serial Framing Control Fields

Field Name Description

POLARITY 0 ⇒ serial frame starts with an AO_WS
negedge (RESET default)

1 ⇒ serial frame starts with an AO_WS
posedge

This bit should NOT be changed during
operation of the AO unit, i.e. only update this
bit when TRANS_ENABLE = 0.

LEFTPOS(9) Defines the bit position within a serial frame
where the first data bit of the left channel is
placed. Reset default ‘0’.

RIGHTPOS(9) Defines the bit position within a serial frame
where the first data bit of the right channel is
placed. Reset default ‘0’.

DATAMODE 0 ⇒ MSB first (RESET default)
1 ⇒ LSB first

SSPOS Start/Stop bit position. Reset default 0. Note
that SSPOS is a 5-bit field, with SSPOS bit 4
not-adjacent. This is for backwards compati-
bility in 16 bits/sample modes with TM-1000/
1100.
• If DATAMODE=MSB first, transmission

starts with the MSB of the sample, i.e. bit
15 for 16 bits/sample modes or bit 31 for 32
bits/sample modes. SSPOS determines
the bit index (0..31) in the parallel input
word of the last transmitted data bit.

• If DATAMODE=LSB first, SSPOS deter-
mines the bit index (0..31) in the parallel
word of the first transmitted data bit. Bits
SSPOS up to/including the MSB are trans-
mitted, i.e. up to bit 15 in 16 bits/sample
mode and bit 31 in 32 bits/sample mode.

See Table 9-6 for more information.

CLOCK_EDGE 0 ⇒ the parallel to serial converter samples
AO_WS on positive edges of AO_SCK
and outputs data on the negative edge
of AO_SCK (RESET default).

1 ⇒ the parallel to serial converter samples
AO_WS on negative edges of AO_SCK
and outputs data on positive edges of
AO_SCK.

WS_PULSE 0 ⇒ emit 50% AO_WS (RESET default).
1 ⇒ emit single AO_SCK cycle AO_WS

NR_CHAN 00 ⇒ Only AO_SD1 is active
01 ⇒ AO_SD1 and 2 are active
10 ⇒ AO_SD1, 2 and 3 are active
11 ⇒ AO_SD1..SD4 are active
Each SD output either receives 1 or 2 chan-
nels depending on TRANS_MODE mono
resp. stereo. Non-active channels receive 0
value samples. In mono modes, each chan-
nel of a SD output receives identical left &
right samples. See also Table 9-10.

Table 9-6. Bits transmitted for each memory data
item S

operating mode first
bit

last
bit

valid
SSPOS
values

16 bits/sample, MSB-first S[15] S[SSPOS] 0..15

16 bits/sample, LSB-first S[SSPOS] S[15] 0..15

32 bits/sample, MSB-first S[31] S[SSPOS] 0..31

32 bits/sample, LSB-first S[SSPOS] S[31] 0..31

Table 9-7. Minimum serial frame length in bits

operating mode minimum serial frame length

16 bits/sample, mono 13 bits

32 bits/sample, mono 13 bits

16 bits/sample, stereo 13 bits

32 bits/sample, stereo 36 bits
PRELIMINARY SPECIFICATION 9-5

PNX1300/01/02/11 Data Book Philips Semiconductors
9.6.2 I2S Serial Framing Example

Refer to Figure 9-3 and Table 9-8 to see how the AO unit
MMIO registers should be set to transmit 16 or 32 bits of
stereo data via an I2S serial standard to an 18-bit D/A
converter with a 64-bit serial frame.

9.7 CODEC CONTROL

In addition to the left and right data fields that are gener-
ated based on autonomous DMA action, a serial frame
generated by the AO unit can be set to contain 1 or 2
control fields up to 16 bits in length. Each control field can
be independently enabled/disabled by the CC1_EN,
CC2_EN bits in AO_CTL. The content shifted into the
frame is taken from the CC1 and CC2 field in the AO_CC
register. The CC1_POS and CC2_POS fields in the
AO_CFC register determine the first bit position in the
frame where the control field is emitted. The field is emit-
ted observing the setting of DATAMODE, i.e. LSB or
MSB first.

The CC_BUSY bit in AO_STATUS indicates if the AO
unit is ready to receive another CC1, CC2 value pair.
Writing a new value pair to AO_CC writes the value into
a buffer register, and raises the CC_BUSY status. As
soon as both CC1 and CC2 values have been copied to
a shadow register in preparation for transmission,
CC_BUSY is negated, indicating that the AO logic is
ready to accept a new codec control pair. The old CC1/

CC2 data keeps being transmitted - i.e. software is not
required to provide new CC1 and CC2 data.

Software always needs to ensure that the CC_BUSY sta-
tus is negated before writing a new CC1, CC2 pair. By
polling CC_BUSY, the DSPCPU can emit a sequence of
individual audio frames with distinct control field values
reliably. This can, for example, be used during codec ini-
tialization. No provision is made for interrupt driven oper-
ation of such a sequence of control values; it is assumed
that after initialization, the value of control fields deter-
mine slow, asynchronous changing parameters such as
volume.

It is legal to program the control field positions within the
frame such that CC1 and CC2 overlap each other and/or
left/right data fields. If two fields are defined to start at the
same bit position, the priority is left (highest), right, CC1
then CC2. The field with the highest priority will be emit-
ted starting at the conflicting bit position. If a field f2 is de-
fined to start at a bit position i that falls within a field f1
starting at a lower bit position, f2 will be emitted starting
from i and the rest of f1 will be lost. Any bit positions not
belonging to a data or control field will be emitted as ‘0’.

Table 9-8. Example setup for 64-bit I2S framing

Field Value Explanation

POLARITY 0 Frame starts with negedge AO_WS.

LEFTPOS 0 LEFT[msb] will go to serial frame
position 0.

RIGHTPOS 32 RIGHT[msb] will go to serial frame
position 32.

DATAMODE 0 MSB first.

SSPOS 0 Stop with LEFT/RIGHT[0], send 0’s
after.
(for 32 bits/sample mode, this field
could be set to 14 to ensure zeroes
in all unused bit positions)

CLOCK_EDGE 0 AO_SDx change on negedge
AO_SCK

WSDIV 63 Serial frame length = 64.

WS_PULSE 0 emit 50% duty cycle AO_WS.

163625251503332313018173210 0

left channel datan+1(18)left channel datan(18) right channel datan(18)

49

Figure 9-3. Serial frame (64 bits) of a 18-bit precision I2S D/A converter.

AO_SCK

AO_WS

AO_SDx

Table 9-9. AO MMIO codec control/status fields

Field Name Description

CC1 (16) The 16-bit value of CC1 is shifted into each
emitted serial frame starting at bit position
CC1_POS, as long as CC1_EN is asserted.

CC1_POS Defines the bit position within a serial frame
where the first data bit of CC1 is placed.
RESET Default 0.

CC1_EN 0 ⇒ CC1 emission disabled (RESET default)
1 ⇒ CC1 emission enabled.

CC2(16) The 16-bit value of CC2 is shifted into each
emitted serial frame starting at bit position
CC2_POS, as long as CC2_EN is asserted.

CC2_POS Defines the bit position within a serial frame
where the first data bit of CC2 is placed.
Default 0.

CC2_EN 0 ⇒ CC2 emission disabled (RESET default)
1 ⇒ CC2 emission enabled.

CC_BUSY 0 ⇒ AO is ready to receive a CC1, CC2 pair
(RESET default).

1 ⇒ AO is not ready to receive a CC1, CC2
pair. Try again in a few SCK clock inter-
vals.
9-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio Out
Figure 9-4 shows a 64-bit frame suitable for use with the
CS4218 codec. It is obtained by setting POLARITY=1,
LEFTPOS=0, RIGHTPOS=32, DATAMODE=0, SS-
POS=0, CLOCK_EDGE=1, WS_PULSE=1, CC1_POS =
16, CC1_EN=1, CC2_POS=48, CC2_EN=1.

Note that frames are generated (externally or internally)
even when TRANS_ENABLE is de-asserted. Writes to
CC1 and CC2 should only be done after
TRANS_ENABLE is asserted. The ‘first’ CC values will
then go out on the next frame. For a summary of codec
control fields see Table 9-9

9.8 MEMORY DATA FORMATS

The AO unit autonomously reads samples from memory
in 16 or 32 bit-per-sample memory formats, as shown in
Figure 9-5 for some example modes. Memory samples
are retrieved and used as described in Table 9-10. Suc-

cessive samples are always read from increasing mem-
ory address locations. The setting of the
LITTLE_ENDIAN bit in the AO_CTL register determines
the byte order of retrieved 16 or 32-bit samples. Refer to
Appendix C, “Endian-ness,” for details on byte ordering con-
ventions.

AO hardware implements a double buffering scheme to
ensure that there are always samples available to trans-
mit, even if the DSPCPU is highly loaded and slow to re-
spond to interrupts. The DSPCPU software assigns 2
equal size buffers by writing a base address and size to
the MMIO control fields described in Figure 9-6. Refer to
Section 9.9, “Audio Out Operation,” for details on hard-
ware/software synchronization.

If SIGN_CONVERT is set to one, the MSB of the memory
data is inverted, which is equivalent to translating from
offset binary representation to two’s complement. This
allows the use of an external two’s complement 16-bit D/
A converter to generate audio from 16-bit unsigned sam-
ples. This MSB inversion also applies to the ‘0’ values
transmitted to non-active output channels.

Note that the AO hardware does not support A-law or µ-
law eight-bit data formats. If such formats are desired,
the DSPCPU should be used to convert from A-law or µ-
law data to 16-bit linear data.

Table 9-10. Operating modes and memory formats

NR_CHAN MODE destination of successive samples

00 mono SD1.left

00 stereo SD1.left, SD1.right

01 mono SD1.left, SD2.left

01 stereo SD1.left, SD1.right, SD2.left, SD2.right

10 mono SD1.left, SD2.left, SD3.left

10
stereo

SD1.left, SD1.right, SD2.left, SD2.right,
SD3.left, SD3.right

11 mono SD1.left, SD2.left, SD3.left, SD4.left

11
stereo

SD1.left, SD1.right, SD2.left, SD2.right,
SD3.left, SD3.right, SD4.left, SD4.right.

Figure 9-4. Example codec frame layout for a Crystal Semi, CS4218.

16362484732313210 0

left datan+1(16)left channel datan(16) right channel datan(16)

15

CC1(16)

16

lsb lsb lsb CC2(16) lsb

AO_SCK

AO_WS

AO_SDx

Figure 9-5. AO memory DMA formats.

adr

SD1.leftn

adr+2

SD1.rightn

adr+4

SD1.leftn+1

adr+6

SD1.rightn+1

adr+8

SD1.leftn+2

adr+10

SD1.rightn+2

adr+12

SD1.leftn+3

adr+14

SD1.rightn+3
16-bit, stereo,
NR_CHAN=00

32-bit, stereo,
NR_CHAN=00

SD1.leftn

adr

SD1.rightn

adr+4

SD1.leftn+1

adr+8

SD1.rightn+1

adr+12

adr

SD1.leftn

adr+2

SD1.rightn

adr+4

SD2.leftn

adr+6

SD2.rightn

adr+8

SD3.leftn

adr+10

SD3.rightn

adr+12

SD1.leftn+1

adr+14

SD1.rightn+1
16-bit, stereo,
NR_CHAN=10
PRELIMINARY SPECIFICATION 9-7

PNX1300/01/02/11 Data Book Philips Semiconductors
9.9 AUDIO OUT OPERATION

Figure 9-6, Table 9-11 and Table 9-12 describe the func-
tion of the control and status fields of the AO unit. To en-
sure compatibility with future devices, any undefined or
reserved MMIO bits should be ignored when read, and
written as zeroes

The AO unit is reset by a PNX1300 hardware reset, or by
writing 0x80000000 to the AO_CTL register. The AO unit
is not affected by DSPCPU reset initiated through the
BIU_CTL register. Either reset method sets all MMIO
fields as indicated in the tables.

The timestamp counter is reset by TRI_RESET# or by
DSPCPU reset initiated through BIU_CTL. It is not affect-
ed by AO_CTL reset. This ensures that the timestamp

counter stays synchronous with the DSPCPU
CCCOUNT register.

After an AO reset, 5 AO_SCK clock cycles are required
to stabilize the internal circuitry before enabling Audio
Out. This can be accomplished by programming the
AO_FREQ and AO_SERIAL registers to start AO_SCK
generation then waiting for the appropriate 5 AO_SCK
cycle interval.

Programing of the AO_SERIAL MMIO register needs to
follow the following sequence order:

• set AO_FREQ to ensure that a valid clock is gener-
ated (Only when AO is the master of the audio clock
system)

• MMIO(AO_CTL) = 1 << 31; /* Software Reset */

Figure 9-6. AO status/control field MMIO layout.

MMIO_base
offset:

AO_STATUS (r/w)0x10 2000

AO_CTL (r/w)0x10 2004

AO_SERIAL (r/w)0x10 2008 SCKDIV

AO_FRAMING (r/w)0x10 200C

AO_FREQ (r/w)0x10 2010

AO_BASE1 (r/w)0x10 2014

FREQUENCY

BUF1_ACTIVE

AO_BASE2 (r/w)0x10 2018 BASE2

AO_SIZE (r/w)0x10 201C SIZE (in samples)

31 0371115192327

BASE1

UNDERRUN
HBE (Highway bandwidth error)

BUF2_EMPTY

RESET
TRANS_ENABLE

TRANS_MODE
SIGN_CONVERT

LITTLE_ENDIAN

0

UDR_INTEN
HBE_INTEN

BUF2_INTEN
BUF1_INTEN

ACK_UDR
ACK_HBE

ACK2

ACK1

WSDIV

DATAMODE
CLOCK_EDGE

POLARITY

LEFTPOS RIGHTPOS SSPOS

00000

000000

SLEEPLESS

BUF1_EMPTY

AO_CC (r/w)0x10 2020

AO_CFC (r/w)0x10 2024 CC1_POS CC2_POS

CC2CC1

CC1_EN
CC2_EN
WS_PULSE

CC_BUSY

NR_CHAN

000000

31 0371115192327

31 0371115192327

31 0371115192327

31 0371115192327

RESERVED

SSPOS[4]

AO_TSTAMP (r/o)0x10 2028 TIMESTAMP
31 0371115192327

SER_MASTER
9-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio Out
• MMIO(AO_SERIAL) = 1 << 31; /* sets serial-master
mode, starts AO_SCK */

• MMIO(AO_SERIAL) = (1 << 31) | (SCKDIV value); /*
then set DIVIDER values */

Upon reset, transmission is disabled (TRANS_ENABLE
= 0), and buffer 1 is the active buffer (BUF1_ACTIVE=1).

The DSPCPU initiates transmission by providing two full
equal size buffers and putting their base address and
size in the BASEn and SIZE registers. Once two valid
buffers are assigned, transmission can be enabled by
writing a ‘1’ to TRANS_ENABLE. The AO hardware now
proceeds to empty buffer 1 by transmission of output
samples. Once buffer 1 empties, BUF1_EMPTY is as-
serted, and transmission continues without interruption
from buffer 2. If BUF1_INTEN is enabled, a SOURCE 12
interrupt request is generated.

Note that buffers must be 64-byte aligned (the six LSBs
of AO_BASE1, AO_BASE2 are zero). Buffer sizes must
be a multiple of 64 samples (the 6 LSB’s of AO_SIZE are
zero).

The DSPCPU is required to assign a new, full buffer to
BASE1 and perform an ACK1 before buffer 2 empties.
Transmission continues from buffer 2 until it is empty. At
that time, BUF2_EMPTY is asserted and transmission

continues from the new buffer 1, etc. An ACK performs
two functions: it tells the AO unit that the corresponding
BASE register now points to a buffer filled with samples,
and it clears BUF_EMPTY. Upon receipt of an ACK, the
AO hardware removes the BUF_EMPTY related inter-
rupt request line assertion at the next DSPCPU clock
edge. Refer to the interrupt controller documentation for
details on interrupt handler programming. The AO inter-
rupt (SOURCE 12) should always be operated in level
sensitive mode

9.10 INTERRUPTS

The AO unit has a private interrupt request line to the
DSPCPU vectored interrupt controller. It uses SRC# 12
(same as TM-1000/TM-1100/TM-1300 AO).

An interrupt is asserted as long as one or more of the
UNDERRUN, HBE, BUF1_EMPTY or BUF2_EMPTY
condition flags and the corresponding INTEN bit are as-
serted. Interrupts are sticky, i.e. an interrupt remains as-
serted until the software explicitly clears the condition
flag by an ACK_x action.

Table 9-11. AO MMIO DMA control fields

Field Name Description

LITTLE_ENDIAN 0 ⇒ big endian memory format (RESET
default)

1 ⇒ little endian

BASE1 Base Address of buffer1. Must be a 64-
byte aligned address in local SDRAM.
RESET default 0.

BASE2 Base Address of buffer2. Must be a 64-
byte aligned address in local SDRAM.
RESET default 0.

SIZE DMA buffer size, in samples.
This number of mono samples or stereo
sample pairs is read from a DMA buffer
before switching to the other buffer.
Buffer size in bytes is as follows:
16 bps, mono : 2 * SIZE
32 bps, mono : 4 * SIZE
16 bps, stereo : 4 * SIZE
32 bps, stereo : 8 * SIZE
RESET default 0.

TRANS_MODE 00 ⇒ mono, 32 bits/sample. (RESET
default). Left data and Right data
sent to each active output are the
same.

01 ⇒ stereo, 32 bits/sample
10 ⇒ mono, 16 bits/sample. Left data

and Right data are the same.
11 ⇒ stereo, 16 bits/sample
Refer to Table 9-10 for an explanation of
how TRANS_MODE and NR_CHAN
map to output behavior.

SIGN_CONVERT 0 ⇒ leave MSB unchanged (RESET
default)
1 ⇒ invert MSB
(not applied to codec control fields)

Table 9-12. AO DMA status fields (read only)

Field Name Description

BUF1_ACTIVE • If 1, buffer 1 will be used for the next sam-
ple to be transmitted.

• If 0, buffer 2 will contain the next sample
(1 after RESET).

BUF1_EMPTY • If 1, buffer 1 is empty.
• If BUF1_INTEN is also 1, an interrupt

request (source 12) is asserted.
• BUF1_EMPTY is cleared by writing a ‘1’

to ACK1, at which point the AO hardware
will assume that BASE1 and SIZE
describe a new full buffer.

• 0 after RESET.

BUF2_EMPTY • If 1, buffer 2 is empty.
• If BUF2_INTEN is also 1, an interrupt

request (source 12) is asserted.
• BUF2_EMPTY is cleared by writing a ‘1’

to ACK2, at which point the AO hardware
will assume that BASE2 and SIZE
describe a new full buffer.

• 0 after RESET.

HBE • Highway Bandwidth Error.
• 0 after RESET.
• Indicates that no data was transmitted

due to inability to read the local AO buffer
from SDRAM in time. This indicates an
insufficient allocation of PNX1300 High-
way bandwidth for the audio sampling
rate/mode.

UNDERRUN • An UNDERRUN error has occurred, i.e.
the CPU failed to provide a full buffer in
time, and no samples were transmitted,
although requested by the D/A converter.

• If UDR_INTEN is also 1, an interrupt
request (source 12) is pending. The
UNDERRUN flag can ONLY be cleared by
writing a ‘1’ to ACK_UDR.

• 0 after RESET.
PRELIMINARY SPECIFICATION 9-9

PNX1300/01/02/11 Data Book Philips Semiconductors
9.11 TIMESTAMP

The AO_TSTAMP MMIO register provides a 32-bit
timestamp value that contains the CCCOUNT time value
at which the last sample of the last DMA buffer transmit-
ted was sent across the SD output pin. This value is
available for software inspection (read-only) in the inter-
rupt handler for BUFx_EMPTY.

The implementation involves an internal DSPCPU clock
cycle counter that is reset to have the same value as the
DSPCPU CCCOUNT register. It is guaranteed to be in
sync with the 32 LSB of CCCOUNT provided that PC-
SW.CS=1.

9.12 POWERDOWN AND SLEEPLESS

The AO unit enters powerdown state whenever
PNX1300 is put in global powerdown mode, except if the
SLEEPLESS bit in AO_CTL is set. In the latter case, the
block continues DMA operation and will wake up the
DSPCPU whenever an interrupt is generated. The inter-
nal timestamp counter never powers down to ensure that
it remains synchronous with CCCOUNT.

The AO unit can be separately powered down by setting
a bit in the BLOCK_POWER_DOWN register. Refer to
Chapter 21, “Power Management.”

If the block enters powerdown state, AO_SCK, AO_SDx,
and AO_WS hold their value stable. AO_OSCLK contin-
ues to provide a D/A converter clock. The signals resume
their original transitions at the point where they were in-
terrupted once the system wakes up. The external D/A
converter subsystem is most likely confused by this be-
havior, hence it is recommended AO unit to be stopped
(by negating TRANS_ENABLE) before block level pow-
erdown is started, or that SLEEPLESS mode is used
when global powerdown is activated.

9.13 HIGHWAY LATENCY AND HBE

The AO unit uses an internal 64-byte buffer as well as an
output holding register that contains a single mono sam-
ple or single stereo sample pair. Under normal operation,
the internal buffer is refreshed from SDRAM fast enough
to avoid any missing samples, while data is being emit-
ted from the holding register. If the highway arbiter is set
up with an insufficient latency guarantee, the situation
can arise that the 64-byte buffer is not refilled and the
holding register is exhausted by the time a new output
sample is due. In that case the HBE error is raised. The
last sample for each channel will be repeated until the
buffer is refreshed. The HBE condition is sticky, and can
only be cleared by an explicit ACK_HBE. This condition
indicates an incorrect setting of the highway bandwidth
arbiter.

Given a sample rate fs, and an associated sample inter-
val T (in ns), the arbiter should be set to have a latency
of at most T-20 ns for all modes. The latency for 4,6 and
8 channel modes can be computed as if the system is op-
erating in stereo mode with a 2x, 3x respectively 4x sam-
ple rate.

Table 9-14 shows the required arbiter latency settings for
a number of common operating modes. The right most
column in illustrates the nature of the resulting 64-byte
highway requests. Is not necessary to compute arbiter
settings, but they may be used to compute bus availabil-
ity in a given interval.

Refer to Chapter 20, “Arbiter,” for information on arbiter
programming.

Table 9-13. AO MMIO Control Fields

Field Name Description

RESET Resets the audio-out logic. See Section
9.9, “Audio Out Operation” for a descrip-
tion of the recommended procedure.

TRANS_ENABLE Transmission Enable flag.
0 ⇒ (RESET default) AO inactive.
1 ⇒ AO transmits samples and acts as

DMA master to read samples from
local SDRAM.

Do NOT change the POLARITY bit while
transmission is enabled.

SLEEPLESS 0 ⇒ (power up default) AO goes into
power-down mode if PNX1300 goes
to global powerdown mode.

1 ⇒ AO continues operation when
PNX1300 goes to global powerdown
mode. Samples are read from mem-
ory as needed, and AO interrupts,
when enabled, will wake up the
DSPCPU.

BUF1_INTEN Buffer 1 Empty Interrupt Enable.
0 ⇒ (default) no interrupt
1 ⇒ interrupt (SOURCE 12) if buffer 1

empty

BUF2_INTEN Buffer 2 Empty Interrupt Enable.
0 ⇒ (default) no interrupt
1 ⇒ interrupt (SOURCE 12) if buffer 2

empty

HBE_INTEN HBE Interrupt Enable.
0 ⇒ (default) no interrupt
1 ⇒ interrupt (SOURCE 12) if a highway

bandwidth error occurs.

UDR_INTEN UNDERRUN Interrupt Enable.
0 ⇒ (default) no interrupt
1 ⇒ interrupt (SOURCE 12) if an

UNDERRUN error occurs

ACK1 • Write a 1 to clear the BUF1_EMPTY flag
and remove any pending BUF1_EMPTY
interrupt request.

• ACK1 always reads 0.

ACK2 • Write a 1 to clear the BUF2_EMPTYflag
and remove any pending BUF2_EMPTY
interrupt request.

• ACK2 always reads 0.

ACK_HBE • Write a 1 to clear the HBE flag and
• remove any pending HBE interrupt

request.
• ACK_HBE always reads as 0.

ACK_UDR • Write a 1 to clear the UNDERRUN flag
and remove any pending UNDERRUN
interrupt request.

• ACK_UDR always reads 0.
9-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Audio Out
9.14 ERROR BEHAVIOR

In normal operation, the DSPCPU and AO hardware
continuously exchange buffers without ever failing to
transmit a sample. If the DSPCPU fails to provide a new
buffer in time, the UNDERRUN error flag is raised, and
the last valid sample or sample pair is repeated until a
new buffer of data is assigned by an ACK1 or ACK2. The
UNDERRUN flag is not affected by ACK1 or ACK2; it can
only be cleared by an explicit ACK_UDR.

If an HBE error occurs, the last valid sample or sample
pair is repeated until the AO hardware retrieves a new
sample buffer across the highway.

Table 9-14. AO highway arbiter latency requirement
examples

TransMode
fs

(kHz)
T

(ns)

max.
arbiter
latency

(ns)

access
pattern

stereo
16 bits/sample 44.1 22,676 22,656

1 request every
362,812 ns

stereo
16 bits/sample 48.0 20,833 20,813

1 request every
333,333 ns

stereo
16 bits/sample

96.0 10,417 10,397
1 request every

166,667 ns

6 channel
16 bits/sample

48.0 20,833 6,924
1 request every

111,111 ns

stereo
32 bits/sample

48.0 20,833 20,813 1 request every
166,667 ns

6 channel
32 bits/sample

48.0 20,833 6,924 1 request every
55,556 ns
PRELIMINARY SPECIFICATION 9-11

PNX1300/01/02/11 Data Book Philips Semiconductors
9-12 PRELIMINARY SPECIFICATION

SPDIF Out Chapter 10

by Gert Slavenburg, Santanu Dutta

10.1 SPDIF OUT OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 SPDIF Output unit (SPDO) allows gener-
ation of a 1-bit high-speed serial data stream. The prima-
ry application is to make SPDIF (Sony/Philips Digital In-
terface) data available for use by external audio
equipment.

The SPDO unit has the following features:

• fully compliant with IEC958, for both consumer and
professional applications

• supports 2-channel linear PCM audio, with 16 or 24
bits per sample

• supports one or more Dolby Digital(r) 6-channel data
streams embedded per Project 1937

• supports one or more MPEG-1 or MPEG-2 audio
streams embedded per Project 1937

• allows arbitrary, programmable, sample rates from 1
Hz to 300 kHz

• can output data with a sample rate independent of
and asynchronous to the sample rate of the Audio
Out (AO) unit

• hardware performs autonomous DMA of memory
resident IEC958 sub-frames

• hardware performs parity generation and bi-phase
mark encoding

• allows software to have full control over all data con-
tent, including user and channel data

Alternate use of the SPDO unit to generate a general-
purpose high-speed data stream is possible. Potential
applications include use as a high-speed UART or high
speed serial data channel. In this case features are:

• up to 40 Mbit/sec data rate
• full software control over each bit cell transmitted
• LSB first or MSB first data format

10.2 EXTERNAL INTERFACE

The external interface consists of only one pin, SPDO,
which is described in Table 10-1.

An external circuit (see Figure 10-1) is required to pro-
vide an electrically isolated output and convert the 3.3 V
output pin to a drive level of 0.5 V peak-peak into a 75-

ohm load, as required for consumer applications of IEC-
958.

10.3 SUMMARY OF OPERATION

In both SPDIF and transparent DMA modes, SPDO
sends alternating memory data buffers out across the
output pin. Software initially gives SPDO two memory
data buffers and enables the SPDO unit. When the first
buffer is sent, SPDO requests a new buffer from software
while switching over to use the other buffer, etc. Trans-
mission continues uninterrupted until the unit is disabled.

10.3.1 SPDIF Mode

SPDIF driver software assembles SPDIF data in each
memory data buffer. Each memory data buffer consists
of groups of 32-bit words in memory. Each word de-
scribes the data to be transmitted for a single IEC-958
sub-frame, including what type of preamble is to be in-
cluded. Each sub-frame is transmitted in 64-clock cycle
intervals of the SPDO clock, a programmable clock gen-
erated by the SPDO Direct Digital Synthesizer (DDS).

10.3.2 Transparent DMA Mode

In transparent DMA mode, software prepares each data
bit exactly as it is to be transmitted, in a series of 32-bit
words in each memory data buffer. Each 32-bit word is

Table 10-1. SPDO external signals

Signal Type Description

SPDO I/O SPDIF output. Self clocking interface
carrying either 2-channel PCM data with
samples up to 24 bits, or encoded Dolby
AC-3(r) or MPEG audio data for decod-
ing by an external audio component.

Figure 10-1. External SPDIF interface circuitry

10 uF 240E

110E

transformer
1:1

1.5 - 7 MHz

RCA
phono

SPDO

PNX1300
PRELIMINARY SPECIFICATION 10-1

PNX1300/01/02/11 Data Book Philips Semiconductors
transmitted LSB first or MSB first in 32-clock cycle inter-
vals of the SPDO clock, a programmable clock generat-
ed by the SPDO Direct Digital Synthesizer.

10.4 IEC-958 SERIAL FORMAT

Figure 10-2 shows the serial format layout of a IEC-958
block. A block starts with a special ‘B’ pre-amble, and
consists of 192 frames. The sample-rate of all embedded
audio data is equal to the frame rate. Each frame con-
sists of 2 sub-frames. Sub-frame 1 always starts with a
‘M’ pre-amble, except for sub-frame 1 in frame 0, which
starts with a ‘B’. Sub-frame 2 always starts with a ‘W’ pre-
amble.

When IEC-958 data carries 2-channel PCM data, one
audio sample is transmitted in each sub-frame, ‘left’ in
sub-frame 1 and ‘right’ in sub-frame 2. Each sample can
be 16 or 24 bits in length, where the MSB is always
aligned with bit slot 28 of the sub-frame. In case of more
than 20 bits/sample, the Aux field is used for the 4 LSBs.

When IEC-958 data carries non-PCM audio, such as 1 or
more streams of Dolby AC-3 encoded data and/or MPEG
audio, each sub-frame carries 16-bit data. The data of
successive frames adds up to a payload data-stream
which carries its own burst-data.This is described in [2].

Programmers should refer to the IEC-958 documents [1]
and Project 1937 document [2] for a precise description
of the required values in each field for different types of

consumer equipment. A complete discussion of this is-
sue is outside the scope of this document.

The SPDO block hardware only concerns itself with gen-
erating B, W and M preambles as well as generating the
P (parity) bit. All other bits in the sub-frame are complete-
ly determined by software and copied verbatim from
memory to output, subject only to bit-cell coding.

The programmer must construct valid IEC-958 blocks by
constructing the right sequence of 32-bit words as de-
scribed in Section 10.7, “IEC-958 Memory Data Format.”

10.5 IEC-958 BIT CELL AND PRE-AMBLE

Each data bit in IEC-958 is transmitted using bi-phase
mark encoding. In bi-phase mark encoding, each data bit
is transmitted as a cell consisting of two consecutive bi-
nary states. The first state of a cell is always inverted
from the second state of the previous cell. The second
state of a cell is identical to the first state if the data bit
value is a “0”, and inverted if the data bit value is a “1”.

Pre-ambles are coded as bi-phase mark violations,
where the first state of a cell is not the inverse of the last
state of the previous cell.

The duration of each state in a cell is called a UI (Unit In-
terval), so that each cell is 2 UI’s long. In SPDO, the
length of a UI is 1 SPDO clock cycle as determined by

Figure 10-2. Serial format of a IEC958 block

sub-frame 1M sub-frame 2W sub-frame 1B sub-frame 2W sub-frame 1M sub-frame 2W

Start of block (indicated by unique B pre-amble)

sub-frame sub-frame

frame 0 frame 1

sub-framM

frame 191

0 31282420161284

Sample data
L
S
B

M
S
B

B, W or M
pre-amble

Aux. V U C P

Validity flag
User data

Channel status
Parity bit

sub-frame (2 channel PCM)

0 31282420161284

16-bit data
L
S
B

M
S
B

B, W or M
pre-amble

V U C P

Validity flag
User data

Channel status
Parity bit

sub-frame (non-PCM audio)

unused (0)
10-2 PRELIMINARY SPECIFICATION

Philips Semiconductors SPDIF Out
the settings of the DDS (see Section 10.8, “Sample Rate
Programming”).

Figure 10-3 illustrates the transmission format of 8-bit
data value “10011000”, as well as the transmission for-
mat of the 3 pre-ambles. Note that each pre-amble al-
ways starts with a rising edge. This is made possible
thanks to the presence of the parity bit, which always
guarantees an even number of ‘1’ bits in each sub-frame.

10.6 IEC-958 PARITY

The parity bit, or P bit in Figure 10-2, is computed by the
SPDO hardware. The P bit value should be set such that
bit cells 4 to 31 inclusive contain an even number of ‘1’s
(and hence even number of ‘0’s). The P bit is bi-phase
mark encoded using the same method as for all other
bits.

10.7 IEC-958 MEMORY DATA FORMAT

The DSPCPU software must prepare a memory data
structure that instructs the SPDO hardware to generate
correct IEC-958 blocks. This data structure consists of
32-bit words with the following content:

The data structure for a block consists of 384 of these 32-
bit descriptor words, one for each subframe of the block,
with the correct B, M, W values. All data content, includ-
ing the U, C and V flag are fully under control of the soft-
ware that builds each block.

A DMA buffer handed to the hardware is required to be a
multiple of 64 bytes in length. It can contain 1 or more
complete blocks, or a block may straddle DMA buffer
boundaries. The 64-byte length will result in DMA buffers
that contain a multiple of 16 sub-frames.

Note that the descriptor structure is a 32-bit word memo-
ry data structure, and is hence subject to processor en-
dian-ness. To allow software to be efficient in both little-
endian and big-endian operation, the SPDO block
SPDO_CTL register has an endian-ness bit
‘LITTLE_ENDIAN’. The SPDO block performs byte
swapping when loading the SPDIF descriptors as fol-
lows.

• If LITTLE_ENDIAN = 1, 32-bit words at address ‘a’
will be assembled from bytes (a+3,a+2,a+1,a), with
the byte at ‘a+3’ containing the MSB’s and the byte at
‘a’ the LSB’s.

• If LITTLE_ENDIAN = 0, 32-bit words at address ‘a’
will be assembled from bytes (a,a+1,a+2,a+3), with
the byte at ‘a’ containing the MSB’s and the byte at
‘a+3’ the LSB’s.

10.8 SAMPLE RATE PROGRAMMING

In he SPDO unit, the frame rate always equals fs, the
sample rate of embedded audio. This relation holds for
PCM as well as for Dolby AC-3 and MPEG encoded au-
dio. Each frame consists of 128 Unit Intervals (UI’s). The
length of a UI is determined by the frequency setting of
the DDS (Direct Digital Synthesizer) in the SPDO block.

The DDS can be programmed to emit frequencies from
approx. 1 Hz to 80 MHz in steps of approx. 0.3 Hz, with
a jitter of approx. 750 psec (at DSPCPU frequency of 143
MHz, see equations below).

Programming is accomplished through the FREQUEN-
CY MMIO register: the relation between FREQUENCY
register value, DSPCPU clock value and synthesized fre-
quency is:

Putting equation 1 and 2 above together yields the for-
mula for setting FREQUENCY to accomplish a given
sample rate:

The DDS synthesizer maximum jitter can be computed
as follows:

Table 10-2. SPDIF sub-frame descriptor word

bits definition

31 (MSB) this bit must be a ‘0’ for future compatibility

30..4 Data value for bits 4..30 of the subframe, exactly
as they are to be transmitted. Hardware will per-
form the bi-phase mark encoding and parity gen-
eration.

3..0
(LSB)

0000 - generate a B preamble
0001 - generate a M preamble
0010 - generate a W preamble
0011 .. 1111 reserved for future

Figure 10-3. Bi-phase mark data transmission

“1” “0” “0” “1” “1” “0” “0” “0”

UI
cell

bi-phase mark violation

B

bi-phase mark violation

M

bi-phase mark violation

W

fs

fDDS()
128

----------------= Eq. 1

FREQUENCY 2
31 fDDS 2

32⋅
9 fDSPCPU⋅-----------------------------+= Eq. 2

FREQUENCY 2
31 fs 2

39⋅
9 fDSPCPU⋅
-----------------------------+=
PRELIMINARY SPECIFICATION 10-3

PNX1300/01/02/11 Data Book Philips Semiconductors
Table 10-3 shows settings for common sample rate and
DSPCPU clock combinations:

The programmer is free to change FREQUENCY, and
hence the system sample rate to perform long-term
tracking of any absolute timing source and/or control
software buffer fullness. Changes to the FREQUENCY
register pull-in or delay the next clock edge and have no
instantaneous effect on clock level, i.e. the rate of phase
progression is changed, not the phase.

10.9 TRANSPARENT MODE

When SPDO is set to operate in transparent mode, it
takes all 32 bits of the memory data and shifts them out
verbatim, without bi-phase mark encoding, parity gener-
ation, or preamble.

Two transparent modes are provided, as determined by
TRANS_MODE in SPDO_CTL: LSB first and MSB first.

One bit of memory data is transmitted for each DDS
clock, such that the FREQUENCY register value for a
desired bitrate is given by the following equation:

The 32-bit memory word is constructed according to the
same rules for LITTLE_ENDIAN as in Section 10.7,
“IEC-958 Memory Data Format.”

10.10 DMA OPERATION

Before enabling the SPDO block, software must assign
two buffers with data to SPDO_BASE1, SPDO_BASE2,
and SPDO_SIZE (buffer size in bytes). Each memory
buffer size must be a multiple of 64 bytes regardless of
the operating mode.

The SPDO block is enabled by writing a ‘1’ to
SPDO_CTL.TRANS_ENABLE. Once enabled, the first
DMA buffer is sent out at the programmed sample rate.
Once the first buffer is empty, BUF1_ACTIVE is negated,

a timestamp is generated (see Section 10.13, “Times-
tamps”) and the BUF1_EMPTY flag in SPDO_STATUS
is asserted. If BUF1_INTEN in SPDO_CTL is also as-
serted, an interrupt to the DSPCPU is generated. The
SPDO block continues emitting the data in DMA buffer 2.
In normal operation, the DSPCPU assigns a new buffer
1 full of data to SPDO and signals this by writing a ‘1’ to
ACK_BUF1. The SPDO block immediately negates the
BUF1_EMPTY condition and the related interrupt re-
quest. Once buffer 2 is empty, similar signaling occurs
and the hardware switches back to using buffer 1.

10.11 DMA ERROR CONDITIONS

Two types of error can occur during DMA operation.

If the software fails to provide a new buffer of data in
time, and both DMA buffers empty out, the SPDO hard-
ware raises the UNDERRUN flag in SPDO_STATUS.
Transmission switches over to the use of the next buffer,
but the data transmitted is incorrect. If UDR_INTEN is
asserted, an interrupt will be generated. The UNDER-
RUN flag is sticky, i.e. it will remain asserted until the
software clears it by writing a ‘1’ to ACK_UDR.

A lower level error can also occur when the limited size
internal buffer empties out before it can be refilled across
the highway. This situation can arise only if insufficient
bandwidth has been requested from the highway. In this
case, the HBE error flag is raised. Refer to Section 10.17,
“HBE and Highway Latency” for a description of how to
set the arbiter latency correctly.

10.12 INTERRUPTS

The SPDO block uses interrupt SRC NUM 25, with inter-
rupt vector MMIO offset 0x1008E4.

It is highly recommended that the interrupt be operated
in level-sensitive mode only.

The SPDO block generates an interrupt if one of the fol-
lowing status bit flags, and its corresponding INTEN_xxx
flag are set: BUF1_EMPTY, BUF2_EMPTY, HBE, UN-
DERRUN.

All these status flags are sticky, i.e. they are asserted by
hardware when a certain condition occurs, and remain
set until the interrupt handler explicitly clears them by
writing a ‘1’ to the corresponding ACK bit in SPDO_CTL.
The SPDO hardware takes the flag away in the clock cy-
cle after the ACK is received. This allows immediate re-
turn from interrupt once performing an ACK.

10.13 TIMESTAMPS

Any outgoing DMA buffer is assigned a 32-bit ‘time of de-
parture’ timestamp. The counter used to generate times-
tamps uses the DSPCPU clock and the same reset time
as the DSPCPU CCCOUNT register, resulting in a value
that corresponds to the 32 LSB’s of CCCOUNT - provid-
ed that PCSW.CS=1, i.e. the real CCCOUNT counter in-
crements on every clock cycle.

Table 10-3. SPDIF sample rate setting

fs
(kHz)

fDSPCPU
(MHz)

FREQUENCY
(hexadecimal)

UI
(nSec)

jitter
(nSec)

32.000 143 0x80D0,9316 244.14 0.777

32.000 166 0x80B3,ACF8 244.14 0.669

32.000 180 0x80A5,B36E 244.14 0.617

44.100 143 0x811F,711B 177.15 0.777

44.100 166 0x80F7,9D93 177.15 0.669

44.100 180 0x80E4,5B47 177.15 0.617

48.000 143 0x8138,DCA1 162.76 0.777

48.000 166 0x810D,8375 162.76 0.669

48.000 180 0x80F8,8D25 162.76 0.617

jitter
1

9 fDSPCPU⋅
-----------------------------=

FREQUENCY 2
31 2

32
bitrate⋅

9 fDSPCPU⋅
------------------------------+= Eq. 2
10-4 PRELIMINARY SPECIFICATION

Philips Semiconductors SPDIF Out
The timestamp can be read in the DMA interrupt handler
as MMIO register SPDO_TSTAMP. Its contents corre-
sponds to the (synchronized) clock edge at which the last

bit in the DMA buffer was sent across the output signal
pin.

10.14 MMIO REGISTER DESCRIPTION

Figure 10-4. SPDO unit status/control field MMIO layout.

MMIO_base
offset:

SPDO_STATUS (r/0x10 4C00

SPDO_CTL (r/w)0x10 4C04

SPDO_FREQ (r/w)0x10 4C08

SPDO_BASE1 (r/w)0x10 4C0C

FREQUENCY

BUF1_ACTIVE

SPDO_BASE2 (r/w)0x10 4C10 BASE2

SPDO_SIZE (r/w)0x10 4C14 SIZE (in bytes)

31 0371115192327

BASE1

UNDERRUN
HBE (Highway bandwidth error)

BUF2_EMPTY

RESET
TRANS_ENABLE

TRANS_MODE

LITTLE_ENDIAN

0

UDR_INTEN
HBE_INTEN

BUF2_INTEN
BUF1_INTEN

ACK_UDR
ACK_HBE

ACK_BUF2

ACK_BUF1

00000

000000

SLEEPLESS

BUF1_EMPTY

000000

31 0371115192327

31 0371115192327

SPDO_TSTAMP (r/o)0x10 4C18 TIMESTAMP

Table 10-4. SPDO_STATUS MMIO register

field type description

BUF1_EMPTY

r/o

Sticky flag - set if DMA buffer 1 emp-
tied by the SPDO hardware. Can only
be cleared by software write to
ACK_BUF1.

BUF2_EMPTY

r/o

Sticky flag - set if DMA buffer 2 emp-
tied by the SPDO hardware. Can only
be cleared by software write to
ACK_BUF2.

HBE

r/o

Highway Bandwidth Error. Sticky flag -
set if internal SPDO buffers emptied
before new data brought from memory.
Refer to Section 10.17, “HBE and
Highway Latency.” Can be cleared
only by a software write to ACK_HBE.

UNDERRUN

r/o

Sticky flag - set if both DMA buffers
were emptied before a new full buffer
was assigned by the DSPCPU. The
hardware has performed a normal
buffer switch over and is emitting old
data. Can only be cleared by software
write to ACK_UDR.

BUF1_ACTIVE
r/o

Flag - set if the hardware is currently
emitting DMA buffer 1 data; negated
when emitting DMA buffer 2 data.

Table 10-5. SPDO_CTL MMIO register

field type description

ACK_BUF1

w/o

Always reads as ‘0’. Write a ‘1’ here
to clear BUF1_EMPTY. This
informs SPDO that DMA buffer 1 is
now full. Writing a ‘0’ has no effect.

ACK_BUF2

w/o

Always reads as ‘0’. Write a ‘1’ here
to clear BUF2_EMPTY. This
informs SPDO that DMA buffer 2 is
now full. Writing a ‘0’ has no effect.

ACH_HBE w/o Always reads as ‘0’. Writing a ‘1’
here clears HBE.

ACK_UDR
w/o

Always reads as ‘0’. Writing a ‘1’
here clears UNDERRUN.

BUF1_INTEN
r/w

If BUF1_EMPTY asserted and this
bit asserted, the SRC 25 interrupt
line is asserted.

Table 10-4. SPDO_STATUS MMIO register

field type description
PRELIMINARY SPECIFICATION 10-5

PNX1300/01/02/11 Data Book Philips Semiconductors
To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ’0’s.

The SPDO_FREQ register determines the frequency of
operation of the DDS, and hence the sample rate of out-
going audio. Refer to Section 10.8, “Sample Rate Pro-
gramming.” and Section 10.9, “Transparent Mode.”

SPDO_BASE1 contains the memory address of DMA
buffer 1. SPDO_BASE2 contains the memory address of
DMA buffer 2. SPDO_SIZE determines the size, in bytes,
of both DMA buffers. Assignment to SPDO_BASE1,
SPDO_BASE2 and SPDO_SIZE have no effect on the
state of the SPDO_STATUS flags; the ACK_BUF1 and

ACK_BUF2 bits signal the assignment of valid data to
the DMA buffers. Any change to the BASE register
should only be done to an inactive buffer and should pre-
cede the ACK to that buffer.

SPDO_TSTAMP is a read-only register containing the
cycle count at which the last bit from the last emptied
buffer was transmitted across the output pin. Refer to
Section 10.13, “Timestamps.”

10.15 RESET

The SPDO block is reset by global PNX1300 reset pin
TRI_RESET# or by writing a ‘1’ to the RESET bit in
SPDO_CTL. The SPDO block is not affected by
DSPCPU reset initiated though the PCI block BIU_CTL
register. Either reset method sets the SPDO block in the
following state:

• SPDO_BASE1, SPDO_BASE2, SPDO_SIZE = 0
• SPDO_STATUS: all defined fields set to ’0’, except

BUF1_ACTIVE = 1
• SPDO_CTL all defined fields set to value 0

The SPDO block timestamp counter is reset by
TRI_RESET# or by DSPCPU reset initiated through
BIU_CTL, so as to ensure that it stays synchronous to
the CCCOUNT DSPCPU register.

10.16 POWER DOWN AND SLEEPLESS

The SPDO block enters powerdown state whenever
PNX1300 is put in global powerdown mode, except if the
SLEEPLESS bit in SPDO_CTL is set. In the latter case,
the block continues DMA operation and will wake up the
DSPCPU whenever an interrupt is generated.

SPDO can be separately powered down by setting a bit
in the BLOCK_POWER_DOWN register. For a descrip-
tion of powerdown, see Chapter 21, “Power Manage-
ment.”

The SPDO block should not be active when applying glo-
bal powerdown (TRANS_ENABLE = 0), or if active,
SLEEPLESS should be asserted. SPDO should not be
active if powered down separately.

If the block enters power-down state while transmission
is enabled, its operation continues from the interrupted
clock cycle, but the output signal generated by the block
has undergone a pause that is unacceptable to external
equipment.

10.17 HBE AND HIGHWAY LATENCY

The SPDO unit uses one internal 64-byte buffer and two
32-bit holding registers. Under normal operation, the in-
ternal buffer is refilled from SDRAM fast enough to avoid
missing any data, while data is being sent from the two
32-bit registers. If the highway arbiter is set up with an in-
sufficient latency guarantee, the situation can arise in
which the 64-byte buffer is not refilled in time. In that case
the HBE error is raised, and some data has been irrevo-
cably lost. The HBE condition is sticky, and can only be
cleared by an explicit ACK_HBE.

BUF2_INTEN
r/w

If BUF2_EMPTY asserted and this
bit asserted, the SRC 25 interrupt
line is asserted.

HBE_INTEN
r/w

If HBE asserted and this bit
asserted, the SRC 25 interrupt line
is asserted.

UDR_INTEN
r/w

If UNDERRUN asserted and this bit
asserted, the SRC 25 interrupt line
is asserted.

SLEEPLESS

r/w

If ‘1’, the SPDO block does not
power down when PNX1300 goes
into global power-down mode. If ‘0’,
the block does power down.

LITTLE_ENDIAN

r/w

If asserted, the 32-bit data SPDIF
descriptor word or transparent
mode data word is assembled
using little endian byte ordering,
otherwise big-endian.

TRANS_MODE

r/w

• 000 - IEC-958 mode. Hardware
performs bi-phase mark encod-
ing, preamble generation, and
parity generation, and transmits
one IEC-958 subframe for each
data descriptor word.

• 010 transparent mode, LSB first.
The 32-bit data descriptor words
are transmitted as is, LSB first.

• 011 transparent mode, MSB
first. The 32-bit data descriptor
words are transmitted as is,
MSB first.

• Any other code reserved for
future extensions.

The transmission mode should only
be changed while transmission is
disabled.

TRANS_ENABLE

r/w

Writing a ‘1’ to this bit enables
transmission per the selected
mode. Writing a ‘0’ here stops any
ongoing transmission after com-
pleting any actions related to the
current data descriptor word.

RESET

w/o

Writing a ‘1’ to this bit resets the
SPDO unit and should be used with
extreme caution. Ongoing trans-
mission will be interrupted, receiv-
ers may be left in a strange state.

Table 10-5. SPDO_CTL MMIO register

field type description
10-6 PRELIMINARY SPECIFICATION

Philips Semiconductors SPDIF Out
The highway arbiter needs to be programmed such that
the SPDO unit’s latency requirement can always be met.
Refer to Chapter 20, “Arbiter” for details. The required la-
tency can be computed as indicated below.

Given an output data rate fs in samples/sec, 2x 32 bits
are required each sample interval. The arbiter should be
set to have a latency so that the buffer is refilled before a
sample interval expires. See Table 10-6 for example
practical settings.

10.18 LITERATURE REFERENCES

[1] IEC-958 Digital Audio Interface, Part 1: General; Part
2: Professional applications; Part 3: Consumer applica-
tions.

[2] ‘Interface for non-PCM encoded Audio bitstreams ap-
plying IEC958’, Philips Consumer Electronics, June 6
1997. IEC 100c/WG11(project 1937)

Table 10-6. SPDO block highway latency
requirements

fs
(kHz)

Max. latency
(nSec)

32.000 31250

44.100 22675

48.000 20833
PRELIMINARY SPECIFICATION 10-7

PNX1300/01/02/11 Data Book Philips Semiconductors
10-8 PRELIMINARY SPECIFICATION

PCI Interface Chapter 11

by Gert Slavenburg, Ken-Sue Tan, Babu Kandimalla

11.1 PCI OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 includes a PCI interface for easy integration
into personal computer applications—where the PCI-bus
is the standard for high-speed peripherals. In embedded
applications, with PNX1300 serving as the main CPU,
the PCI bus can interface to peripheral devices that im-
plement functions not provided by the on-chip peripher-
als. See Figure 11-1.

The main function of the PCI interface is to connect the
PNX1300 on-chip highway and PCI buses. A bus cycle
on the internal highway that targets an address mapped
into PCI space will cause the PCI interface to create a
PCI bus cycle. Similarly, a bus cycle on PCI that targets
an address mapped into PNX1300 memory space will
cause the PCI interface to create a highway bus cycle
targeted at SDRAM. For some operations, the PCI inter-
face is explicitly programmed by the DSPCPU.

From PNX1300, only the DSPCPU and the image copro-
cessor (ICP) unit can cause the PCI interface to create
PCI bus cycles; the other on-chip peripherals cannot see
external hardware through the PCI interface. From PCI,
SDRAM and most of the registers in MMIO space can be
accessed by external PCI initiators.

The PCI interface implements DMA (also called block or
burst) and non-DMA transfers. DMA transfers are inter-
ruptible on 64-byte boundaries. The PCI interface can
service outbound (PNX1300 → PCI) and inbound (PCI
→ PNX1300) data flows simultaneously.

Table 11-1 lists some of the features of the PCI interface.

PNX1300 DMA read transactions use an efficient ‘mem-
ory read multiple’ PCI transactions, unless explicitly dis-
abled. Section 11.6.5.

PNX1300 contains an on-board PCI_CLK generator for
low-cost configurations. It can be enabled/disabled at
boot time. See Section 13.1 on pag e13-1 .

PNX1300 has a sideband control signal that allows glue-
less connection of simple slave peripherals directly to the
PCI bus wires. This can be used to connect Flash, ROM,
SRAM, UARTs, etc. with 8-bit data and demultiplexed
addresses. Refer to Chapter 22, “PCI-XIO External I/O
Bus.”

PCI Agent PCI Agent PCI Agent

PNX1300 PCI Bus
Arbiter

Host CPU
(e.g., x86)Interrupt

Controller

PCI Agent PCI Agent PCI Agent

PNX1300 PCI Bus
Arbiter

a) PNX1300 as peripheral b) PNX1300 as host CPU

PCI Bus PCI Bus

PCI Bridge

Figure 11-1. Two typical system implementations: (a) shows PNX1300 as a PCI peripheral in a desktop PC, (b)
shows an embedded system with PNX1300 as the host CPU.

Table 11-1. PCI interface characteristics

Characteristic Comments

PCI Compliance PCI Local Bus Specification Rev. 2.1

PCI Speed Up to 33 MHz

Data bus width 32-bit only

Address space 32 bits (4 GB)

Voltage levels Drive & receive at either 3.3 V or 5V

Burst mode Yes, w/ double buffering so maxi-
mum transfer rate (132 MB/sec) is
sustainable

Posted write Yes, can be disabled

PCI ‘special cycle’ Not recognized

PCI ‘memory write &
invalidate’

Supported for PNX1300 as initiator

PCI ‘interrupt acknowl-
edge’

Not generated

PCI ‘dual-address
cycle’

Not generated
PRELIMINARY SPECIFICATION 11-1

PNX1300/01/02/11 Data Book Philips Semiconductors
11.2 PCI INTERFACE AS AN INITIATOR

The following classes of operations invoked by PNX1300
cause the PCI interface to act as a PCI initiator:

• Transparent, single-word (or smaller) transactions
caused by DSPCPU loads and stores to the PCI
address aperture

• Explicitly programmed single-word I/O or configura-
tion read or write transactions

• Explicitly programmed multi-word DMA transactions.
• ICP DMA

11.2.1 DSPCPU Single-Word Loads/Stores

From the point of view of programs executed by
PNX1300’s DSPCPU, there are three apertures into
PNX1300’s 4-GB memory address space:

• SDRAM space (0.5 to 64 MB; programmable)
• MMIO space (2 MB)
• PCI space

MMIO registers control the positions of the address-
space apertures (see Chapter 3, “DSPCPU Architec-
ture”). The SDRAM aperture begins at the address spec-
ified in the MMIO register DRAM_BASE and extends up-
ward to the address in the DRAM_LIMIT register. The 2-
MB MMIO aperture begins at the address in
MMIO_BASE (defaults to 0xEFE00000 after power-up).
All addresses that fall outside these two apertures are
assumed to be part of the PCI address aperture. Refer-
ences by DSPCPU loads and stores to the PCI aperture
are reflected to external PCI devices by the coordinated
action of the data cache and PCI interface.

When a DSPCPU load or store targets the PCI aperture
(i.e., neither of the other two apertures), the DSPCPU’s
data cache automatically carries out a special sequence
of events. The data cache writes to the PCI_ADR and (if
the DSPCPU operation was a store) PCI_DATA regis-
ters in the PCI interface and asserts (load) or de-asserts
(store) the internal signal pci_read_operation (a direct
connection from the data cache to the PCI interface).

While the PCI interface executes the PCI bus transac-
tion, the DSPCPU is held in the stall state by the data
cache. When the PCI interface has completed the trans-
action, it asserts the internal signal pci_ready (a direct
connection from the PCI interface to the data cache).

When pci_ready is asserted, the data cache finishes the
original DSPCPU operation by reading data from the
PCI_DATA register (if the DSPCPU operation was a
load) and releasing the DSPCPU from the stall state.

Explicit Writes to PCI_ADR, PCI_DATA

The PCI_ADR and PCI_DATA registers are intended to
be used only by the data cache. Explicit writes are not al-
lowed and may cause undetermined results and/or data
corruption.

11.2.2 I/O Operations

Explicit programming by DSPCPU software is the only
way to perform transactions to PCI I/O space. DSPCPU
software writes three MMIO registers in the following se-
quence:

1. The IO_ADR register.
2. The IO_DATA register (if PCI operation is a write).
3. The IO_CTL register (controls direction of data move-

ment and which bytes participate).

The PCI interface starts the PCI-bus I/O transaction
when software writes to IO_CTL. The interface can raise
a DSPCPU interrupt at the completion of the I/O transac-
tion (see BIU_CTL register definition in Section 11.6.5,
“BIU_CTL Register”) or the DSPCPU can poll the appro-
priate status bit (see BIU_STATUS register definition in
Section 11.6.4, “BIU_STATUS Register”). Note that PCI
I/O transactions should NOT be initiated if a PCI config-
uration transaction described below is pending. This is a
strict implementation limitation.

The fully detailed description of the steps needed can be
found in Section 11.6.13, “IO_CTL Register.”

11.2.3 Configuration Operations

As with I/O operations, explicit programming by
DSPCPU software is the only way to perform transac-
tions to PCI configuration space. DSPCPU software
writes three MMIO registers in the following sequence:

1. The CONFIG_ADR register.
2. The CONFIG_DATA register (if PCI operation is a

write).
3. The CONFIG_CTL register (controls direction of data

movement and which bytes participate).

The PCI interface starts the PCI-bus configuration trans-
action when software writes to CONFIG_CTL. As with
the I/O operations, the biu_status and BIU_CTL registers
monitor the status of the operation and control interrupt
signaling. Note that PCI configuration space transactions
should NOT be initiated if a PCI I/O transaction de-
scribed above is pending. This is a strict implementation
limitation.

The fully detailed description of the steps needed can be
found in Section 11.6.10, “CONFIG_CTL Register.”

11.2.4 DMA Operations

The PCI interface can operate as an autonomous DMA
engine, executing block-transfer operations at maximum
PCI bandwidth. As with I/O and configuration operations,
DSPCPU software explicitly programs DMA operations.

General-purpose DMA
For DMA between SDRAM and PCI, DSPCPU software
writes three MMIO registers in the following sequence:

1. The SRC_ADR and DEST_ADR registers.
2. The DMA_CTL register (controls direction of data

movement and amount of data transferred).
11-2 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
The PCI interface begins the PCI-bus transactions when
software writes to DMA_CTL. As with the I/O and config-
uration operations, the BIU_STATUS and BIU_CTL reg-
isters monitor the status of the operation and control in-
terrupt signaling.

The fully detailed description of the steps needed to start
a DMA transaction can be found in Section 11.6.16,
“DMA_CTL Register.”

Image-Coprocessor DMA
The PCI interface also executes DMA transactions for
the Image Coprocessor (ICP). The ICP performs rapid
post-processing of image data and writes it at PCI DMA
speed to a PCI graphics card frame buffer. The ICP can-
not perform PCI read transactions. BIU_CTL.IE (ICP
DMA Enable) should be asserted before attempting ICP
PCI operation. Programming of ICP DMA is described in
Section 14.6, “Operation and Programming.”

11.3 PCI INTERFACE AS A TARGET

The PNX1300 PCI interface responds as a target to ex-
ternal initiators for a limited set of PCI transaction types:

• Configuration read/write
• Memory read/write, read line, and read multiple to

the PNX1300 SDRAM or MMIO apertures. See Sec-
tion 11.8, “Limitations.”

PNX1300 ignores PCI transactions other than the above.

11.4 TRANSACTION CONCURRENCY,
PRIORITIES, AND ORDERING

The PCI interface can be processing more than one op-
eration at a given time. There are five distinct classes of
operations implemented by the PCI interface:

1. DSPCPU load/store to PCI space.
2. PCI I/O read/write and PCI configuration read/write.
3. General-purpose DMA read/write.
4. ICP DMA write.
5. External-PCI-agent-initiated read/write (to PNX1300

on-chip resource).

If the active general-purpose DMA transaction is a read,
up to five transactions, one from each, can be active si-
multaneously. If the active general-purpose DMA opera-
tion is a write, then only four transactions can be active
simultaneously because general-purpose DMA writes
force ICP DMA writes to wait until the general-purpose
DMA completes. When a general-purpose DMA write is
pending, an in-progress ICP DMA operation is suspend-
ed at the next 64-byte block boundary and waits until the
completion of the DMA write operation. General-purpose
DMA reads are interleaved with ICP DMA writes, so both
can be active concurrently.

PCI single-data-phase transactions (DSPCPU load/
store, I/O read/write, and configuration read/write) are
executed in the order they are issued to the PCI inter-
face. Note the strict implementation limitation that PCI -

I/O and PCI configuration transactions cannot be simul-
taneously active.

11.5 REGISTERS ADDRESSED IN PCI
CONFIGURATION SPACE

Since it is a PCI device, PNX1300 has a set of configu-
ration registers to determine PCI behavior. PCI configu-
ration registers allow full relocation of interrupt binding
and address mapping by the system’s host processor.
This relocatability of PCI-space parameters eases instal-
lation, configuration, and system boot.

The PCI standard specifies a 64-byte PCI configuration
header region within a reserved 256-byte block. During
system initialization, host system software scans the PCI
bus, looking for PCI headers, to determine what PCI de-
vices are present in the system. The fields in the header
region uniquely identify the PCI device and allow the host
to control the device in a generic way. Figure 11-2 shows
the layout of the configuration header region.

Figure 11-2 also shows the initial values for the configu-
ration registers. Some registers, such as Device ID, have
hardwired values, while others are programmed by soft-
ware. Still others are set automatically from the external
boot ROM during PNX1300’s power-up initialization.

11.5.1 Vendor ID Register

For PNX1300, the value of the 16-bit Vendor ID field is
hardwired to 0x1131 (Philips). This value identifies the
manufacturer of a PCI device. Valid vendor identifiers
are assigned by the PCI special interest group (PCI SIG)
to ensure uniqueness. The value 0xFFFF is reserved
and must be returned by the host/PCI bridge when an at-
tempt is made to read a non-existent device’s Vendor ID
configuration register.

11.5.2 Device ID Register

For PNX1300, the value of the 16-bit Device ID field is
hardwired to 0x5402. The Device ID is assigned by the
manufacturer to uniquely identify each PCI device it
makes.

11.5.3 Command Register

The 16-bit command register provides basic control over
a PCI device’s ability to generate and/or respond to PCI
bus cycles. According to the PCI specification, after re-
set, all bits in this register are cleared to ‘0’ (except for a
device that must be initially enabled). Clearing all bits to
’0’ logically disconnects the device from the PCI bus for
all accesses except configuration accesses.

The command register format is shown in Figure 11-3.
Table 11-2 summarizes the field values. Note that the
values listed as ‘normally taken’ are not necessarily the
reset values, i.e. the Command register is reset to all ‘0’s,
meaning the features are disconnected on reset.

Following are detailed descriptions of the command reg-
ister fields.
PRELIMINARY SPECIFICATION 11-3

PNX1300/01/02/11 Data Book Philips Semiconductors
I/O (I/O access enable). This bit controls a device’s abil-
ity to respond to I/O-space accesses. A value of ’0’ dis-
ables PCI device response; a value of ’1’enables re-
sponse. This bit is hardwired to ’0’ because all PNX1300
internal registers are memory mapped.

MA (Memory access enable). This bit controls re-
sponse to memory-space accesses. A value of ’0’ dis-
ables PNX1300 response; a value of ’1’ enables re-
sponse. This bit is set to ’0’ at power-up; software can set
this bit to ’1’ with a configuration write.

31

00

0 Normally ’0’ 0 Hardwired to ground sp Set by software if aperture size allows p Set by software

1 Normally one 1 Hardwired to Vdd s Set by hardware from boot EEPROM

015

Device ID (0x5402) Vendor ID (0x1131)

0
04

0 1 0 0 0 reserved reserved 1 1 1 1

Status Command

0 0 0 0 0

0
08

1 0 1 0 0 0 1 0 0 0 0 0 1 0

Class Code (0x048000) Revision ID (see text)
0 0 0 0 0 0 0 0 00 0 0 00 0 00

0
0C

0 0 0 0 0 0

BIST (0x00) Latency Timer

0 0 0 0 0 0 0 0 00 p p pp 0 0p

Header Type (0x00) Cache Line Size

p
10

sp sp sp sp sp 0

DRAM Base Address

p p p p sp sp 0 0 00 0 0 00 0 00 00 00 0 00

p
14

p p p p p 0

MMIO Base Address

p p p p p 0 0 0 00 0 0 00 0 00 00 00 00 00

18, 1C,
20, 24

28

30

34, 38

3C
0 0 0 1

Interrupt Line

0 0 1 10 0 0 00 0 00 p

2C

 s s s ss s ss ss ss ss ss

ppppppp

Interrupt Pin (0x01)Min_Gnt (0x03)Max_Lat (0x01)

0 0 0 0 0 0 10

723

0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1

0 0 p 0 00

C
on

fig
ur

at
io

n-
S

pa
ce

 A
dd

re
ss

 O
ffs

et

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Four other base address registers

0 0 0 0 0 0 0 0 00 0 0 00 0 00

0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0

Reserved register

0

Expansion Rom Base Address

0 0 0 00 0 0 00 0 00 00 00 00 00

0

Two reserved registers

0 0 0 00 0 0 00 0 00 00 00 00 00

0 0 0 0 0 0 0 00 0 00 0

0 0 0 0 0 00 0 0 0 0

0 0 0 0 0 00 0 0 0 0

0

ss s ss s ss ss ss ss ss

Subsystem ID Subsystem Vendor ID

0 0 p p p 0 0

Key

s

Prefetchable

Figure 11-2. PCI configuration header region register layout and initial values. (All values in hex.)

15 0

Command Register I/O

1

MA

2

EM

3

SC

4

MWI

5

VGA

6

PAR

7

Wait

8

SERR#

9

FB

10

Reserved

Figure 11-3. Command Register format.
11-4 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
EM (Enable mastering). This bit controls the PNX1300
PCI interface’s ability to act as a PCI master. A value of
’0’ prevents the PCI interface from initiating PCI access-
es; a value of ’1’ allows the PCI interface to initiate PCI
accesses.

Note that the EM bit is automatically set to ’1’ whenever
the HE bit in the BIU_CTL register is set to ’1’ (see Sec-
tion 11.6.5, “BIU_CTL Register”). Mastering must be en-
abled for PNX1300 to serve as PCI host processor.

EM is set to ’0’ at power-up. Host system software can
set this bit to ’1’ with a configuration write.

SC (Special cycle). This bit controls PCI device recog-
nition of special-cycle operations. A value of ’0’ causes a
PCI device to ignore all special cycles; a value of ’1’ al-
lows a PCI device to monitor special cycle operations.
This bit is hardwired to ’0’ in PNX1300.

MWI (Memory write and invalidate). This bit deter-
mines a PCI device’s ability to generate memory-write-
and-invalidate commands. A value of ’1’ allows a PCI de-
vice to generate memory-write-and-invalidate com-
mands; a value of ’0’ forces the PCI device to use mem-
ory-write commands instead. PNX1300 implements this
bit. The conditions under which PNX1300 DMA transac-
tions generate memory-write-and-invalidate are de-
scribed in Section 11.6.16, “DMA_CTL Register.” De-
tails of operation can be found in Section 11.5.7, “Cache
Line Size Register.” Image Coprocessor DMA writes al-
ways use regular memory-write transactions.

VGA (VGA palette snoop). This bit controls how VGA-
compatible PCI devices handle accesses to their palette
registers. This bit is hardwired to ’0’.

PAR (Parity error response). This bit controls signaling
of parity errors (data or address). A value of ’0’ causes
the PCI interface to ignore parity errors; a value of ’1’
causes the PCI interface to report parity errors on the
perr# PCI signal. This bit is set to ’0’ at power-up; since
the PCI interface checks parity, software can set this bit
to ’1’ with a configuration write.

Wait (Wait-cycle control). This bit controls whether or
not a PCI device does address/data stepping. PCI devic-
es that never do stepping must hardwire this bit to 0.
Since PNX1300 does not implement stepping, this bit is
hardwired to ’0’.

SERR# (serr# enable). This bit enables the driver of the
serr# pin (system error): a value of ’0’ disables it, a value
of ’1’ enables it. All PCI devices that have an serr# pin
must implement this bit. This bit is set to ’0’ after reset; it
can be set to ’1’ with a configuration write. SERR# and
PAR must both be set to ’1’ to allow signaling of address
parity errors on the serr# signal.

FB (Fast back-to-back enable). This bit controls wheth-
er or not a PCI master can do fast back-to-back transac-
tions to different devices. A value of ’0’ means fast back-
to-back transactions are only allowed when the transac-
tions are to the same agent; a value of ’1’ means the
master is allowed to generate fast back-to-back transac-
tions to different agents. Initialization software will set
this bit if all targets are capable of fast back-to-back
transactions. In PNX1300, this bit is hardwired to ’0’.

Reserved. Reads from reserved bits returns ’0’; writes to
reserved bits cause no action.

11.5.4 Status Register

The status register is used to record information about
PCI bus events. The status register format is shown in
Figure 11-4. Table 11-3 lists the Status register fields.

Reserved. Reads from reserved bits return ’0’; writes to
reserved bits cause no action.

66M (66-MHz capable). This bit is hardwired to ’0’ for
PNX1300 (PCI runs at 33-MHz maximum).

UDF (user-definable features). Since the PNX1300
PCI interface does not implement PCI user-definable
features, this bit is hardwired to ’0’.

FBC (Fast back-to-backcapable). The PNX1300 PCI
interface does not support fast back-to-back capability,
so this bit is hardwired to ’0’.

DPD (Data parity detected). Since the PNX1300 PCI in-
terface can act as a PCI bus initiator, this bit is imple-
mented. DPD is set in the initiator’s status register when:

• The PAR (parity-error response) bit in the command
register is set, and

Table 11-2. Field values for Command Register

Field Value Explanation

I/O Hardwired to 0 (ignore I/O space accesses)

MA 0 ⇒ no recognition of memory-space accesses
1 ⇒ recognizes memory-space accesses

EM 0 ⇒ cannot act as PCI initiator
1 ⇒ can act as PCI initiator

SC Hardwired to 0 (ignore special cycle accesses)

MWI 0 ⇒ cannot generate memory write and invalidate
1 ⇒ can generate memory write and invalidate

VGA Hardwired to 0

Par 0 ⇒ ignore parity errors
1 ⇒ acknowledge parity errors

SERR# 0 ⇒ disable driver for serr# pin
1 ⇒ enable driver for serr# pin

FB 0 ⇒ fast back-to-back only to same agent
1 ⇒ fast back-to-back to different agents

Reserved Write ignored; reads return 0

15 0

Status Register
45

66M

6

UDF

7

FBC

8

DPD

910

Reserved

14

SSEDPE

13

RMA

12

RTA

11

STA DEVSEL

Figure 11-4. Status register format.
PRELIMINARY SPECIFICATION 11-5

PNX1300/01/02/11 Data Book Philips Semiconductors
• The initiator asserted perr# or detected it asserted by
the target (during a write cycle).

DEVSEL (Device select timing). This read-only field
defines the slowest timing that will be used for the
devsel# signal when PNX1300 is a target on the PCI bus.
Table 11-4 shows the allowable encodings and mean-
ings. These bits are hardwired to ‘01’ to indicate that

PNX1300 uses a ‘medium’ devsel# timing.

STA (Signaled target abort). PNX1300’s PCI interface
sets this bit when it is a target device and aborts a trans-
action.

RTA (Receive target abort). PNX1300’s PCI interface
sets this bit when it is the initiating device and the trans-
action is aborted by the target device. (All initiating devic-
es must implement this bit.)

RMA (Receive master abort). PNX1300’s PCI interface
sets this bit when it is the initiating device and aborts a
transaction (except when the transaction is a special cy-
cle). (All initiating devices must implement this bit.)

SSE (Signaled system error). PNX1300’s PCI interface
sets this bit when it asserts the serr# signal. (PNX1300

can generate serr#, so this bit is implemented; devices
incapable of generating serr# need not implement SSE.)

DPE (Detected parity error). PNX1300’s PCI interface
sets this bit when it detects a parity error, even if parity
error handling is disabled. (The PAR bit in the command
register enables the handling of parity errors.)

11.5.5 Revision ID Register

The value in the Revision ID register is a read only value
chosen by the manufacturer to indicate product revi-
sions. For the PNX1300 product family, the two MSBs of
the revision ID indicate the fab where the part was man-
ufactured. The next two bits indicate an all-layer revision
number, and the 4 LSBs indicate metal layer revisions.
Each all-layer revision adds 0x10 to the revision ID and
resets the 4 LSBs to ‘0’. Non-pin or -function compatible
TriMedia devices will use the same Revision ID conven-
tion, but with a revised Device ID.

11.5.6 Class Code Register

The value in the Class Code register is read-only. Sys-
tem software uses the Class Code register to identify the
generic function of the device, and in some cases, the
Class Code can specify a register-level programming in-
terface.

Class Code consists of three 1-byte fields as shown in
Figure 11-5. The value of the upper byte, Base Class
Code, broadly classifies the function of the device. The
value of the middle byte, Subclass Code, identifies the
function more specifically. The value of the lower byte
specifies a register-level programming interface so that
device-independent software can interact with the de-
vice. The meanings of the Base Class byte values are
shown in Table 11-6.

The value of Base Class is hardwired to 0x04 since
PNX1300 is a multimedia device. Currently, there are no
specific register-level programming interfaces defined
for multimedia devices.

Table 11-7 lists the defined subclasses of multimedia de-
vices. PNX1300 is both a video and audio multimedia de-
vice, so its subclass value is hardwired to 0x80.

Table 11-3. Status register fields

Field Characteristics

Reserved Writes ignored; reads return 0

66M PCI bus speed (hardwired to 0 ⇒ 33-MHz)

UDF User-definable features (hardwired to 0 ⇒ none)

FBC Fast back-to-back capable (hardwired to 0 ⇒
unsupported)

DPD Data parity detected

DEVSEL devsel# signal timing (hardwired to 1 ⇒ ‘medium’)

STA Signaled target abort

RTA Receive target abort

RMA Receive master abort

SSE Signaled system error

DPE Detected parity error

Table 11-4. DEVSEL encodings

DEVSEL Meaning

00 Fast

01 Medium

10 Slow

11 Reserved

Table 11-5. Actual revision ID values

Value (hex) Product description

0x80 TM-1300 original mask - tm1f-1.0

0x81 TM-1300 1st metal revision - tm1f-1.1

0x82 TM-1300 2nd metal revision - tm1f-1.2

0x83 PNX1300/01/02/11 3nd metal revision - tm1f-
1.3

23 0

Class Code Programming InterfaceBase Class Code

15 7

Subclass Code

Figure 11-5. Class-code register format.
11-6 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
11.5.7 Cache Line Size Register

This field only matters when the MWI bit in confi guration
space is set. The value of the Cache Line Size register
specifies the host system cache line size in units of 32-
bit words. Initiating devices, such as the PNX1300, that
can generate memory-write-and-invalidate commands
must implement this register. When implemented, the
cache line size allows initiators participating in the PCI
caching protocol to retry burst accesses at cache-line
boundaries.

This register is implemented in PNX1300. In the
PNX1300, PCI DMA performs write-and-invalidate cy-
cles as per the table below. ICP DMA and CPU PCI
writes are performed using normal memory-write cycles.

11.5.8 Latency Timer Register

The value of the Latency Timer register specifies the
minimum number of PCI clock cycles the PNX1300 BIU
(as initiator) is allowed to own the PCI bus. This register
is readable and writable in PCI configuration space.

This register must be writable in any PCI-initiating device
that can burst more than two data phases. In the
PNX1300 PCI interface, the least-significant three bits
are hardwired to ’0’ and software can program any value
into the most-significant five bits. This permits software
to specify the time slice with a minimum granularity of
eight PCI clocks. A value of ’0’ signifies maximum laten-
cy, i.e. 256 PCI clocks.

11.5.9 Header Type Register

The value of the Header Type register defines the format
of words 16 through 63 in configuration space and
whether or not the device contains multiple functions.
Figure 11-6 shows the format of Header Type.

Bit 7 of Header Type is ’0’ for single-function devices, ’1’
for multi-function devices. PNX1300 is a single-function
device, so bit 7 is ’0’. Table 11-9 shows the encodings of
the Layout field.

11.5.10 Built-In Self Test Register

When implemented, the BIST register is used to control
the operation of a device’s built-in self testing capability.
PNX1300 does not implement BIST, so this register is
hardwired to return ’0’s when read.

11.5.11 Base Address Registers

The PNX1300 PCI interface implements two configura-
tion space memory Base Address registers:
DRAM_BASE and MMIO_BASE. DRAM_BASE relo-
cates PNX1300’s SDRAM within the system address
space; MMIO_BASE relocates the 2-MB memory-
mapped I/O address aperture.

The values in the Base Address registers determine the
address map as seen by both the DSPCPU and external
PCI masters. These values are normally set once, and
not changed dynamically once the DSPCPU operates.

Table 11-6. Base Class Encodings

Base Class
(in hex) Meaning

00 Device was built before class code definitions
were finalized

01 Mass-storage controller

02 Network controller

03 Display controller

04 Multimedia device

05 Memory controller

06 Bridge device

07 Simple communications controller

08 Base system peripheral

0A Docking station

0B Processor

0C Serial bus controller

0D–FE Reserved

FF Device does not fit any of the above classes

Table 11-7. Subclass & programming interface fields

Subclass
(in hex)

Programming
Interface (in hex) Meaning

00 00 Video device

01 00 Audio device

80 00 Other multimedia device

Table 11-8. Cache line size values

Cache Line Size
(binary) Effect

0000,0100 write-and-invalidates are done in 4-
DWORD, i.e. 16-byte chunks

0000,1000 write-and-invalidate in 8-DWORD chunks

0001,0000 write-and-invalidate in 16-DWORD chunks

all other values only normal ‘memory-write’ is performed

Table 11-9. Layout encodings

Layout (in hex) Meaning

00 Non-bridge PCI device

01 PCI-to-PCI bridge device

7

Header Type
0

Layout

6

MF

Figure 11-6. Header type register format.
PRELIMINARY SPECIFICATION 11-7

PNX1300/01/02/11 Data Book Philips Semiconductors
Hardware RESET initializes DRAM_BASE to 0x0 and
MMIO_BASE to 0xefe0,0000, after which the PNX1300
boot protocol sets the final value.

In standalone systems, the autonomous boot sequence
is executed. In this case, the values of DRAM_BASE and
MMIO_BASE are copied from the content of the serial
boot EEPROM, as described in Section 13.2.2, “Initial
DSPCPU Program Load for Autonomous Bootstrap.”

In X86 or other host-assisted platforms, the PCI host as-
sisted boot sequence is executed. In this case, the base
registers are not set from the EEPROM. Instead, the host
BIOS executes a scan for devices on each PCI bus. Dur-
ing this scan, memory apertures needed by each device
are determined, and a suitable base is assigned by the
host BIOS. The details of this process are described be-
low.

Figure 11-7 shows the formats for DRAM_BASE and
MMIO_BASE. Following are descriptions of the register
fields.

M (Memory). The value of the M bit indicates whether
the desired resource is a memory or PC I/O aperture.
The M bit is hardwired to ’0’, indicating a memory type
aperture for both the DRAM_BASE and MMIO_BASE
registers.

T (Type). The value of the T field indicates the size of the
base address register and constraints on its relocatabili-
ty. Table 11-10 lists the encodings and meanings of the
T field.

PNX1300’s PCI-interface base registers are 32 bits wide
and can be relocated in the 32-bit address space; thus,
the value of the T field is ‘00’ for both DRAM_BASE and
MMIO_BASE.

P (Prefetchable). The value of the P bit indicates to oth-
er devices whether or not the range is prefetchable.

The P bit in DRAM_BASE reflects the DRAM prefetch-
able attribute as set by the prefetchable bit in the boot
prom (Refer to Table 13-5 on page 13-7 for program-
ming).

MMIO is not prefetchable, so the P bit is hardwired to ’0’
for MMIO_BASE.

Being prefetchable means there are no side effects on
reads, the device returns all bytes on reads regardless of
the byte enables, and host bridges can merge processor
writes into this range without causing errors.

Note: the setting of the P bit does not change the behav-
ior of the cache or memory interface. It simply signals the
host if the range is assumed to be prefetchable.

DRAM/MMIO base address. In X86 or other host plat-
forms, the configuration space DRAM Base Address and
MMIO Base Address fields serve two purposes. First, the
host BIOS software can use them to determine the sizes
of the SDRAM and MMIO apertures. Second, the BIOS
can write to these fields to cause the apertures to be re-
located within the PCI memory address space.

To determine the sizes of an aperture, the BIOS first
writes all ‘1’s (0xFFFFFFFF) to the address field. When
the BIOS reads the field immediately after, the value re-
turned will have ’0’s in all don’t-care bits and ‘1’s in all re-
quired address bits. Required address bits form a left-
aligned (i.e., starting at the MSB) contiguous field of ‘1’s,
thus effectively specifying the size of the aperture.

For example, the MMIO aperture is a fixed 2-MB space.
After writing all ‘1’s to the MMIO Base Address field, a
subsequent read returns the value 0xFFE00000. The M,
T, and P fields are all ’0’ indicating the aperture is mem-
ory (not I/O), can be relocated anywhere in a 32-bit ad-
dress space, and is not prefetchable. Since the aperture
has 21 address bits (the position of the first ’1’ bit), MMIO
space is a 2-MB aperture (221 bytes). The host BIOS now
assigns a suitable 2-MB aligned base address by writing
to the MMIO_BASE register in configuration space.

The DRAM aperture can range in size from 1 MB to 64
MB (but the size must be a power of 2). Thus, the number
of required address bits can range from 20 to 26. The ac-
tual amount of SDRAM present is determined by the con-
tent of the first byte of the boot EEPROM, as described
in Section 13.4, “Detailed EEPROM Contents.” The PCI
BIU uses this size to determine which of the bits marked
‘sp’ in Figure 11-7 are writable and which are set to ‘0’.
This causes the BIOS to determine the correct actual
DRAM aperture size.

Table 11-10. Type field encodings

Type Meaning

00 Base register is 32 bits wide; mapping can relocate
anywhere in 32-bit memory space

01 Base register is 32 bits wide; mapping must relocate
below 1 MB in memory space

10 Base register is 64 bits wide; mapping can relocate
anywhere in 64-bit address space

11 Reserved

31 0

DRAM_BASE M
DRAM Base Address

123

TP

MMIO_BASE MTP

4

00000000spspspspspsp 000000 00

25 19

MMIO Base Address
000000000 000000 00

31 0123420

Figure 11-7. Base address register format.
11-8 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
11.5.12 Subsystem ID, Subsystem Vendor ID
Register

The subsystem and subsystem vendor ID are new in PCI
Rev 2.1. These fields are optional, but their use is highly
recommended as a means to have software drivers iden-
tify the board rather than the chip on the board.

This register is implemented starting with PNX1300 and
onwards, and replaces the ‘Personality’ register function-
ality in the TriMedia CTC chip.

The board manufacturer chooses the values of both 16
bits fields by modifying the PNX1300 Boot EEPROM.
The location of these bits is described in Section 13.4,
“Detailed EEPROM Contents.” A legal Vendor ID must
be obtained from the PCI SIG. The vendor is free to as-
sign subsystem ID’s.

11.5.13 Expansion ROM Base Address
Register

The Expansion ROM Base Address register is similar in
purpose to the SDRAM and MMIO Base Address regis-
ters. This register relocates a separate memory aperture
for PCI devices that wish to implement additional ROM.

PNX1300 does not implement expansion ROM; conse-
quently, the least-significant bit of this register—which in-
dicates whether or not PNX1300 responds to expansion
ROM accesses—is hardwired to ’0’. All other bits also
read as ’0’s.

11.5.14 Interrupt Line Register

The value of the Interrupt Line Register determines
which input of the system interrupt controller is driven by
PNX1300’s interrupt pin. As it configures the system and
assigns resources, host system software writes this reg-
ister to assign one of the system interrupt lines to
PNX1300.

11.5.15 Interrupt Pin Register

The value of the Interrupt Pin Register determines which
interrupt pin PNX1300 uses. Table 11-11 lists the possi-
ble values for this register.

Since PNX1300 uses inta#, the value of this register is
hardwired to ‘1’.

11.5.16 Max_Lat, Min_Gnt Registers

The value in the Max_Lat register specifies how often the
PNX1300 PCI interface needs access to the PCI bus.
The value in the Min_Gnt register specifies the minimum
length for a burst period on the PCI bus.

Both of these timer values are specified as multiples of
250 ns. Values of ’0’ indicate that a device has no specif-
ic requirements for latency and burst-length.

For PNX1300, Max_Lat is hardwired to 0x01 (250 ns),
and Min_Gnt is hardwired to 0x03 (750 ns).

11.6 REGISTERS IN MMIO SPACE

The PNX1300 PCI interface contains 13 MMIO registers;
most, except the status bits in BIU_Status, are usually
written only by the DSPCPU. Table 11-12 lists the sup-
ported cycles sequenced by the PCI interface and the
registers involved in each cycle. To ensure compatibility
with future devices, all undefined MMIO bits should be ig-
nored when read, and written as ’0’s.

The MMIO registers are all accessible to DSPCPU soft-
ware, and all but the PCI_ADR and PCI_DATA registers
are accessible to external PCI initiators. The facilities of
PNX1300’s PCI interface can be useful to external initia-
tors in certain circumstances. For example:

• The PCI DMA engine might be useful during host-
assisted boot.

• Host-resident diagnostics may want to test the PCI
interface during boot.

• The MMIO registers can be used to diagnose mal-
functioning parts.

Note, however, that external PCI initiators can access
MMIO registers in only one way: as 32-bit words on nat-
urally aligned, 32-bit addresses. If any other type of ac-
cess is attempted, the results are undefined. Also, the
byte order of the external initiator and the PCI interface
must be the same; otherwise, the result of an access with
disagreeing byte order is undefined.

For easy reference, Table 11-13 lists the MMIO registers
together with their offsets from MMIO_BASE and their
accessibility by the DSPCPU and external PCI initiators.

Figure 11-8 shows the formats of the PCI interface
MMIO registers. The following are detailed descriptions
of the MMIO registers.

11.6.1 DRAM_BASE Register

The DRAM_BASE register in MMIO space is a shadow
copy of the DRAM_BASE register in PCI Configuration
space. See Section 11.5.11, “Base Address Registers,”
for more details. This copy provides MMIO-space access
to this register. The P,T and M bitfields of this MMIO reg-
ister are read-only.

11.6.2 MMIO_BASE Register

The MMIO_BASE register in MMIO space is a copy of
the MMIO_BASE register in PCI Configuration space.
See Section 11.5.11, “Base Address Registers,” for

Table 11-11. Interrupt pin encodings

Interrupt Pin Meaning

1 Use interrupt pin inta#

2 Use interrupt pin intb#

3 Use interrupt pin intc#

4 Use interrupt pin intd#

all others Reserved
PRELIMINARY SPECIFICATION 11-9

PNX1300/01/02/11 Data Book Philips Semiconductors
more details. This shadow copy provides MMIO-space
access to this register. The P,T and M bitfields of this
MMIO register are read-only.

11.6.3 MMIO/DRAM_BASE updates

The DRAM_BASE and MMIO_BASE registers are not
normally written through MMIO; their value is determined
by the boot process. Though not recommended, the reg-
isters are writable in MMIO. Special care should be exer-
cised when writing these registers:

• writing to SDRAM_BASE moves the origin of any
executing DSPCPU program, which will cause it to
fail

• writing to MMIO_BASE moves devices around, and
moves MMIO_BASE and SDRAM_BASE around

• writing to both registers in sequence requires a delay,
due to the implementation. It is recommended to
space such writes far apart, or iterate until the first
register written to reads back with the new value
before writing the second one.

MMIO_base
offset:

DRAM_BASE (r/w)0x10 0000

MMIO_BASE (r/w)0x10 0400

BIU_STATUS (r/w)0x10 3004

SDRAM Base Address

MMIO Base Address

BIU_CTL (r/w)0x10 3008

PCI_ADR (r/w)0x10 300C PCI Address

PCI_DATA (r/w)0x10 3010

CONFIG_ADR (r/w)0x10 3014

CONFIG_DATA (r/w)0x10 3018

DN

Error: Duplicate dma_cycle

CONFIG_CTL (r/w)0x10 301C

IO_ADR (r/w)0x10 3020 I/O Address

IO_DATA (r/w)0x10 3024 I/O Data

IO_CTL (r/w)0x10 3028

SRC_ADR (r/w)0x10 302C

DEST_ADR (r/w)0x10 3030 Destination Address

Source Address

31 0371115192327

Reserved IntE

PCI Data

BN

Configuration Data

DMA_CTL (r/w)0x10 3034

INT_CTL (r/w)0x10 3038 INT

TL

P T M

P T M

Error: Duplicate io_cycle or config_cycle
Done

Busy
Done

Busy
Done

Busy
Done

Busy

CR (PCI Clear Reset)
HE (Host Enable)
IE (ICP DMA Enable)

BO (Burst Mode Off)
SE (Byte Swap Enable)

00

RNFN

BE

RW (Read/Write)

BE

RW (Read/Write)

D

IE

PCI-to-SDRAM

dma_cycle

io_cycle

config_cycle

IS

SR (PCI Set Reset)

RMA Received Master Abort

RTA Received Target Abort
TTE Target Timer Expired

T

31 0371115192327

31 0371115192327

31 0371115192327

31 0371115192327

31 0371115192327

RMD (Read Multiple Disable)

Figure 11-8. PCI interface registers accessible in MMIO address space.
11-10 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
11.6.4 BIU_STATUS Register

The BIU_Status register holds bits that track the status of
bus cycles initiated by the DSPCPU and bus cycles from
external devices that write into SDRAM.Two bits of sta-
tus are provided for each type of bus cycle: a busy bit and
a done bit. The DSPCPU can read both bits; a done bit
is cleared by writing a ‘1’ to it. The status register also
holds two error-flag bits.

DSPCPU software must check the busy bits to avoid is-
suing a PCI interface bus cycle request while a request
of a similar type is in progress. If a bus cycle is issued
while a request of similar type is in progress, the PCI in-
terface ignores the second command and sets the ap-
propriate error bit in the status register.

When the DSPCPU issues either an io_cycle or
config_cycle request while a previous request of either
type is already in progress, the PCI interface sets bit 8 in
BIU_STATUS. When the DSPCPU issues a dma_cycle
while a previous one is already in progress, the PCI inter-
face sets bit 9 in BIU_STATUS. To reset either of the er-
ror bits 8 or 9 in BIU_STATUS write a ‘1’ to it.

RTA (Received target abort). This bit is set when
PNX1300 initiated a transaction that was aborted by the
target. To reset this bit, write a ‘1’ to this bit position. This
bit is set simultaneous with the RTA bit in the configura-
tion space status register, but is cleared independently.

RMA (Received master abort). This bit is set when
PNX1300 initiated a transaction and aborts it. This usu-
ally signals a transaction to a nonexistent device. To re-
set this bit, write a ‘1’ to this bit position. This bit is set si-
multaneous with the RMA bit in the configuration space
status register, but is cleared independently.

TTE (Target timer expired). In normal operation, a read
of a PNX1300 data item is performed on retry basis:
PNX1300 tells the external master to retry, meanwhile it
fetches the data item across the highway. This bit is set
if an external master did not retry a read of a PNX1300
data item within 32768 PCI clocks. The requested data is
discarded. To reset this bit, write a ‘1’ to this bit position.
This is purely a software information bit. No software ac-
tion is required when this condition occurs, but it may in-
dicate a non-compliant or defective master on the bus.

11.6.5 BIU_CTL Register

The BIU_CTL register contains bits that control miscella-
neous aspects of the PCI interface operation. Following
are descriptions of the fields.

SE (Swap bytes enable). This bit is initialized after reset
to ’0’, which causes the PCI interface to operate in its de-
fault big-endian mode. Writing a ’1’ to SE causes access-
es to MMIO registers over the PCI interface to be made
in little endian mode.

BO (Burst mode off). This bit is initialized to ’0’, which
allows the PCI interface to support burst-mode writes as
a target on the PCI bus. Setting this bit to ’1’ disables
burst-mode writes.

With burst mode enabled, the PCI interface buffers as
much data as possible into r_buffer before issuing a dis-
connect to the PCI initiator. With burst mode disabled,
the PCI interface buffers only one data phase before is-
suing a disconnect to the PCI initiator.

IntE (Interrupt enables). The bits in the IntE field control
the signaling of interrupts to the DSPCPU for PCI inter-
face events. These events raise DSPCPU interrupt 16 if
enabled. Interrupt 16 must be set up as a level triggered
interrupt. Table 11-14 lists the function of each IntE bit.
IntE is initially set to ‘0’s (interrupts disabled).

Note that the error condition masked by bit 6 (see Sec-
tion 11.6.4, “BIU_STATUS Register”) occurs when either
a config_cycle or an io_cycle is requested and a request
of either type is already in progress. That is, the second

Table 11-12. PCI MMIO registers and bus cycles

Internal Cycle Registers Involved

mmio_cycle
(MMIO register R/W)

All registers accessible by
external PCI devices

mem_cycle
(PCI-space memory R/W)

PCI_ADR,
PCI_DATA

dma_cycle
(Block data transfer)

SRC_ADR,
DEST_ADR,
DMA_CTL

IO_cycle
(I/O register R/W)

IO_ADR,
IO_DATA,
IO_CTL

config_cycle
(Configuration register R/W)

CONFIG_ADR,
CONFIG_DATA,
CONFIG_CTL

Table 11-13. PCI MMIO register accessibility

Register MMIO_BASE
Offset

Accessibility

DSPCPU External
Initiator

DRAM_BASE 0x10 0000 R/W R/W

MMIO_BASE 0x10 0400 R/W R/W

BIU_STATUS 0x10 3004 R/W R/W

BIU_CTL 0x10 3008 R/W R/W

PCI_ADR 0x10 300C R/W –/–

PCI_DATA 0x10 3010 R/W –/–

CONFIG_ADR 0x10 3014 R/W R/W

CONFIG_DATA 0x10 3018 R/W R/W

CONFIG_CTL 0x10 301C R/W R/W

IO_ADR 0x10 3020 R/W R/W

IO_DATA 0x10 3024 R/W R/W

IO_CTL 0x10 3028 R/W R/W

SRC_ADR 0x10 302C R/W R/W

DEST_ADR 0x10 3030 R/W R/W

DMA_CTL 0x10 3034 R/W R/W

INT_CTL 0x10 3038 R/W R/W

Table 11-12. PCI MMIO registers and bus cycles

Internal Cycle Registers Involved
PRELIMINARY SPECIFICATION 11-11

PNX1300/01/02/11 Data Book Philips Semiconductors
request need not be of exactly the same type that is al-
ready in progress.

IE (ICP DMA enable).This bit is must be set to ’1’ to allow
the ICP to write pixel data through the PCI interface. If
this bit is cleared to ’0’, the ICP is not allowed to use the
PCI interface. Programming of ICP DMA is described in
Section 14.6, “Operation and Programming.”

HE (Host enable). This bit is initialized to ’0’, which pre-
vents the DSPCPU from serving as the host CPU in the
PCI system. If this bit is set to one, the Enable Mastering
(EM) bit in the PCI Configuration register (see Section
11.5.3, “Command Register”) is also set to ’1’ (since
PNX1300 must be enabled to serve as a PCI bus initiator
to perform PCI configuration).

CR (PCI clear reset). This bit releases the DSPCPU
from its reset state. The PNX1300 device driver (execut-
ing on an external host CPU) sets this bit to ’1’ after it
completes PNX1300’s configuration. The DSPCPU
starts to execute the pointed by DRAM_BASE MMIO
register.

SR (PCI set reset). This bit forces the DSPCPU into its
reset state. Writing ’1’ to this bit resets the CPU; writing
’0’ causes no action. The PNX1300 device driver (exe-
cuting on an external host CPU) can set this bit to reset
the DSPCPU. This form of reset resets only CPU and In-
struction cache. The Dcache is NOT reset, nor are any
peripherals.

RMD (Read Multiple Disable). In default operating
mode, the RMD bit should be set to ‘0’. In that case, the
BIU uses ‘memory read multiple’ PCI transactions for
BIU DMA, and ‘memory read’ PCI transactions for
DSPCPU reads to PCI space. If the RMD bit is set, DMA
transactions are forced to also use the - less efficient -
memory read transactions. Note that TM-1000 only used
memory read transactions.

11.6.6 PCI_ADR Register

The 30-bit PCI_ADR register is intended to be written
only by the data cache. PCI_ADR participates in the spe-
cial two-cycle data-cache-to-PCI protocol. See Section
11.6.7, “PCI_DATA Register,” for more information.

Only the DSPCPU can write to PCI_ADR. External PCI
initiators can neither read nor write this register.

DSPCPU software should not write to this register (by
writing to PCI_ADR in MMIO space). This register is in-
tended only to support the special protocol between the

data cache and PCI bus. An unexpected write to
PCI_ADR via MMIO space will not be prevented by hard-
ware and may result in data corruption on the PCI bus.

11.6.7 PCI_DATA Register

The 32-bit PCI_DATA register is intended to be used
only by the data cache. PCI_DATA participates in the
special two-cycle data-cache-to-PCI protocol.

The PCI_DATA and PCI_ADR registers are used togeth-
er by the data cache to perform a single data phase PCI
memory-space read or write. A read operation is trig-
gered when the data cache has written the transaction
address into PCI_ADR and asserted the internal signal
pci_read_operation (a direct internal connection be-
tween the data cache and PCI interface). A write opera-
tion is triggered when the data cache has written both
PCI_ADR and PCI_DATA with the signal
pci_read_operation deasserted.

While the PCI interface is performing the PCI read or
write, the DSPCPU is stalled waiting for the completion
of the PCI transaction. When the PCI transaction is com-
plete, the PCI interface asserts pci_ready (a direct inter-
nal connection between the data cache and PCI inter-
face). To finish a read operation, the data cache reads
the PCI_DATA register, forwards the data to the
DSPCPU, and then unlocks the DSPCPU. To finish a
write, the data cache simply unlocks the DSPCPU.

Note that, if the DSPCPU attempts to access a non-exis-
tent PCI address, an RMA condition occurs. In this case,
the value in the PCI_DATA register is set to ‘0’. Hence,
the DSPCPU always reads non-existent PCI locations as
‘0’.

Normal MMIO write operations to PCI_DATA have no ef-
fect. Reads return the register’s current value. External
PCI initiators can neither read nor write this register.

11.6.8 CONFIG_ADR Register

The CONFIG_ADR register is written by the DSPCPU to
set up for a configuration cycle. When PNX1300 is acting
as the host CPU, it must configure devices on the PCI
bus. The DSPCPU writes CONFIG_ADR to select a con-
figuration register within a specific PCI device. See Sec-
tion 11.6.10, “CONFIG_CTL Register,” for more infor-
mation on initiating configuration cycles.

Following are descriptions of the fields of CONFIG_ADR.

BN (PCI bus number). The BN field (the two least-sig-
nificant bits of CONFIG_ADR) selects one of four possi-
ble PCI buses. A value of ’0’ for BN means that the tar-
geted device is on the PCI bus directly connected to
PNX1300 and that any PCI-to-PCI bridges should ignore
the configuration address. Any value for BN other than ’0’
means that the targeted device is on a PCI bus connect-
ed to a PCI-to-PCI bridge and that all devices directly
connected to PNX1300’s local PCI bus should ignore the
configuration address.

RN (Register number). The RN field (bits 2..7 of
CONFIG_ADR) is used to specify one of the 64 configu-

Table 11-14. IntE bit functions

BIU_CTL Bit If set to ‘1’, interrupt DSPCPU when...

2 config_cycle done

3 io_cycle done

4 dma_cycle done

5 pci_dram write cycle done

6 second config_cycle or io_cycle requested

7 second dma_cycle requested
11-12 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
ration words within the target device’s configuration
space.

FN (Function number). The FN field (bits 8..10 of
CONFIG_ADR) is used to specify one of up to eight func-
tions of the addressed PCI device.

DN (Device number). The DN field (bits 11..31 of
CONFIG_ADR) is used to select the targeted PCI de-
vice. Each bit corresponds to one of the 21 possible PCI
devices on a single PCI bus, i.e., each bit corresponds to
the idsel signal of one PCI device. Only one idsel sig-
nal—and, therefore, only one DN bit—can be asserted
during a given configuration cycle.

11.6.9 CONFIG_DATA Register

The 32-bit CONFIG_DATA register is used by the
DSPCPU to buffer data for a configuration cycle. When
PNX1300 is acting as the host CPU, it must configure the
PCI bus and devices. The DSPCPU writes or reads
CONFIG_DATA depending on whether it is performing a
write or read to a PCI device’s configuration space. See
Section 11.6.10, “CONFIG_CTL Register,” for more in-
formation on initiating configuration cycles.

11.6.10 CONFIG_CTL Register

The DSPCPU writes to CONFIG_CTL to trigger a config-
uration read or write cycle on the PCI bus. A PCI config-
uration read or write should not be performed during an
ongoing PCI I/O read or write.

The steps involved in a DSPCPU PCI configuration ac-
cess are:

1. Wait until BIU_STATUS io_cycle.Busy and
config_cycle.Busy are both de-asserted

2. Write to CONFIG_ADR as described above, and (in
case of a write operation) write to CONFIG_DATA.

3. Write to CONFIG_CTL to start the read or write.This
action sets config_cycle.Busy.

4. Wait (polling or interrupt based) until
config_cycle.Done is asserted by the hardware.

5. Retrieve the requested data in CONFIG_DATA (in
case of a read)

6. Clear config_cycle.Done by writing a ‘1’ to it.

Following are descriptions of the fields of CONFIG_CTL
and a discussion of how a DSPCPU write to
CONFIG_CTL triggers configuration cycles.

BE (Byte enables). The BE field (the four LSBs of
CONFIG_CTL) determines the state of PCIs 4-line c/be#
bus during the data phase of a configuration cycle. Since
the c/be# bus signals are active low, a ‘0’ in a BE field bit
means byte participates; a ‘1’ in a BE field bit means
‘byte does not participate. ’ Table 11-15 shows the corre-
spondence between BE bits and bytes on the PCI bus
assuming little-endian byte order.

RW (Read/Write). The RW field (bit 4 of CONFIG_CTL)
determines whether the configuration cycle will be a read
or a write. Table 11-16 shows the interpretation of RW.

A write by the DSPCPU to the CONFIG_CTL register
starts a configuration cycle on the PCI bus. The
CONFIG_DATA (for a write) and CONFIG_ADR regis-
ters must be set up before writing to CONFIG_CTL.

During a configuration read, the PCI interface drives the
PCI bus with the address from CONFIG_ADR and the
BE field from CONFIG_CTL. The returned data is buff-
ered in CONFIG_DATA. When the data is returned, the
PCI interface will generate a DSPCPU interrupt if the ap-
propriate IntE bit is set in BIU_CTL. Alternatively,
DSPCPU software can poll the appropriate “done” status
bin in BIU_STATUS. Finally, DSPCPU software reads
the CONFIG_DATA register in MMIO space to access
the data returned from the configuration cycle.

A write operation proceeds as for a read, except that PCI
data is driven from CONFIG_DATA during the transac-
tion and no data is returned in CONFIG_DATA.

11.6.11 IO_ADR Register

The 32-bit IO_ADR register is written by the DSPCPU to
set up for an access to a location in PCI I/O space. The
DSPCPU writes the address of the I/O register into
IO_ADR. See Section 11.6.13, “IO_CTL Register,” for
more information on initiating I/O cycles.

11.6.12 IO_DATA Register

The 32-bit IO_DATA register is used by the DSPCPU to
set up for an access to a location in PCI I/O space. The
DSPCPU writes or reads IO_DATA depending on wheth-
er it is performing a write or read from IO space. See
Section 11.6.13, “IO_CTL Register,” for more informa-
tion on initiating I/O cycles.

11.6.13 IO_CTL Register

The DSPCPU writes to IO_CTL to trigger a read or write
access to PCI I/O space. The function of this register is
similar to that of CONFIG_CTL, and the protocol for an I/
O cycle is similar to the configuration cycle protocol. A

Table 11-15. BE field interpretation (assumes little-
endian byte ordering)

BE Bit Interpretation

0 0 ⇒ byte 0 (LSB) participates
1 ⇒ byte 0 (LSB) does not participate

1 0 ⇒ byte 1 participates
1 ⇒ byte 1 does not participate

2 0 ⇒ byte 2 participates
1 ⇒ byte 2 does not participate

3 0 ⇒ byte 3 (MSB) participates
1 ⇒ byte 3 (MSB) does not participate

Table 11-16. RW Interpretation

RW Interpretation

0 Write

1 Read
PRELIMINARY SPECIFICATION 11-13

PNX1300/01/02/11 Data Book Philips Semiconductors
PCI I/O read or write should not be performed during an
ongoing PCI configuration read or write.

The steps involved in a DSPCPU PCI I/O access are:

1. Wait until BIU_STATUS io_cycle.Busy and
config_cycle.Busy are both de-asserted

2. Write IO address to IO_ADR, and (in case of a write
operation) write data to IO_DATA.

3. Write to IO_CTL to start the read or write.This action
sets io_cycle.Busy.

4. Wait (polling or interrupt based) until io_cycle.Done is
asserted by the hardware.

5. Retrieve the requested data in IO_DATA (in case of a
read)

6. Clear io_cycle.Done by writing a ‘1’ to it.

Following are descriptions of the fields of IO_CTL and a
discussion of how a DSPCPU write to IO_CTL triggers I/
O cycles.

BE (Byte enables). The BE field (the four least-signifi-
cant bits of IO_CTL) determines the state of PCI’s 4-line
c/be# bus during the data phase of an I/O cycle. Since
the c/be# bus signals are active low, a ‘0’ in a BE field bit
means ‘byte participates;’ a ‘1’ in a BE field bit means
‘byte does not participate. ’ Table 11-15 shows the corre-
spondence between BE bits and bytes on the PCI bus
assuming little-endian byte order.

RW (Read/Write). The RW field (bit 4 of IO_CTL) deter-
mines whether the I/O cycle will be a read or a write.
Table 11-16 shows the interpretation of RW (0 ⇒ write,
1 ⇒ read).

A write by the DSPCPU to the IO_CTL register starts an
I/O cycle on the PCI bus. The IO_DATA (for a write) and
IO_ADR registers must be set up before writing to
IO_CTL.

During an I/O read, the PCI interface drives the PCI bus
with the address from IO_ADR and the BE field from
IO_CTL. The returned data is buffered in IO_DATA.
When the data is returned, the PCI interface will gener-
ate a DSPCPU interrupt if the appropriate IntE bit is set
in BIU_CTL. Alternatively, DSPCPU software can poll
the appropriate ‘done’ status bit in BIU_STATUS. Finally,
DSPCPU software reads the IO_DATA register in MMIO
space to access the data returned from the I/O cycle.

A write operation proceeds as for a read, except that PCI
data is driven from IO_DATA during the transaction and
no data is returned in IO_DATA.

11.6.14 SRC_ADR Register

The 32-bit SRC_ADR register is used to set the source
address for a block transfer DMA operation. The address
in SRC_ADR must be word (4-byte) aligned, i.e. the 2
LSBs have to be ‘0’. The content of this register during or
after DMA is not defined, hence it cannot be used to track
progress or verify completion of a DMA transaction.

11.6.15 DEST_ADR Register

The 32-bit DEST_ADR register is used to set the desti-
nation address for a block transfer DMA operation. The
address is DEST_ADR must be word (4 byte) aligned,
i.e. the 2 LSBs must be ‘0’. The content of this register
during or after DMA is not defined, hence it cannot be
used to track progress or verify completion of a DMA
transaction.

11.6.16 DMA_CTL Register

A write by the DSPCPU to the DMA_CTL register starts
a DMA block transfer on the PCI bus. The SRC_ADR
and DEST_ADR registers must be set up before writing
to DMA_CTL.

The steps involved in a DMA transfer are:

1. Wait until BIU_STATUS dma_cycle.Busy is de-assert-
ed

2. Write to SRC_ADR and DEST_ADR as described
above

3. Write to DMA_CTL to start the DMA transaction.This
action sets dma_cycle.Busy

4. Wait (polling or interrupt based) until dma_cycle.Done
is asserted by the hardware

5. Clear dma_cycle.Done by writing a ‘1’ to it

The fields of DMA_CTL are described below.

TL (Transfer length). The TL field (bits 0..25 of
DMA_CTL) specifies the number of data bytes to be
transferred during the DMA operation. It must be a multi-
ple of 4 bytes. The maximum length of a DMA operation
is limited to 64 MB, the maximum amount of SDRAM
supported by PNX1300. The content of this field during
or after a DMA transaction is not defined.

D (DMA direction). The D field (bit 26 of DMA_CTL) de-
termines the direction of data movement during the block
transfer. Table 11-17 (shows the interpretation of the D
field.

T (DMA Transaction type). The T field (bit 27 of
DMA_CTL) determines the transaction type of a write, as
described below.

Table 11-17. D interpretation

D Data Movement Direction

0 SDRAM → PCI memory space (DMA write)

1 PCI memory space → SDRAM (DMA read)

Table 11-18. T interpretation

T DMA Write transaction type

0 memory write

1 memory write-and-invalidate
11-14 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
PNX1300 generates memory write-and-invalidate PCI
transactions if all conditions below are satisfied, other-
wise it generates regular memory write transactions:

• The MWI bit in the Command Register is set.
• The Cache Line Size register is set to 4,8, or 16 32-

bit words.
• The DMA source address is 64 byte aligned.
• The DMA destination address is cache line size

aligned.
• The T bit is set

PNX1300 generates ‘memory read multiple’ PCI transac-
tions for DMA reads, unless the RMD (Read Multiple Dis-
able) bit is set in BIU_CTL, in which case the less effi-
cient ‘memory read’ transactions are used.

During a PCI → SDRAM block transfer, the PCI interface
drives the PCI bus with the address from SRC_ADR. The
returned data is buffered in r_buffer. The PCI interface
then drives the address from DEST_ADR and the data
from r_buffer to the SDRAM controller. SRC_ADR and
DEST_ADR are incremented, the TL field in DMA_CTL
is decremented, and this sequence repeats until TL
reaches ‘0’.

At the end of the PCI → SDRAM block transfer, the PCI
interface will generate a DSPCPU interrupt if the appro-
priate IntE bit is set in BIU_CTL. Alternatively, DSPCPU
software can poll the appropriate ‘done’ status bit in
BIU_STATUS.

During an SDRAM → PCI block transfer, the PCI inter-
face drives the address from SRC_ADR to the SDRAM
controller. The returned data is buffered in w_buffer. The
PCI interface then drives the address from DEST_ADR
and the data from w_buffer to the PCI bus. SRC_ADR
and DEST_ADR are incremented, the TL field in
DMA_CTL is decremented, and this sequence repeats
until TL reaches ‘0’.

At the end of the SDRAM → PCI block transfer, the PCI
interface can generate a DSPCPU interrupt if the appro-
priate IntE bit is set in BIU_CTL. Alternatively, DSPCPU
software can poll the appropriate ‘done’ status bit in
BIU_STATUS.

11.6.17 INT_CTL Register

The INT_CTL register contains three fields for setting,
enabling, and sensing the four PCI interrupt lines.
Table 11-19 shows the interpretation of the fields in
INT_CTL.

INT (Interrupt bits). The INT field (bits 0..3 of INT_CTL)
can force a PCI interrupt to be signalled.

IE (Interrupt enable). The IE field (bits 4..7 of INT_CTL)
enables PNX1300 to drive PCI interrupt lines.

IS (Interrupt state). The IS field (bits 8..11 of INT_CTL)
senses the state of the PCI interrupt lines.

Figure 11-9 shows a conceptual realization of the logic
used to implement the control of each intx# pin.

See also Section 3.6, “PNX1300 to Host Interrupts.”

11.7 PCI BUS PROTOCOL OVERVIEW

PNX1300’s PCI interface can generate and respond to
several types of PCI bus commands. Table 11-20 lists
the 12 possible commands and whether or not PNX1300
can generate them.

Table 11-21 lists the 12 possible commands and wheth-
er or not PNX1300 can respond to them.

The basic transfer mechanism on the PCI bus is a burst,
which consists of an address phase followed by one or
more data phases. In PNX1300, the DSPCPU and ICP
are the only two units that can cause PNX1300 to be-

Table 11-19. INT_CTL Bits

INT_CTL
PCI Signal Programming

Field Bit

INT 0 inta#
0 ⇒ Deassert intx#
1 ⇒ Assert intx# (if enabled);

i.e., pull intx# pin to a low
logic level

1 intb#

2 intc#

3 intd#

IE 4 inta#
0 ⇒ Disable open-collector

output to intx#
1 ⇒ Enable open-collector

output to intx#

5 intb#

6 intc#

7 intd#

IS 8 inta# Reads state of intx# pin:
0 ⇒ No interrupt asserted

(intx# is high)
1 ⇒ Interrupt is asserted

(intx# is low)

9 intb#

10 intc#

11 intd#

Table 11-20. PNX1300 PCI Commands as Initiator

PNX1300 Generates PNX1300 Cannot
Generate

Configuration read
Configuration write
Memory read
Memory read multiple
Memory write
Memory write and invalidate
I/O read
I/O write

Interrupt acknowledge
Special cycle
Dual address
Memory read line

INTx

oc PCI intx#

IEx

ISx

Figure 11-9. Conceptual realization of intx# pin con-
trol logic.
PRELIMINARY SPECIFICATION 11-15

PNX1300/01/02/11 Data Book Philips Semiconductors
come a PCI-bus initiator, i.e., only the DSPCPU and ICP
can access external resources.

11.7.1 Single-Data-Phase Operations

When the DSPCPU reads or writes PC memory, the PCI
transaction has only a single data phase. A typical sin-
gle-data-phase read operation is illustrated in
Figure 11-10. During the first clock period, the PNX1300
asserts the frame# signal to indicate that the transaction
has begun and that an address and command are stable
on ad and c/be#, respectively.

PNX1300 then releases the ad bus, deasserts frame#,
asserts irdy#, asserts byte enables on c/be#, and waits
for the target to claim the transaction by asserting
devsel#. The target asserts trdy# to signal the master
that the ad bus contains stable data. The assertion of
trdy# causes the initiator (PNX1300 in this case) to sam-
ple the ad bus data and deassert irdy# to complete the
single-data-phase read transaction.

Figure 11-11 shows a typical single-data-phase write op-
eration. The operation begins like a read: PNX1300 as-
serts the frame# signal and drives the ad bus with the tar-
get address and drives the command onto the c/be# bus.

The operation continues when PNX1300 deasserts
frame#, asserts irdy#, and drives the byte enables as be-
fore, but it also drives the data to be written on the ad
bus. The target device asserts devsel# to claim the trans-
action. Eventually, the target asserts trdy# to signal that
it is sampling the data on the ad bus. PNX1300 continues

to drive the data on the ad bus until after the target deas-
serts trdy#, which completes the write operation.

11.7.2 Multi-Data-Phase Operations

As with the single-data-phase operations, DMA opera-
tions begin with the assertion of frame# and valid ad-
dress and command information. See Figure 11-12. The
target knows a burst is requested because frame# re-
mains asserted when irdy# becomes asserted.

In the example timing of Figure 11-12, a fast device is re-
ceiving the burst from PNX1300. The target asserts
devsel# and trdy# simultaneously. The trdy# signal re-
mains asserted while PNX1300 sends a new word of
data on each PCI clock cycle. The burst operation shown
is a 16-word burst transfer. Since only the starting ad-
dress is sent by the initiator, both initiator and target must
increment source and destination addresses during the
burst.

The initiator signals the end of the burst of data in
Figure 11-12 when it deasserts frame# in clock 17. The
last word (or partial word) of data is transferred in the
clock cycle after frame# is deasserted. Finally, the target
acknowledges the last data phase by deasserting trdy#
and devsel#.

Figure 11-13 illustrates back-to-back DMA burst data
transfers. The ICP is capable of exploiting the high band-
width available with back-to-back DMA operations when
it is writing image data to a frame buffer on a PCI video
card.

The timing of Figure 11-13 assumes that the PCI bus is
granted to PNX1300 until at least the beginning of the
second DMA burst operation. For as long as bus owner-
ship is granted to PNX1300 and the ICP has queued re-
quests for data transfer, the PCI interface will perform
back-to-back DMA operations. If the target eventually
becomes unable to accept more data, it signals a discon-
nect on the PNX1300 PCI interface. The PCI interface
remembers where the DMA burst was interrupted and at-
tempts to restart from that point after two bus clocks.

Table 11-21. PNX1300 PCI commands as target

PNX1300 Responds To PNX1300 Ignores

Configuration read
Configuration write
Memory read
Memory write
Memory write and invalidate
Memory read line
Memory read multiple

I/O read
I/O write
Interrupt acknowledge
Special cycle
Dual address

pci_clk

frame#

ad

c/be#

irdy#

trdy#

devsel#

1 2 3 4

Address

Byte EnablesCommand

Data

W
a

it
(A

D
 tu

rn
a

ro
u

nd
)

D
a

ta
 T

ra
n

sf
er

Figure 11-10. Basic single-data-phase read opera-

pci_clk

frame#

ad

c/be#

irdy#

trdy#

devsel#

1 2 3 n

Address Data

Byte EnablesCommand

W
a

it

D
at

a
 T

ra
ns

fe
r

Figure 11-11. Basic single-data-phase write opera-
11-16 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI Interface
11.8 LIMITATIONS

11.8.1 Bus Locking

The PCI interface does not implement lock#, sbo, and
sbone pins. Consequently, it is possible for both the
DSPCPU and external PCI initiators to write to a critical
memory section simultaneously. Software must imple-
ment policies to guarantee memory coherency.

11.8.2 No Expansion ROM

PNX1300 does not implement the PCI expansion ROM
capability.

11.8.3 No Cacheline Wrap Address
Sequence

The PCI interface does not implement the PCI cacheline-
wrap address mode for external PCI initiators that ac-
cess PNX1300 SDRAM.

11.8.4 No Burst for I/O or Configuration
Space

Only single-data-phase transactions to configuration and
I/O spaces are supported. The byte-enable signals se-
lect the byte(s) within the addressed word.

11.8.5 Word-Only MMIO Register Access

External initiators can access PNX1300 MMIO registers
only as full words. The byte-enable signals have no ef-
fect on the data transferred. External initiators must read
and write all four bytes of MMIO registers.

pci_clk

frame#

ad

c/be#

irdy#

trdy#

devsel#

1 2 3 4 5 6 17

Address

Byte Enables

18

Command

Data 1 Data 2 Data 3 Data 4 Data 15 Data 16

D
a

ta
 T

ra
n

sf
e

r

D
a

ta
 T

ra
n

sf
e

r

D
a

ta
 T

ra
n

sf
e

r

D
a

ta
 T

ra
n

sf
e

r
D

a
ta

 T
ra

n
sf

e
r

D
a

ta
 T

ra
n

sf
e

r

D
a

ta
 T

ra
n

sf
e

r

Figure 11-12. PCI burst write operation with 16 data phases.

pci_clk

frame#

ad

c/be#

irdy#

trdy#

devsel#

1 2 3 18 19 20

Address

Byte Enables

35

Byte EnablesCommand

Data 1 Data 15 Data 16 Data 17 Data 31 Data 32

36

D
at

a
 T

ra
ns

fe
r

D
at

a
 T

ra
ns

fe
r

D
at

a
 T

ra
ns

fe
r

D
at

a
 T

ra
ns

fe
r

D
at

a
 T

ra
ns

fe
r

D
at

a
 T

ra
ns

fe
r

Figure 11-13. Back-to-back PCI burst write operations with 16 data phases which might be generated by the
ICP when writing image data to a PCI-resident video frame buffer.
PRELIMINARY SPECIFICATION 11-17

PNX1300/01/02/11 Data Book Philips Semiconductors
11-18 PRELIMINARY SPECIFICATION

SDRAM Memory System Chapter 12

by Eino Jacobs, Chris Nelson, Thorwald Rabeler, Mohammed Yousuf, Luis Lucas

12.1 NEW IN PNX1300/01/02/11

• Support of 256-Mbit SDRAMs organized in x16. The
REFRESH counter must be changed. Refer to
Section 12.11 for more details.

• 16-bit memory interface support in addition to the 32-
bit mode of TM-1300.

12.2 PNX1300 MAIN MEMORY OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 connects to its local memory system with a
dedicated memory bus, shown in Figure 12-1. This bus
interfaces only with SDRAM or SGRAM (synchronous
graphics DRAM with its DSF pin tied low); PNX1300 is
the only master on this bus.

A variety of device types, speeds, and rank1 sizes are
supported allowing a wide range of PNX1300 systems to
be built. Table 12-1 summarizes the memory system fea-
tures.The memory devices can have two or four banks.

The main memory interface provides all control and data
signals with sufficient drive capacity for a glueless con-
nection up to a 183-MHz memory system (for PNX1302,
166 MHz otherwise) with up to two memory devices. The
memory-system speed can be different from PNX1300
core speed; the ratio between the memory system clock
and PNX1300 core clock is programmable.

With current memory technology, PNX1300 supports a
glueless memory interface of up to 64MBytes with two
4×4M×16 SDRAM chips (two devices with 4 banks of
four million words, each 16 bits wide).

PNX1300 provides also a 16-bit memory interface (in-
stead of 32-bit only for TM-1300) for applications requir-
ing lower cost and lower performance. The available
bandwidth is then reduced by two and the latency on
cache misses is increased by two for the Instruction

cache and by one SDRAM cycle for the Data cache on
critical word first demand.

The maximum amount of memory in the 16-bit mode is
32MBytes.

12.3 MAIN-MEMORY ADDRESS
APERTURE

PNX1300’s local main memory is just one of three aper-
tures into the 4-GB address space of the DSPCPU:

• SDRAM (0.5 to 64 MB in size),
• MMIO (2 MB in size), and
• PCI (any address not in SDRAM or MMIO).

MMIO registers control the positions of the address-
space apertures. The SDRAM aperture begins at the ab-
solute address specified in the MMIO register
DRAM_BASE and extends upward to the address spec-
ified in the DRAM_LIMIT register. If the SDRAM aperture
overlaps the memory hole, the memory hole is ignored.
The MMIO aperture begins at the address in
MMIO_BASE, which defaults to 0xEFE00000 after pow-
er-up, and extends upwards 2 MB. (See Chapter 3,
“DSPCPU Architecture,” for a detailed discussion.) All
addresses that fall outside these two apertures are as-
sumed to be part of the PCI address aperture.

1. In this document, the term ‘rank’ is used to refer to a
group of memory devices that are accessed together.
Historically, the term ‘bank’ has been used in this con-
text; to avoid confusion, this document uses bank to re-
fer to on-chip organization (SDRAM devices have two
or four internal banks) and rank to refer to off-chip, sys-
tem-level organization.

Table 12-1. Memory System Features

Characteristic Comments

Data width 16 and 32 bits

Number of ranks Four chip-select signals support up to four
ranks (can be used as addresses)

Memory size From 512 KB to 64 MB

Devices
supported

• Jedec SGRAM (DSF tied low)
• Jedec SDRAM (×4, ×8, ×16, ×32)
• PC100/133 and later

Clock rate Up to 183 MHz SDRAM speed (program-
mable ratio between
core clock and memory system clock)

Bandwidth 732 MB/s (at 183 MHz and 32-bit i/f)

Glueless interface • Up to 2 chips at 183 MHz (e.g., 32 MB
memory with 4x1Mx32 SDRAM)

• Up to 4 chips at 166 MHz (e.g., 64 MB
memory with 4x1Mx32 SDRAM)

Signal levels 3.3-V LVTTL
PRELIMINARY SPECIFICATION 12-1

PNX1300/01/02/11 Data Book Philips Semiconductors
12.4 MEMORY DEVICES SUPPORTED

All devices must have a LVTTL, 3.3-V interface.

Table 12-2 lists the devices and organizations supported
in a 32-bit memory interface.

Refer to Section 12.8, “Address Mapping,” in order to
evaluate the support of 2-bank, 64-Mbit devices. These
devices are not widely used. Hence they are not de-
scribed in this document.

Table 12-3 lists the devices and organizations supported
in a 16-bit memory interface.

12.4.1 SDRAM

PNX1300 supports synchronous DRAM chips directly.
SDRAM has a fast, synchronous interface that permits
burst transfers at 1 word per clock cycle. The memory in-
side an SDRAM device is divided into two or four banks;
the SDRAM implements interleaved bank access to sus-
tain maximum bandwidth.

SDRAM devices implement a power down mechanism
with self-refresh. PNX1300 power management takes
advantage of this mechanism.

PNX1300 supports only Jedec-compatible SDRAM with
two or four internal banks of memory per device.

12.4.2 SGRAM

Also supported in PNX1300 systems, SGRAM is essen-
tially an SDRAM with additional features for raster graph-
ics functions. The device type is standardized by Jedec
and offered by multiple DRAM vendors. Tying the DSF
input of an SGRAM low makes the device operates like
a standard 32-bit-wide SDRAM and thus compatible with
the PNX1300 memory interface. PNX1300 is not sup-
porting the new types of SGRAMs that have a DDR inter-
face.

12.5 MEMORY GRANULARITY AND SIZES

PNX1300 supports a variety of memory sizes thanks to:

• Many possible configurations of SDRAM devices
• Support for up to four memory ranks

The minimum memory size is 4 MB using two
2×512K×16 SDRAM devices on the 32-bit data bus, or 2
MB with one of these devices on a 16-bit data bus. Up to
two memory devices can be connected without any glue
logic and without sacrificing performance. The maximum
memory size with full performance is 64MB using two
4×4M×16 SDRAM chips on a 32-bit data bus, and 32 MB
using one 4×4M×16 SDRAM chip on a 16-bit data bus.

Several memory configurations can be constructed using
more devices. To do so, the frequency of the memory in-

Table 12-2. Supported Rank Configurations (32-bit)

Device Size
(Mbit) Device(s) Rank Size

16 2 × 512K × 16 SDRAM 4 MB

2 × 1M × 8 SDRAM 8 MB

2 × 2M × 4 SDRAM 16 MB

64 4 × 512K × 32 SDRAM 8 MB

4 × 1M × 16 SDRAM 16 MB

4 × 2M × 8 SDRAM 32b MB

128 4 × 1M × 32 SDRAM 16 MB

1281

1. Limited support for a 32-MB configuration only.

4 × 2M × 16 SDRAM 322 MB

2. However MM_CONFIG.SIZE may be set to
16MB (i.e. 6). Refer to Figure 12-10 and
Figure 12-11 for the two possible connection
details.

2563

3. Limited support for a 64-MB configuration only.

4 × 4M × 16 SDRAM 644 MB

4. However MM_CONFIG.SIZE is 32 MB (i.e. 7).

Table 12-3. Supported Rank Configurations (16-bit)

Device Size
(Mbit) Device(s) Rank Size

16 2 × 512K × 16 SDRAM 2 MB

64 4 × 1M × 16 SDRAM 8 MB

128 4 × 2M × 16 SDRAM 161 MB

256 4 × 4M × 16 SDRAM 322 MB

Figure 12-1. PNX1300 internal highway bus to the external glueless SDRAM interface.

PNX1300
Memory
Interface

Chip Selects#
Address,

Clock Enables,
RAS#, CAS#, WE#

Byte Enables[3:0]
Clock

Data[31:0]

CS#

Address, Control

DQM[3:0]
CLK

DQ[31:0]

33 Ω

SDRAM
Memory
Array

Data
Highway

PNX1300

On-Chip
Peripherals

DSPCPU

1. However MM_CONFIG.SIZE is set to 8 MB (i.e. 5)

2. However MM_CONFIG.SIZE is set to 8 MB (i.e. 5).
12-2 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
terface must be lowered to account for extra propagation
delay due to the excessive loading on the interface sig-
nals (see Section 12.13, “Output Driver Capacity”).

The following rules apply to memory rank design:

• All devices in a rank must be of the same type.
• All ranks must be a power of two in size.
• All ranks must be of equal size.

Table 12-4 lists some examples of 32-bit memory sys-
tem designs.

Refer to the TM-1100 Databook for smaller memory con-
figurations.

Note:

• Some of these configurations may not be economi-
cally attractive due to the price premium.

• ‘Max. MHz’ refers to the memory interface/SDRAM
speed, not the PNX1300 core operating frequency.
The maximum MHz also depends on the device
being used, i.e. PNX1300, PNX1311 or PNX1302.
Refer to Section 1.9.7.10 on page 1-18 for maximum
operating speeds.

Table 12-4 lists some example of 32-bit memory system
designs.

12.6 MEMORY SYSTEM PROGRAMMING

Memory system parameters are determined by the con-
tents of two configuration registers, MM_CONFIG and
PLL_RATIOS. Table 12-6 describes the function of
these registers, and Figure 12-2 shows their formats.

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read.

MM_CONFIG and PLL_RATIOS are loaded from the
boot EEPROM, as described in Section 13.4, “Detailed
EEPROM Contents.” During this boot process, the mem-
ory interface is held in reset state. After the memory in-
terface is released from reset, the contents of these reg-
isters cannot be altered.

These registers are visible in MMIO space. They can be
read, but writes have no effect.

12.6.1 MM_CONFIG Register

The MM_CONFIG register tells the memory interface
how to use the local DRAM memory. The fields in this
register tell the interface the rank size and the refresh
rate of the memory. Table 12-8 summarizes the field
functions.

REFRESH (Refresh interval). The 16-bit REFRESH
field specifies the number of memory-system clock cy-
cles between refresh operations. The default value of
this field is 1000 (0x03E8). See Section 12.11, “Refresh,”
for more information.

BW (Bus Width). If set to ‘0’ then the memory interface
data bus width is 32 bits. If set to ‘1’ then the memory in-
terface data bus width is 16 bits.

SIZE (Rank size). The 3-bit SIZE field specifies the size
of each rank of DRAM. Each rank must be the size spec-
ified by SIZE. The default is a rank size of 4MB. Refer to
Table 12-7 for the interpretation of this field.

Table 12-4. Examples of 32-bit Memory Configurations

Size
(MB) Ranks Rank Configurations Max.

MHz
Peak
MB/s

8 1 four 2×1M×8 SDRAM 166 664

2 two 2×512K×16 SDRAM
two 2×512K×16 SDRAM

166 664

1 one 4×512K×32 SDRAM 183 732

16 1 two 4×1M×16 SDRAM 183 732

1 one 4×1M×32 SDRAM 183 732

2 one 4×512K×32 SDRAM
one 4×512K×32 SDRAM

183 732

24 3 one 4×512K×32 SDRAM
one 4×512K×32 SDRAM
one 4×512K×32 SDRAM

166 664

32 11

1. However MM_CONFIG.SIZE may be 16 MB (i.e.
6). Refer to Figure 12-10 and Figure 12-11 for
the two possible connection details.

two 4×2M×16 SDRAM 183 732

11 four 4×2M×8 SDRAM 166 664

2 two 4×1M×16 SDRAM
two 4×1M×16 SDRAM

166 664

2 one 4×1M×32 SDRAM
one 4×1M×32 SDRAM

183 732

4 one 4×512K×32 SDRAM
one 4×512K×32 SDRAM
one 4×512K×32 SDRAM
one 4×512K×32 SDRAM

166 664

48 3 one 4×1M×32 SDRAM
one 4×1M×32 SDRAM
one 4×1M×32 SDRAM

166 664

64 12

2. However MM_CONFIG.SIZE is 32 MB (i.e. 7).

two 4×4M×16 SDRAM 183 732

4 one 4×1M×32 SDRAM
one 4×1M×32 SDRAM
one 4×1M×32 SDRAM
one 4×1M×32 SDRAM

166 664

Table 12-5. Supported 16-bit Memory Configurations

Size
(MB) Ranks Rank Configurations Max.

MHz
Peak
MB/s

8 1 one 4×1M×16 SDRAM 183 732

161

1. However MM_CONFIG.SIZE is set to 8 MB (i.e. 5)

1 one 4×2M×16 SDRAM 183 732

322

2. However MM_CONFIG.SIZE is set to 8 MB (i.e. 5)

1 one 4×4M×16 SDRAM 183 732
PRELIMINARY SPECIFICATION 12-3

PNX1300/01/02/11 Data Book Philips Semiconductors
12.6.2 PLL_RATIOS Register

The PLL_RATIOS register controls the operation of the
separate memory-interface and CPU PLLs. Fields in this
register determine if the PLLs are active and what in-

put:output ratio each PLL should generate. Table 12-8
summarizes the field functions. Figure 12-3 shows how
the PLLs are connected and how fields in the
PLL_RATIOS register control them. For normal opera-

Table 12-6. Memory Configuration Registers

Register Purpose

MM_CONFIG Describes external memory configuration

PLL_RATIOS Controls separate memory and CPU PLLs
(phase-locked loops)

Table 12-7. MM_CONFIG Fields

Field Function

REFRESH Refresh interval in memory clock cycles.
Default value 1000 (0x03E8).

SIZE Memory rank size 0 Reserved

1 512KB

2 1MB

3 2MB

4 4MB

5 8MB

6 16MB

7 32MB

Figure 12-2. Memory interface configuration registers.

31 0

MM_CONFIG (r/o)
4 23

SIZE

PLL_RATIOS (r/o) CR

REFRESH

19

31 04 237

SDRAM PLL Bypass
SDRAM PLL Disable

CPU PLL Bypass
CPU PLL Disable

SDRAM Ratio
CPU Ratio

56

SB SD CB CD SR

0x10 0100

MMIO_base
offset:

0x10 0300

16-bit memory interface

BW

Table 12-8. PLL_RATIOS Fields

Field Function

CR CPU:memory ratio 0 1:1

1 2:1

2 3:2

3 4:3

4 5:4

5–7 Reserved

SR Memory:external ratio 0 2:1

1 3:1

CD CPU PLL Disable 0 CPU PLL on

1 CPU PLL off

CB CPU PLL bypass 0 CPU ← PLL

1 CPU ← Memory

SD SDRAM PLL Disable 0 SDRAM PLL on

1 SDRAM PLL off

SB SDRAM PLL bypass 0 Memory ← PLL

1 Memory ← external

Figure 12-3. PNX1300 memory and core PLL connections.

Memory System
PLL DSPCPU PLL

CR

04 237 56

SD SB CD CB SR PLL_RATIOS Register

PNX1300
Core
Clock

PNX1300

TRI_CLKIN

MM_CLK1
MM_CLK0

External Clock Input

Memory System Clocks
TO DDSes && EVO PLL

x3, x9

PNX1300
Peripheral
Clocks
12-4 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
tion Both PLLs must be activated, i.e. {CD,CB,SD,SB}
must be equal to 0000 (binary value).

The operating limits of the internal PLLs are:

• 27 MHz < Output of the SDRAM PLL < 200 MHz
• 33 MHz < Output of the CPU PLL < 266 MHz

These are not the speed grades of the chips, just the PLL
limits.

CR (CPU-to-memory PLL ratio). The 3-bit CR field se-
lects one of five input-to-output clock ratios for the CPU
PLL. The input clock is the memory system clock; the
output clock determines the PNX1300 core operating fre-
quency. The default value is ‘0’, which implies a 1:1
CPU:memory ratio. See Table 12-8 for other encoding.

SR (Memory-to-external PLL ratio). The 1-bit SR field
selects one of two memory-to-external clock ratios for
the memory interface PLL. The PLL input is PNX1300’s
external input clock TRI_CLKIN; the PLL output deter-
mines the operating frequency of the memory interface
and SDRAM devices. The default value is ‘0’, which im-
plies a 2:1 memory:external ratio. A value of ‘1’ implies a
3:1 ratio.

CD (CPU PLL disable). The 1-bit CD field determines
whether or not the CPU PLL is turned on. The reset value
is ‘1’, which disables operation of the CPU PLL and dis-
sipates almost no power. For normal operation the value
should be zero, enabling the CPU PLL.

CB (CPU PLL bypass). The 1-bit CB field determines
whether the input or the output of the CPU PLL drives
PNX1300’s core logic. The default value is ‘1’, which
causes the PNX1300 core to be clocked by the input of
the CPU PLL (i.e., the memory interface clock). A value
of ‘0’ causes normal operation, and the core is clocked by
the output of the CPU PLL.

Note that if both CB and SB are set to ‘1’ (bypass the
CPU PLL and the SDRAM PLL), PNX1300’s core logic is
effectively clocked at the external input frequency.

Note: it is illegal to use the output of a disabled PLL. For
example, it is illegal to have CD set to ‘1’ while CB is set
to ‘0’.

SD (SDRAM PLL disable). The 1-bit SD field deter-
mines whether or not the SDRAM PLL is turned on. The
default value is ‘1’, which disables the SDRAM PLL. In
this state, it dissipates almost no power. For normal op-
eration the value should be ‘0’, enabling the SDRAM
PLL.

SB (SDRAM PLL bypass). The 1-bit SB field deter-
mines whether the input or the output of the SDRAM PLL
drives the memory interface and memory devices. The
default value is ‘1’, which causes the memory system to
be clocked by the input of the SDRAM PLL (PNX1300’s
external input clock). A value of ’0’ causes normal oper-
ation, and the memory system is clocked by the output of
the SDRAM PLL.

12.7 MEMORY INTERFACE PIN LIST

The memory interface consists of 61 signal pins includ-
ing clocks (but excluding power and ground pins).
Table 12-9 lists the interface signal pins.

12.8 ADDRESS MAPPING

The address mapping is determined by the state of the
rank-size bits and the bus width bit in the MM_CONFIG
register.

12.8.1 Address Mapping in 32-bit mode

Table 12-10 shows how internal address bits from the
PNX1300 data highway bus are mapped to main-memo-
ry address-bus and chip select pins (MM_A[13:0],
MM_CS#[3:0]) in 32-bit data bus mode.

The column “Rank Addr./H.Way Bits” specifies which in-
ternal data-highway address bits select the preliminary
SDRAM rank. The actual rank used is subject to the lim-
itation implied by the relationship between SDRAM aper-
ture size (described in Section 13.2.1) and the rank size.

Table 12-9. Memory Interface Signal Pins

Name Function I/O Active...

MM_CLK[1:0] Memory bus clock O High

MM_CS#[3..0] Chip selects for the four
memory ranks or Address

O Low

MM_RAS# Row-address strobe O Low

MM_CAS# Column address strobe O Low

MM_WE# Write enable O Low

MM_A[13:0] Address O High

MM_CKE[1:0] Clock enable O High

MM_DQM[3:0] Byte enables for dq bus O High

MM_DQ[31:0] Bi-directional data bus I/O High

Table 12-10. 32-bit Address Mapping

Rank
Size

Rank
Addr.

Row
Address

Column
Address

Bank
Address

H.Way
Bits Pins H.Way

Bits Pins H.Way
Bits Pin H.Way

Bit

4 MB 23–22 10–0 21–11 7–0 10–6,
4–2

11

5

8 MB 24-23 12,
10–0

11,
22–12

12,
8–0

11,
11–6,
4–2

11

16 MB 25-24
13-12
10–0

12-11,
23–13

12,
9–0

11,
12–6,
4–2

11

32 MB –

CS#3
CS#2
13-12
10–0

25,
24,

12-11,
23–13

CS#3,
CS#2,

12

9–0

25,
24,
11,

12–6,
4–2

11
PRELIMINARY SPECIFICATION 12-5

PNX1300/01/02/11 Data Book Philips Semiconductors
The rank is selected via the chip select bits,
MM_CS#[3:0].

The column “Row Address/H.Way Bits” specifies which
internal data-highway address bits map to the SDRAM
row address. “Row Address/Pins” specifies which lines
of PNX1300’s MM_A address bus serve as the SDRAM
row address. For the 32 MB ranksize the chip selects
may be used as row address.

The column ‘Column Address/H.Way Bits’ specifies
which data-highway address bits map to the SDRAM col-
umn address. ‘Column Address/Pins’ specifies which
lines of PNX1300’s MM_A address bus serve as the
SDRAM column address. For the 32 MB ranksize the
chip selects may be used as column address.

MM_A[12] is only defined for a 8- or 16-MB rank size.
MM_A[12] contains H.Way bit 11 during the RAS and
CAS operations. MM_A[12] can be used as a bank select
(4-bank SDRAMs) or as a Row address (two bank
SDRAMs).

MM_A[13] is only defined for a 16-MB rank size.
MM_A[13] contains H.Way bit 12 during the RAS opera-
tion. MM_A[13] can only be used as a Row address.

For the 32 MB ranksize the chip selects MM_CS#[3:2]
pins are used as addresses. MM_CS#2 is used as a
bank select in addition to MM_A[11] and MM_CS#3 is
used as a row address.

Highway address bits 5–0 are the offset within a 64-byte
block. All ‘0’ for an aligned block transfer. Table 12-8 lists
the mapping of bits 5–2 to identify in which SDRAM po-
sitions the words of a block are located. Bit 5 is always
mapped to (one of) the SDRAM internal bank selects;
thus, each SDRAM bank receives half (32 bytes) of the
block transfer.

Highway address bits 4–2 are the word offset in a cache
block. Bits 1–0 are the byte offset within a 32-bit word.

12.8.2 Address Mapping in 16-bit mode

Table 12-11 shows how internal address bits from the
PNX1300 data highway bus are mapped to main-memo-
ry address-bus and chip select pins (MM_A[13:0],
MM_CS#[3:2]) in 16-bit data bus mode.

12.9 MEMORY INTERFACE AND SDRAM
INITIALIZATION

Immediately after reset, the main-memory interface is ini-
tialized by placing default values in the MM_CONFIG
and PLL_RATIOS registers (see Section 12.6, “Memory
System Programming”). During the subsequent hard-
ware boot process, when PNX1300 reads initial values
from an external ROM, these registers can be set to dif-
ferent values.

After PNX1300 is released from the reset state, the
memory interface automatically executes 10 refresh op-
erations, then initializes the mode register in each
SDRAM chip. Table 12-12 shows the settings in the
SDRAM mode register(s).

12.10 ON-CHIP SDRAM INTERLEAVING

The main-memory interface (MMI) takes advantage of
the on-chip interleaving of SDRAM devices. Interleaving
allows the precharge, RAS, and CAS commands needed
to access one internal bank to be performed while useful
data transfer is occurring with the other internal bank.
Thus, the overhead of preparing one bank is hidden dur-
ing data movement to or from the other.

The benefit of on-chip interleaving is sustainable full-
bandwidth data transfer (1 word per clock cycle). The
transition from one internal bank to the other happens on
8-word boundaries; transferring 8 words gives the inac-
tive bank time to prepare (perform precharge, RAS, and
CAS) so that when the last word of the 8-word block in
the active bank has been transferred, the next word from
the just-precharged bank is ready on the next cycle.

The seamless transitions between the two on-chip banks
can be sustained for a stream of contiguous addresses
with the same direction (read or write). That is, a stream
of contiguous reads or contiguous writes can sustain full
bandwidth. If a write follows a read, then a small gap be-
tween transfers is needed.

Each bank access is terminated with a read or write with
automatic precharge, making a separate precharge com-
mand before the next RAS unnecessary.

For 4 banks SDRAM devices, the signals used as bank
addresses are interchangeable (i.e. it does not matter
which of the two signals is connected to Bank 1 or Bank
0 of the SDRAM device).

12.11 REFRESH

The MMI performs SDRAM refresh cycles autonomously
using the CAS-before-RAS (CBR) mechanism. SDRAMs
have a 4K refresh interval: either 4096 rows must be re-

Table 12-11. 16-bit Address Mapping

Rank
Size

Rank
Addr.

Row
Address

Column
Address

Bank
Address

H.Way
Bits Pins H.Way

Bits Pins H.Way
Bits Pins H.Way

Bit

2 MB – 9–0 20–11,5 7–0 10–6,
3–1

11 4

8 MB –

CS#3,
CS#2,
13–12,
10–0

24,
23,

12–11,
22–13,5

CS#3,
CS#2,

12,
8–0

24,
23,
11,

11–6,3–1

11 4

Table 12-12. SDRAM Mode Register Settings

Parameter Value

Burst length 4

Wrap type Interleaved

CAS latency 3
12-6 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
freshed every 64 ms or 2048 rows every 32 ms or one
row every 15.62 µsec. New SDRAM devices (i.e. 256
Mbit generation support an 8K refresh interval, therefore
one row every 7.81 µsec.

The MMI performs refresh at timed intervals: one CBR
refresh command must be issued every 15.6 µs or every
7.81 µsec. A counter in the MMI keeps track of the num-
ber of SDRAM clock cycles between refresh operations.
This counter starts after the CBR operation has complet-
ed; this CBR operation take 19 cycles. When the counter
reaches a programmed limit, the next refresh operation
is due, and the next-in-line data transfer request from the
data-highway is delayed until the CBR operation is exe-
cuted.

All devices in the main-memory system are refreshed si-
multaneously. The REFRESH field in the MM_CONFIG
register determines the number of memory-system clock
cycles (as distinguished from PNX1300 core clock cy-
cles) between the CBR refresh operations.

Each CBR refresh operation takes 19 SDRAM clock cy-
cles. Thus, at 100-MHz, refresh consumes about 1.2% of
maximum available SDRAM bandwidth (19 cycles out of
1560). The bandwidth impact is slightly lower at higher
frequencies.

Table 12-13 lists the number of memory-system clocks
for typical SDRAM operation speeds with a 15.62 µs re-
fresh period. This number includes the worst case sce-
nario in order to guaranty the 15.62 µs refresh period.

Table 12-14 lists the number of memory-system clocks
for typical SDRAM operation speeds with a 7.81 µs re-
fresh period.This number includes the worst case sce-
nario in order to guaranty the 7.81 µs refresh period.

12.12 POWER-DOWN MODE

When PNX1300 is put into power-down mode to reduce
power consumption, the MMI responds by putting the
SDRAM devices into their power-down mode. In this
mode, the SDRAM devices retain their contents through
self-refresh.

12.13 OUTPUT DRIVER CAPACITY

PNX1300’s output driver circuits for the memory address
and control signals (output signals in Table 12-9), can
drive up to two memory devices when the memory inter-
face is operating at 183 MHz. If more devices are con-
nected, then a lower SDRAM clock frequency must be
chosen.

Table 12-15 lists the clock frequency as a function of the
number of memory devices connected to unbuffered
memory interface signals.

Two identical outputs are provided for both the MM_CKE
(clock-enable) and MM_CLK signals. Each MM_CKE
and MM_CLK signal is capable of driving one SDRAM
devices at 183 MHz.

12.14 SIGNAL PROPAGATION DELAY
COMPENSATION

The PNX1300 MMI no longer has the two special pins,
MM_MATCHOUT and MM_MATCHIN, that were used in
the TM-1100 and TM-1000. This loop helped the inter-
face compensate for the propagation delay through cir-
cuit-board traces to and from the external SDRAM devic-
es. It is now integrated into the MMI. Read timing is
internally derived.

To avoid excessive ringing of the clock signals, series
termination with a 33-ohm resistor is advised at the clock
outputs.

The delay of the memory clock with respect to the inter-
nal sending and receiving clocks is adjusted inside the
memory interface to achieve reliable communication and
guarantee correct setup and hold times.

Figure 12-4 shows a conceptual circuit board layout.
Two SDRAM devices share a single clock output. The
clock signals should have source-series termination.

12.15 CIRCUIT BOARD DESIGN

PNX1300 and its memory array form a high-speed digital
system. Even though only a small number of chips is in-
volved, this digital system operates at frequencies high
enough to make the analog characteristics of the con-
nections between the chips significant. Consequently,
the system designer must take care to ensure reliable
operation.

12.15.1 General Guidelines

• In general, PNX1300 and its memory chips must be
as close together as possible to minimize parasitic

Table 12-13. REFRESH value for a 15.62 µµµµs period

SDRAM Operation Speed Value For REFRESH Field
(decimal, hexadecimal)

100 MHz 1523, 05F3

125 MHz 1914, 0779

133 MHz 2038, 07F6

143 MHz 2195, 0892

166 MHz 2554, 09F9

183 MHz 2819, 0B03

Table 12-14. REFRESH value for a 7.81 µµµµs period

SDRAM Operation Speed Value For REFRESH Field
(decimal, hexadecimal)

100 MHz 742, 02E6

125 MHz 936, 03A9

133 MHz 992, 03E7

143 MHz 1072, 0435

166 MHz 1256, 04E9

183 MHz 1384, 05E6
PRELIMINARY SPECIFICATION 12-7

PNX1300/01/02/11 Data Book Philips Semiconductors
capacitance. Close proximity is especially important
for a 183-MHz memory system.

• Signal traces between PNX1300 and the memory
chips must be matched in length as closely as possi-
ble to minimize signal skew.

• The clock-signal trace(s) must be as short as possi-
ble.

• Address and control-signal traces should also be
short, but their length is less critical than the clock’s.

• Data-signal traces should also be short, but their
length is less critical than the clock’s, especially if
only one or two ranks are connected.

• Connections to several loads must follow a “T” con-
nection scheme in order to limit the reflections.

12.15.2 Specific Guidelines

• The maximum length for a signal trace should be
10cm. For 183-MHz operation, signal trace length
must not be longer than 7cm.

• The maximum capacitive load is 30 pF per trace,
including loads.

• The signal traces on the PNX1300 circuit board must
be designed as 50-ohm transmission lines.

• At most one SDRAM device may be connected to
each MM_CLK signal at 183 MHz.

12.15.3 Termination

No termination is required for address, data, and control
signals. Address and control signals are driven only by
PNX1300; the output impedance of the drivers is suffi-
ciently matched to prevent excessive ringing. PNX1300
design assumes that when driving data lines, the output
drivers of SDRAM chips are also sufficiently impedance
matched.

Series termination of the clock outputs with a 33-ohm re-
sistor is advised.

12.16 TIMING BUDGET

The glueless interface of the PNX1300 main-memory in-
terface makes the memory system simple and straight-
forward from one point of view, but to ensure reliable op-
eration at high clock rates, system designers must follow
the board design guidelines (see Section 12.15, “Circuit
Board Design”).

SDRAM devices must meet the critical specifications list-
ed in Table 12-16 to ensure reliable operation of an 143-
MHz (Tcycle = 7 ns) memory system.

For a 166 MHz operation, SDRAM devices must meet
the critical specifications listed in Table 12-17 to ensure

Table 12-15. Glueless interface limits for address/
clocks

Memory Chips Maximum Clock Frequency

2 183 MHz

4 166 MHz

8 133 MHz

Figure 12-4. Conceptual board layout.

A
dd

re
ss

& C
on

tr
ol

C
LK

D
Q

[3
1:

0]

33 Ω

A
dd

re
ss

 &

C
on

tr
ol

C
LK

D
Q

[3
1:

0]

SDRAM
Device

SDRAM
Device

PNX1300
Memory
Interface

Address,
Clock Enables,

RAS#, CAS#, WE#

Clock

Data[31:0]
Data

Highway

PNX1300

On-Chip
Peripherals

DSPCPU

Table 12-16. Critical 143-MHz SDRAM parameters

Timing Parameter Value

Max. output delay tAC 6.4 ns

Min. output hold time tOH 2.0 ns

Max. input setup time tIS 2.0 ns

Max. input hold time tIH 1.0 ns
12-8 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
reliable operation of an 166- MHz (Tcycle = 6 ns) memory
system.

For a 183 MHz operation, SDRAM devices must meet
the critical specifications listed in Table 12-18 to ensure
reliable operation of an 183- MHz (Tcycle = 5.4 ns) mem-
ory system.

These values leave virtually no margin for the critical tim-
ing parameters in a high-speed system and assume a to-
tal worst case delay from 0.6 ns to 0.4 ns (From 143 MHz
to 183 MHz operating frequency the trace layout must be
improved to reduce trace delay as well as skew) and a
TSU for PNX1300 of 0 ns.

The maximum operating frequency is usually computed
with the following equation:

.

Where TCS is the skew between MM_CLK0 and
MM_CLK1, and TSU the input data setup time as defined
in Section 1.9.7.10 on page 1-18, and Tboard includes
trace delay and trace skew.

12.16.1 Main AC Parameter requirements

The PNX1300 SDRAM interface was designed to sup-
port a wide range of SDRAM vendors. Table 12-19, de-
scribes some of the minimum SDRAM AC requirements
for PNX1300 to operate correctly. The symbols or names
are not really standardized and may differ from one ven-
dor to another one. The table is not meant to be exhaus-
tive and shows only the main parameters. Parameters
are expressed in clock cycles rather than ns.

12.17 EXAMPLE BLOCK DIAGRAMS

The following figures illustrate some of the memory con-
figurations that can be built with PNX1300. For all them
the signals used as bank addresses, are interchange-
able (i.e. it does not matter which of the two signals is
connected to Bank 1 or Bank 0 of the SDRAM device).

12.17.1 Block Diagrams for a 32-bit interface

The following sections present examples of possible
connections with 16-, 64-, 128- and 256 Mbit SDRAMs.

MM_CONFIG.BW must be set to ‘0’ (refer to bw,
Section 12.6.1).

12.17.1.1 16-Mbit Devices or Less

These devices allow small memory configurations to be
built. They are described in more details in the TM-1000
and TM-1100 Databooks.

Table 12-17. Critical 166-MHz SDRAM parameters

Timing Parameter Value

Max. output delay tAC 5.5 ns

Min. output hold time tOH 2.0 ns

Max. input setup time tIS 1.5 ns

Max. input hold time tIH 1.0 ns

Table 12-18. Critical 183-MHz SDRAM parameters

Timing Parameter Value

Max. output delay tAC 5.0 ns

Min. output hold time tOH 2.0 ns

Max. input setup time tIS 1.5 ns

Max. input hold time tIH 1.0 ns

Tcycle tAC Tboard TCS TSU+ + +≥

Table 12-19. Minimum AC Parameters

Description Symbol Clocks

ACTIVE command period tRC 10

ACTIVE to PRECHARGE command tRAS 7

PRECHARGE command period tRP 3

ACTIVE Bank A to ACTIVE bank B tRRD 3

ACTIVE to READ or WRITE command tRCD 3

WRITE recovery time tWR 2
PRELIMINARY SPECIFICATION 12-9

PNX1300/01/02/11 Data Book Philips Semiconductors
12.17.1.2 64-Mbit Devices

64-Mbit SDRAMS organized in x32 can be used to build
an 8-, 16-, 24-, or 32-MB memory system. Figure 12-5

shows an 8-MB memory system (one device only) and
Figure 12-6 details an extension of the block diagram in
order to build a 16-MB configuration.

DQ[31:0]

DQM[3:0]

CLK

Address[10:0]

Control

CS#

4×512K×32
SDRAM

MM_CS#[0]

MM_CLK[0]

BA[1:0]

Figure 12-5. Schematic of a 8-MB memory system consisting of one 4×512K×32 SDRAM (one rank).

PNX1300

M
M

_C
S

#[
0]

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

M
M

_A
[1

0:
0]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

3
3

Ω

M
M

_A
[1

2,
11

]

DQ[31:0]CLK

Address[10:0]

Control DQM[3:0]

CS#

4×512K×32
SDRAM

MM_CS#[0]

MM_CLK[0]

MM_DQM[3:0]

MM_DQ[31:0]

DQ[31:0]CLK

Control DQM[3:0]

CS#

MM_DQM[3:0]

MM_DQ[31:0]

MM_CS#[1]

MM_CLK[0]

3
3

 Ω

4×512K×32
SDRAM

BA[1:0]

BA[1:0]

Address[10:0]

M
M

_C
S

#[
1:

0]

M
M

_R
A

S
#,

 C
A

S
#,

 W
E

#,
 C

K
E

M
M

_A
[1

0:
0]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

M
M

_A
[1

2,
11

]

Figure 12-6. Schematic of a 16-MB memory system consisting of two ranks of 4×512K×32 SDRAM chips.

PNX1300
12-10 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
64-Mbit SDRAMs organized in x16 can be used to build
a 16-, 32-, 48- or 64-MB memory systems. Figure 12-7

details a 32-MB memory system. Removing the device
controlled by MM_CS#[1] makes a 16-MB system.

Figure 12-7. Schematic of a 32-MB memory system consisting of four 4×1M×16 SDRAM chips (two ranks)

M
M

_C
S

#[
1:

0]

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CS#[1]

MM_CLK[1] MM_DQ[31:16]

MM_DQ[15:0]

MM_CS#[1]

MM_CLK[0]

MM_DQ[31:16]

MM_DQ[15:0]

MM_CS#[0]

MM_CS#[0]

MM_CLK[1]

MM_CLK[0]

33
 Ω

MM_DQM[1:0]

MM_DQM[3:2]

MM_DQM[3:2]

MM_DQM[1:0]

PNX1300
M

M
_R

A
S

, C
A

S
, W

E
#,

 C
K

E

DQ[15:0]CLK

Control DQM[1:0]

CS#

4×1M×16
SDRAMBA[1:0]

Address[11:0]

M
M

_A
[1

2,
11

]

DQ[15:0]CLK

Control DQM[1:0]

CS#

4×1M×16
SDRAMBA[1:0]

Address[11:0]

DQ[15:0]CLK

Control DQM[1:0]

CS#

4×1M×16
SDRAMBA[1:0]

Address[11:0]

DQ[15:0]CLK

Control DQM[1:0]

CS#

4×1M×16
SDRAMBA[1:0]

Address[11:0]
PRELIMINARY SPECIFICATION 12-11

PNX1300/01/02/11 Data Book Philips Semiconductors
64-Mbit SDRAMs organized in x8 devices could be used
to build a 32-MB memory system as illustrated in
Figure 12-8. Note that due to the unusual way of using

the devices, it is the only supported configuration with x8
devices. MM_CONFIG.SIZE must be set to 6 (i.e. 16-MB
rank size, Section 12.6.1).

Figure 12-8. Schematic of a 32-MB memory system consisting of four 4×2M×8 SDRAM chips (one rank)

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CLK[1] MM_DQ[31:24]

MM_DQ[23:16]MM_CLK[1]

MM_DQ[15:8]

MM_DQ[7:0]

MM_CLK[0]

MM_CLK[0]

3
3

Ω

MM_DQM[2]

MM_DQM[3]

MM_DQM[1]

MM_DQM[0]

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

DQ[7:0]CLK

Control DQM]

4×2M×8
SDRAMBA[1:0]

Address[11:0]

M
M

_A
[1

1]

M
M

_C
S

#[
1]

DQ[7:0]CLK

Control DQM

4×2M×8
SDRAMBA[1:0]

Address[11:0]

DQ[7:0]CLK

Control DQM]

4×2M×8
SDRAMBA[1:0]

Address[11:0]

DQ[7:0]CLK

Control DQM]

4×2M×8
SDRAMBA[1:0]

Address[11:0]

CS#

GND

CS#

GND

CS#

GND

CS#

GND
12-12 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
12.17.1.3 128-Mbit Devices

128-Mbit SDRAMs organized in x16 are partially sup-
ported. The support is provided for a 32-MB memory sys-
tem. It can only contain one rank (i.e. it cannot be extend-

ed using the other MM_CS# pins). There are two
possible connection schemes.

Figure 12-9 is backward compatible with TM-1300.
MM_CONFIG.SIZE must be set to 6 (i.e. 16 MB rank
size, Section 12.6.1).

Figure 12-9. Schematic of a 32-MB memory system consisting of two 4×2M×16 SDRAM chips (one rank)

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CLK[0] MM_DQ[31:16]

MM_DQ[15:0]MM_CLK[1]

33
 Ω

MM_DQM[1:0]

MM_DQM[3:2]

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

DQ[15:0]CLK

Control DQM[1:0]

4×2M×16
SDRAMBA[1:0]

Address[11:0]

M
M

_A
[1

1]

M
M

_C
S

#[
1]

DQ[15:0]CLK

Control DQM[1:0]

4×2M×16
SDRAMBA[1:0]

Address[11:0]

CS#

GND

CS#

GND
PRELIMINARY SPECIFICATION 12-13

PNX1300/01/02/11 Data Book Philips Semiconductors
Figure 12-10 is not backward compatible with TM-1300.
MM_CONFIG.SIZE must be set to 7 (i.e. 32 MB rank
size, Section 12.6.1). This new scheme has the advan-

tage of being compatible with the Figure 12-12. This al-
lows to build a system that receives 32- or 64-MB mem-
ory system with the exact same footprint.

Figure 12-10. Schematic of a 32-MB memory system consisting of two 4×2M×16 SDRAM chips (one rank)

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CLK[0] MM_DQ[31:16]

MM_DQ[15:0]MM_CLK[1]

3
3

Ω

MM_DQM[1:0]

MM_DQM[3:2]

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

DQ[15:0]CLK

Control DQM[1:0]

4×2M×16
SDRAMBA[1:0]

Address[11:0]

M
M

_A
[1

1]

M
M

_C
S

#[
2]

DQ[15:0]CLK

Control DQM[1:0]

4×2M×16
SDRAMBA[1:0]

Address[11:0]

CS#

GND

CS#

GND
12-14 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
128-Mbit SDRAMs organized in x32 can be used to build
16-, 32-, 48- or 64-MB memory systems. A 32-MB sys-
tem is pictured in Figure 12-11. A 16-MB system can be

obtained by removing the device controlled by
MM_CS#[1]. Similarly it can be extended to 48- or 64-MB
by adding devices controlled by MM_CS#[3:2].

DQ[31:0]CLK

Address[11:0]

Control DQM[3:0]

CS#

4×1M×32
SDRAM

M
M

_C
S

#[
1:

0]

M
M

_R
A

S
#,

 C
A

S
#,

 W
E

#,
 C

K
E

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CS#[0]

MM_CLK[1]

MM_DQM[3:0]

MM_DQ[31:0]

DQ[31:0]CLK

Control DQM[3:0]

CS#

MM_DQM[3:0]

MM_DQ[31:0]

MM_CS#[1]

MM_CLK[0]

3
3

Ω

M
M

_A
[1

2,
11

]

4×1M×32
SDRAM

BA[1:0]

Figure 12-11. Schematic of a 32-MB memory system consisting of two ranks of 4×1M×32 SDRAM chips.

BA[1:0]

Address[11:0]

PNX1300
PRELIMINARY SPECIFICATION 12-15

PNX1300/01/02/11 Data Book Philips Semiconductors
12.17.1.4 256-Mbit Devices

256-Mbit SDRAMs organized in x16 can be used to build
a 64-MB memory systems. Figure 12-12 details a 64-MB

memory system. MM_CONFIG.SIZE must be set to 7
(i.e. 32-MB rank size, Section 12.6.1).

Note the connections described in Figure 12-12 for the
256-Mbit SDRAMs organized in x16 can also be used to
connect the 128-Mbit SDRAM devices organized in x16
allowing the same footprint on the board for two different

memory size configurations (i.e. 64 MB or 32 MB). Refer
to Figure 12-10 for detailed connection of the 32-MB
case.

Figure 12-12. Schematic of a 64-MB memory system consisting of two 4×4M×16 SDRAM chips (one rank)

M
M

_C
S

#3
, M

M
_A

[1
3,

10
:0

]

M
M

_C
LK

[1
:0

]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CLK[0] MM_DQ[31:16]

MM_DQ[15:0]MM_CLK[1]

3
3

Ω

MM_DQM[1:0]

MM_DQM[3:2]

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

DQ[15:0]CLK

Control DQM[1:0]

4×4M×16
SDRAMBA[1:0]

Address[12:0]

M
M

_A
[1

1]
, M

M
_C

S
#2

DQ[15:0]CLK

Control DQM[1:0]

4×4M×16
SDRAMBA[1:0]

Address[12:0]

CS#

GND

CS#

GND
12-16 PRELIMINARY SPECIFICATION

Philips Semiconductors SDRAM Memory System
12.17.2 Block Diagrams for a 16-bit interface

The following figures (i.e. Figure 12-13, Figure 12-14
and Figure 12-15) detail the SDRAM connections for the
64-, 128- and 256-Mbit SDRAMs organized in x16. They
respectively build a memory system of 8-, 16- or 32-MB.

MM_CONFIG.SIZE must be set to 5 (i.e. 8-MB rank size,
Section 12.6.1) for all of the pictured configurations.

MM_CONFIG.BW must be set to ‘1’ (refer to bw,
Section 12.6.1).

Note the connections described in Figure 12-15 for the
256-Mbit SDRAM device organized in x16 can also be
used to connect a 128-Mbit SDRAM device organized in
x16, Figure 12-14, allowing the same footprint on the
board for two different memory size configurations (i.e.
32 MB or 16 MB).

Figure 12-13. Schematic of a 8-MB memory system consisting of one 4×1M×16 SDRAM chips (one rank)

MM_CLK[0] MM_DQ[15:0]

MM_DQM[1:0]

DQ[15:0]CLK

Control DQM[1:0]

4×1M×16
SDRAMBA[1:0]

Address[11:0]

CS#

GND

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[0
]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

33
 Ω

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

M
M

_A
[1

2,
11

]

Figure 12-14. Schematic of a 16-MB memory system consisting of one 4×2M×16 SDRAM chips (one rank)

M
M

_A
[1

3,
10

:0
]

M
M

_C
LK

[0
]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CLK[0] MM_DQ[15:0]

3
3

Ω

MM_DQM[1:0]

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

M
M

_A
[1

1]
, M

M
_C

S
#2

DQ[15:0]CLK

Control DQM[1:0]

4×2M×16
SDRAMBA[1:0]

Address[11:0]

CS#

GND
PRELIMINARY SPECIFICATION 12-17

PNX1300/01/02/11 Data Book Philips Semiconductors
Figure 12-15. Schematic of a 32-MB memory system consisting of one 4×4M×16 SDRAM chips (one rank)

M
M

_C
S

#3
,M

M
_A

[1
3,

10
:0

]

M
M

_C
LK

[0
]

M
M

_D
Q

[3
1:

0]

M
M

_D
Q

M
[3

:0
]

MM_CLK[0] MM_DQ[15:0]

3
3

Ω

MM_DQM[1:0]

PNX1300

M
M

_R
A

S
, C

A
S

, W
E

#,
 C

K
E

M
M

_A
[1

1]
, M

M
_C

S
#2

DQ[15:0]CLK

Control DQM[1:0]

4×4M×16
SDRAMBA[1:0]

Address[12:0]

CS#

GND
12-18 PRELIMINARY SPECIFICATION

System Boot Chapter 13

by Gert Slavenburg, Bob Bradfield, and Hani Salloum

13.1 BOOT SEQUENCE OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

Before a PNX1300 system can begin operating, the
main-memory interface (MMI) registers and on-chip
clock ratio register must be configured. Since the
DSPCPU cannot begin operating until after these regis-
ters and circuits are initialized, the DSPCPU cannot be
relied on to initialize these resources. Consequently,
PNX1300 needs an independent bootstrap facility for
low-level initialization.

PNX1300 implements low-level system initialization by
combining a small block of on-chip system boot logic with
a single external serial boot EEPROM connected to the
I2C interface. See Figure 13-1. Serial EEPROMs with an
I2C interface are slow but have the advantages of being
space-efficient and inexpensive. The amount of informa-
tion needed for initial system boot is small, so speed is
not a concern.

The PNX1300 system boot block performs differently for
each of two major types of PNX1300 system, distin-
guished by host-assisted and autonomous bootstrap-
ping. The most significant bit of the tenth byte in the ex-
ternal EEPROM determines the system boot procedure
and must match the system configuration.

In host-assisted bootstrapping, a PNX1300 device is in-
tegrated into a system where some other processor
serves as the host. For example, a PNX1300 chip might

be part of a PCI card in a standard personal computer
(PC). In this case, the PNX1300 system boot only needs
to load enough information from the serial EEPROM to
configure the on-chip timing circuits and MMI; the host
processor can perform all other PNX1300 setup chores.

In the second type of system, autonomous bootstrapping
takes place. In this configuration, a PNX1300 device
serves as the host (main) processor; consequently, the
PNX1300 system boot must perform more work. In addi-
tion to configuring on-chip timing and the MMI, the sys-
tem boot must set the base addresses of the main mem-
ory and MMIO address apertures and load into main
memory a level 1 bootstrap program for the DSPCPU.

Only the first 10 bytes of the serial EEPROM are needed
when PNX1300 is not the host PCI processor; thus, such
systems can use a very low-cost 128-byte EEPROM de-
vice. When PNX1300 serves as the system’s host pro-
cessor, the boot logic permits almost 2 KB of storage for
the level 1 bootstrap DSPCPU program in a single eight-
pin EEPROM device.Figure 13-1. The system boot logic uses the I2C in-

terface to access a serial EEPROM that contains
main-memory and system timing information.

4
.7

K
 Ω

PNX1300

System Boot
Block

I2C Interface Serial
EEPROM

SCL

SDA

4
.7

K
 Ω

Vdd

Table 13-1. System Boot Features

Characteristic Comments

Boot Configurations
Supported

• Host assisted, e.g., PNX1300 is a
PCI slave in a standard PC.

• Autonomous, e.g., PNX1300 is the
host PCI processor.

ROM Device Types
Supported

• Single standard I2C serial
EEPROMs from 128 bytes to 2KB in
size.

• EEPROMs connect via the
PNX1300 built-in 2-wire I2C inter-
face.

• The use of EEPROMs with hard-
ware Write Protect (WP) is recom-
mended. A jumper on WP allows
user control over in-system repro-

gramming using the I2C interface.
• The EEPROM must respond to I2C

device address 1010.

ROM device
examples

• Atmel 24C01A (128 bytes, WP)
• Atmel 24C08 (1KB, WP)
• Atmel 24C16 (2KB, WP).

ROM size • From 128 bytes to 2 KB (one
device) for initial program load.
PRELIMINARY SPECIFICATION 13-1

PNX1300/01/02/11 Data Book Philips Semiconductors
13.2 BOOT HARDWARE OPERATION

The PNX1300 boot sequence begins with the assertion
of the reset signal TRI_RESET#. After reset is de-assert-
ed, only the system boot block, I2C, and PCI interfaces
are allowed to operate. In particular, the DSPCPU and
the internal data highway bus will remain in the reset
state until they are explicitly released during the boot pro-
cedure. In autonomous boot, the system boot block is re-
sponsible for releasing the DSPCPU and highway from
reset. In host-assisted boot, the boot logic releases the
highway from reset and the PNX1300 software driver
(which runs on the host processor) releases the
DSPCPU from reset.

The system boot block operation is illustrated in a flow
chart shown in Figure 13-2.

13.2.1 Boot Procedure Common to Both
Autonomous and Host-Assisted
Bootstrap

There should be no other I2C master active from reset
until boot EEPROM load completes. The system boot
procedure begins by loading a few critical pieces of infor-
mation from the serial EEPROM. This part of the proce-
dure is common to both autonomous and host-assisted
bootstrapping. See Table 13-2 for a summary and
Table 13-5 for full bit-accurate EEPROM layout details.

The first byte of the EEPROM is read using a serial clock
equal to BOOT_CLK/1000, which is guaranteed to be
less than 100 kHz. After reading the first byte, which con-
tains the actual BOOT_CLK rate as well as the EEPROM
speed capability, the boot block proceeds to read subse-
quent bytes at the highest valid speed.

The number of lines in the EEPROM device should be ‘0’
in case of a 128-byte device and ‘1’ for larger devices.

The SDRAM aperture size should be set to the smallest
size that is larger than or equal to the actual size of
SDRAM connected to PNX1300. The SDRAM aperture
size information is forwarded to the PCI interface for use
in host BIOS configuration, as described in Section
13.3.2, “Stage 2: Host-System PCI Configuration.”

The BOOT_CLK speed bits should be set to match the
closest rounded up frequency of the external clock cir-
cuit, i.e. for an external clock of 40 MHz or 50 MHz the
value should be 10. This field, together with the EE-
PROM maximum clock speed bit are used to decide the
best possible divider ratio for generation of the I2C clock,
as shown in Table 13-3. In addition, the delay actions in
Figure 13-2 are taken based on the specified
BOOT_CLK value.

The EEPROM maximum clock speed bit is set to match
the speed grade of the serial EEPROM device.

The test mode bit should always be set to ‘0’. It is only set
to one for factory ATE testing.

The Subsystem ID and Subsystem Vendor ID data has
no meaning to the PNX1300 hardware; its meaning is
entirely software defined. The value is loaded by the sys-

tem boot block from the EEPROM and published in the
PCI configuration space register at offset 0x2C to pro-
vide the 16-bit Subsystem ID and Subsystem Vendor ID
values. These values are used by driver software to dis-
tinguish the board vendor and product revision informa-
tion for multiple board products based on the PNX1300
chip. Refer to Section 11.5.12, “Subsystem ID, Sub-

Table 13-2. Information Loaded During First Part of
Bootstrapping Procedure

Information Size Interpretation

Number of lines in
EEPROM device

1 bit 0 128 lines

1 256 or more lines

SDRAM aperture size 3 bits 000 1 MB

001 1 MB

010 2 MB

011 4 MB

100 8 MB

101 16 MB

110 32 MB

111 64 MB

BOOT_CLK speed 2 bits 00 100 MHz

01 75 MHz

10 50 MHz

11 33 MHz

I2C clock speed 1 bit 0 100 KHz

1 400 KHz

Test mode 1 bit 0 normal operation

1 rapid ATE testing

Subsystem ID 16 bits Value is copied to Sub-
system ID register in PCI
configuration space.

Subsystem Vendor ID 16 bits Value is copied to Sub-
system Vendor ID regis-
ter in PCI config space.

MM_CONFIG register
initialization

20 bits Value is simply written to
the MM_CONFIG regis-
ter; see Section 12.6.1,
“MM_CONFIG Register.”

PLL_RATIOS register
initialization

8 bits Value is simply written to
the PLL_RATIOS regis-
ter; see Section 12.6.2,
“PLL_RATIOS Register.”

Autonomous/host-
assisted boot

1 bit 0 host-assisted

1 autonomous

Enable internal
PCI_CLK

1 bit

0 PCI_CLK taken
from outside

1 use on-chip XIO
PCI_CLK clock
generator
Note: MUST be set
if no external PCI
clock is supplied

SDRAM prefetchable 1 bit 0 not prefetchable

1 prefetchable
13-2 PRELIMINARY SPECIFICATION

Philips Semiconductors System Boot
system Vendor ID Register,” for more information on the
choice of values.

The MM_CONFIG and PLL_RATIOS registers control
the hardware of the MMI and PNX1300 on-chip clock cir-
cuits. These registers are described in detail in Section
12.6, “Memory System Programming.” The boot value
should be set to reflect the exact capabilities of the actual
SDRAM in the system.

The ‘enable internal PCI_CLK generator’ bit determines
the PCI_CLK pin operating mode. If this bit is ‘0’,
PCI_CLK acts compatible with TM-1000 and normal PCI

operation, i.e. it is an input pin that takes PCI clock from
the external world. If this bit is ‘1’, an on-chip clock divider
in the XIO logic becomes the source of PCI_CLK, and
the PCI_CLK pin is configured as an output. In the latter
case, the PCI_CLK frequency can be programmed to a
divider of the PNX1300 highway clock by setting the
XIO_CTL register ‘Clock Frequency’ divider value. Refer
to Chapter 22, “PCI-XIO External I/O Bus.” Note: This bit
must be set if no external PCI clock is supplied.

The ‘SDRAM prefetchable’ bit is copied to the PCI con-
figuration space register DRAM_BASE and only visible
as bit #3 (P bit) of DRAM_BASE in a PCI configuration
read, but not visible by MMIO access. Its purpose is to
tell the PCI host, that SDRAM reads will cause no side ef-
fects. The host may apply optimizations on PCI access,
if this bit is set.

The ‘autonomous/host-assisted boot’ bit determines
whether the system boot logic will continue reading more
information from the EEPROM or halt its operation so the
host can complete system initialization. After the infor-
mation listed in Table 13-2 has been loaded into
PNX1300 registers, an external PCI host processor can
finish the initialization of PNX1300. If no external PCI
host processor is present, the autonomous/host-assisted
boot bit should be set to ‘1’ to allow the system boot logic
to load the information described in the next section.

Table 13-3I2C speed as a function of EEPROM byte 0

BOOT_CLK
bits

EEPROM
speed bit

divider
value

actual I2C
speed

00 (100 MHz) 0 (100 KHz) 1008 99.2 KHz

00 1 (400 KHz) 256 390.6 KHz

01 (75 MHz) 0 (100 KHz) 752 99.7 KHz

01 1 (400 KHz) 192 390.6 KHz

10 (50 MHz) 0 (100 KHz) 512 97.6 KHz

10 1 (400 KHz) 128 390.6 KHz

11 (33 MHz) 0 (100 KHz) 336 98.2 KHz

11 1 (400 KHz) 96 343.8 KHz
PRELIMINARY SPECIFICATION 13-3

PNX1300/01/02/11 Data Book Philips Semiconductors
TRI_RESET#
de-asserted

8-bit serial read:
1 bit: EPROM capacity

3 bits: DRAM aperture size
2 bits: PNX1300 clock speed

1 bit: I2C clock rate
1 bit: Test mode control

Write to EEPROM
size register

Write aperture size to
DRAM_ROUND_SIZE
size register in PCI BIU

Write to PNX1300
clock speed register

32-bit serial read

Write to
SUBSYSTEM ID

registers in PCI BIU

Write 20 bits to
MM_CONFIG
register in MMI

Write to
PLL_RATIOS

register in MMI

Disable
MMI_RESET

to activate highway

Autonomous
Boot

YesNo

System boot halts
(Host driver will complete

the boot procedure)

Save 11-bit
byte count

Write to
MMIO space:
MMIO_BASE

Write to
MMIO space:
DRAM_BASE

Write to
MMIO space:

DRAM_CACHEABLE_LIMIT

Bytecount == 0 YesNo

Write to SDRAM
Write 32 bits of code onto highway

with all byte enables active.
Then execute 15 dummy writes on

highway to meet MMI protocol.

Decrement byte
count by four

Write to MMIO space:
Disable CPU_RESET.

DSPCPU starts execution at
DRAM_BASE in big-endian mode.

System boot halts

24-bit serial read

8-bit serial read

8-bit serial read

64-bit serial read

8-bit serial read

64-bit serial read

64-bit serial read

32-bit serial read

32-bit serial read
Wait 400 usec for

PLLs to lock

Wait ca. 0.6 msec for
I2C to stabilize

Figure 13-2. Flow chart of system boot procedure for both host-assisted and autonomous configurations.
13-4 PRELIMINARY SPECIFICATION

Philips Semiconductors System Boot
13.2.2 Initial DSPCPU Program Load for
Autonomous Bootstrap

In a system where PNX1300 serves as the host CPU, the
system boot block performs an autonomous boot proce-
dure. For an autonomous boot, the system boot block
reads all the information described in Section 13.2.1,
“Boot Procedure Common to Both Autonomous and
Host-Assisted Bootstrap,” and then—because the au-
tonomous boot bit is set—continues reading information
from the EEPROM. After this part of the system boot pro-
cedure is done, the DSPCPU starts executing. See
Table 13-4.

The DSPCPU bootstrap program byte count encodes the
number of bytes of DSPCPU program code contained in
the EEPROM(s). This 11-bit unsigned byte count can en-
code up to 2048 bytes, which is also the maximum
amount of EEPROM storage supported. The actual
amount of EEPROM available for the DSPCPU boot-
strap program is limited to 2000 bytes. Other information
consumes 47 bytes, and the DSPCPU code must be an
integral number of 32-bit words.

Four pairs of 32-bit MMIO-register addresses and values
follow the bootstrap program byte count. Each address
tells the boot block where in the 32-bit DSPCPU address
space to store the corresponding 32-bit value.

The first pair initializes the MMIO_BASE. The
MMIO_BASE sets the base address of the 2-MB MMIO-
register address aperture within the DSPCPU 32-bit ad-
dress space. All MMIO registers are addressed using an
offset that is relative to the value of MMIO_BASE. For
this pair, the address is required to be 0xEFF00400 be-
cause that is the default MMIO_BASE enforced when
PNX1300 is reset. The new value for MMIO_BASE is en-
coded in the corresponding value.

The DRAM_BASE address/value pair determine the
base address of the SDRAM address aperture within the
32-bit DSPCPU address space. The address must be
equal to 0x100000 plus the new value of MMIO_BASE
set previously in the boot procedure. The DRAM_BASE
value must be naturally aligned given the rounded DRAM
aperture size, i.e. a 6 MB DRAM aperture should start on
a 8 MB address multiple.

The DRAM_LIMIT address/value pair determine the ex-
tent of the SDRAM address aperture. The address must
be equal to 0x100004 plus the new value of
MMIO_BASE set previously in the boot procedure. The
value in DRAM_LIMIT should be 1 higher than the ad-
dress of the last valid byte of SDRAM memory, and must
be a 64 KB multiple.

The DRAM_CACHEABLE_LIMIT address/value pair de-
termine the extent of the cacheable aperture of the
SDRAM address space. The address must be equal to
0x100008 plus the value of MMIO_BASE set previously
in the boot procedure. The cacheable aperture always
begins at the address value in DRAM_BASE; the value
in DRAM_CACHEABLE_LIMIT is one higher than the
address of the last byte of cacheable SDRAM memory,
and must be a 64 KB multiple. It is safe to initially set the
value of DRAM_CACHEABLE_LIMIT equal to

DRAM_LIMIT. The RTOS can, if desired, change the val-
ue later.

The next 32-bit value in boot EEPROM memory is a copy
of the DRAM_BASE value encoded previously. The sys-
tem boot hardware loads the DSPCPU bootstrap pro-
gram into SDRAM starting at DRAM_BASE.

The bytes of the DSPCPU bootstrap program follow the
copy of the SDRAM_BASE value. The bootstrap pro-

Table 13-4. Information Loaded During Second Part
of Bootstrapping Procedure for Autonomous Boot

Information Size Interpretation

DSPCPU bootstrap pro-
gram byte count n

11 bits up to 500 32-bit words
(2048 bytes less 47 header
bytes)

MMIO_BASE address 32 bits Value must be
0xEFF00400

MMIO_BASE value 32 bits Value is simply written to
0xEFF00400 to determine
new base address of 2-MB
MMIO register aperture
within 32-bit DSPCPU
address space

DRAM_BASE address 32 bits MMIO_BASE + 0x100000

DRAM_BASE value 32-
bits

Value is simply written to
DRAM_BASE to determine
base address of SDRAM
aperture within 32-bit
DSPCPU address space

DRAM_LIMIT address 32-
bits

MMIO_BASE + 0x100004

DRAM_LIMIT value 32-
bits

Value is simply written to
DRAM_LIMIT to deter-
mine limit address of
SDRAM aperture within
32-bit DSPCPU address
space

DRAM_CACHEABLE_
LIMIT address

32-
bits

MMIO_BASE + 0x100008

DRAM_CACHEABLE_
LIMIT value

32-
bits

Value is simply written to
DRAM_CACHEABLE_LIM
IT to determine limit
address of cacheable part
of SDRAM aperture within
32-bit DSPCPU address
space

DRAM_BASE value 32-
bits

Copy of the DRAM_BASE;
must be equal to value
specified above

SDRAM code word 0 32-
bits

First 32-bit word of initial
DSPCPU bootstrap pro-
gram

SDRAM code word 1 32-
bits

Second 32-bit word of ini-
tial DSPCPU bootstrap
program

.

.

.

.

.

.

.

.

.

SDRAM code word n/4 32 bits Last 32-bit word of initial
DSPCPU bootstrap pro-
gram
PRELIMINARY SPECIFICATION 13-5

PNX1300/01/02/11 Data Book Philips Semiconductors
gram can consist of up to 500 32-bit words of DSPCPU
instructions. The byte count must be a multiple of four.
Note that the bytes are stored in the EEPROM in a byte
swapped order per group of 4 compared to SDRAM, as
detailed in Table 13-5.

After the entire DSPCPU bootstrap program is loaded
into SDRAM at DRAM_BASE, the system boot logic re-
leases the DSPCPU from the reset state. At this point,
the DSPCPU begins executing the bootstrap program
starting at DRAM_BASE and PNX1300 is fully operation-
al. At the same time, the boot logic releases the I2C inter-
face.

13.3 HOST-ASSISTED BOOT
DESCRIPTION

For a host-assisted bootstrap, the complete bootstrap
process consists of three distinct stages, but the system
boot hardware performs only the first stage. The other
two stages are the responsibility of the host system.

13.3.1 Stage 1: PNX1300 System Boot
Hardware

In the first stage, the PNX1300 hardware must be initial-
ized enough to allow the host system to query and ma-
nipulate PNX1300 resources. The system boot hard-
ware, using the procedure described above in Section
13.2.1, “Boot Procedure Common to Both Autonomous
and Host-Assisted Bootstrap,” initializes the Subsystem
ID, Subsystem Vendor ID, MM_CONFIG, and
PLL_RATIOS registers, waits for the PLLs to lock, en-
ables the internal highway and MMI, but leaves the
DSPCPU in the reset state. After this minimal initializa-
tion, the host system can finish the bootstrap process.

At the completion of stage 1, the PNX1300 hardware is
ready to respond to PCI configuration space accesses,
and the boot block has released the I2C interface.

13.3.2 Stage 2: Host-System PCI
Configuration

Stage 2 is carried out either by the host-system PCI
BIOS or by a combination of the BIOS and the host op-
erating system (e.g., Windows 95). During this stage, the
host system configures all PCI-bus clients.

The PCI-bus configuration consists of querying the bus
clients to determine the following:

• The number of PCI base-address registers imple-
mented by each client. For PNX1300, the number of
PCI base-address registers is always two
(MMIO_BASE and DRAM_BASE).

• The size of each aperture associated with the base-
address registers. For PNX1300, the size of the
MMIO aperture is always 2 MB. The size of the
SDRAM aperture can range from 1 MB to 64 MB,
and the size must be a power of two (seven distinct
sizes).

Using this information, the host system relocates each
address aperture to eliminate overlaps in the PCI ad-
dress space. The host system accomplishes the reloca-
tion by considering each aperture’s size and then writing
an appropriate starting address to each base-address
register. For PNX1300, the base addresses of the MMIO
and SDRAM apertures must be relocated in this way.
Note that in the case of autonomous boot, this relocation
is done statically by the system boot hardware when it
simply copies the values of MMIO_BASE and
DRAM_BASE from the serial EEPROM into these regis-
ters.

The steps of the PCI protocol for determining the size of
an address aperture are as follows (see Section 11.5.11,
“Base Address Registers,” for a more complete discus-
sion):

• The host writes a 32-bit word of all ‘1’s (0xffffffff) to
the base-address register.

• The host reads the base-address register immedi-
ately after the write. The value returned will have ‘0’s
in all don’t-care bits and ‘1’s in all required address
bits. The required address bits form a left-aligned
(i.e., starting at the most-significant bit) contiguous
field of ‘1’s.

• This left-aligned field of ‘1’s effectively specifies the
size of the address aperture by indicating the bits of
the base-address register that are significant for relo-
cation. That is, an address aperture of size 2n can
only begin on a 2n-byte-aligned boundary.

As an example, consider the case of the MMIO aperture.
The host will perform the following steps during stage 2
of the bootstrap process:

• Write 0xffffffff to MMIO_BASE.
• Read from MMIO_BASE, which returns the value

0xffe00000. The host sees that this value has an 11-
bit left-aligned field of ‘1’s, which indicates that the
aperture can only be relocated on 2-MB boundaries;
thus, the aperture size is 2 MB.

• Write a new value to MMIO_BASE with the top 11
bits set to relocate the MMIO aperture to a 2-MB
region of PCI address space that does not conflict
with other PCI address apertures.

At the completion of stage 2, the PNX1300 hardware is
ready to respond to host configuration space accesses,
host MMIO accesses and host SDRAM aperture access-
es. The DSPCPU is still in RESET state.

13.3.3 Stage 3: PNX1300 Driver Executing on
the Host

During the final stage of the bootstrap process, the
PNX1300 software driver executing on the host system
will write to SDRAM a program for the DSPCPU, and ini-
tialize any MMIO registers. When the initial program load
is complete, the driver releases the DSPCPU from its re-
set state by a write to the BIU_CTL register with the CR
bit set. See Chapter 11, “PCI Interface.” Now, with the
DSPCPU and host both running, the PNX1300 bootstrap
process is complete.
13-6 PRELIMINARY SPECIFICATION

Philips Semiconductors System Boot
13.4 DETAILED EEPROM CONTENTS

Table 13-5 shows the serial EEPROM contents needed
for an autonomous boot procedure. For the host-assisted

boot procedure, only the contents up to line nine are
needed.

Note that the 32-bit words in the serial EEPROM are not
stored on 32-bit word-aligned addresses.

Table 13-5. Serial boot EEPROM contents

Line
Data Byte

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

0

#lines
0: 128 lines

1: 256 or more
lines

SDRAM size[2:0]
000: 1MB
001: 1MB
010: 2MB
011: 4MB
100: 8MB

101: 16MB
110: 32MB
111: 64MB

BOOT_CLK[1:0]
00: 100 MHz
01: 75 MHz
10: 50 MHz
11: 33 MHz

EEPROM
clock

0: 100 KHz
1: 400 KHz

Test Mode
0: normal

1: rapid ATE

1
2
3
4

Subsystem ID, 8 msb
Subsystem ID, 8 lsb

Subsystem Vendor ID, 8 msb
Subsystem Vendor ID, 8 lsb

5
6
7

— — — — MM_CONFIG[19:16]

MM_CONFIG[15:8]
MM_CONFIG[7:0]

8
PLL_RATIOS[7:0]

sdram PLL
bypass

sdram PLL dis-
able cpu PLL bypass cpu PLL disable sdram ratio cpu ratio[2:0]

9
boot type

0: host assist.
1: autonomous

enable inter-
nal PCI_CLK

SDRAM
prefetchable
0:no 1:yes

— — byte count [10:8]

10 byte count [7:0]

11
12
13
14

MMIO_BASE address [31:24] (must be 0xEF)
MMIO_BASE address [23:16] (must be 0xF0)
MMIO_BASE address [15:8] (must be 0x04)
MMIO_BASE address [15:8] (must be 0x00)

15
16
17
18

MMIO_BASE value [31:24]
MMIO_BASE value [23:16]
MMIO_BASE value [15:8]
MMIO_BASE value [7:0]

19
20
21
22

DRAM_BASE address [31:24] (must be byte 3 of MMIO_BASE + 0x100000)
DRAM_BASE address [23:16] (must be byte 2 of MMIO_BASE + 0x100000)
DRAM_BASE address [15:8] (must be byte 1 of MMIO_BASE + 0x100000)
DRAM_BASE address [7:0] (must be byte 0 of MMIO_BASE + 0x100000)

23
24
25
26

DRAM_BASE value [31:24]
DRAM_BASE value [23:16]
DRAM_BASE value [15:8]
DRAM_BASE value [7:0]

27
28
29
30

DRAM_LIMIT address [31:24] (must be byte 3 of MMIO_BASE + 0x100004)
DRAM_LIMIT address [23:16] (must be byte 2 of MMIO_BASE + 0x100004)
DRAM_LIMIT address [15:8] (must be byte 1 of MMIO_BASE + 0x100004)
DRAM_LIMIT address [7:0] (must be byte 0 of MMIO_BASE + 0x100004)

31
32
33
34

DRAM_LIMIT value [31:24]
DRAM_LIMIT value [23:16]
DRAM_LIMIT value [15:8]
DRAM_LIMIT value [7:0]

35
36
37
38

DRAM_CACHEABLE_LIMIT address [31:24] (must be byte 3 of MMIO_BASE + 0x100008)
DRAM_CACHEABLE_LIMIT address [23:16] (must be byte 2 of MMIO_BASE + 0x100008)
DRAM_CACHEABLE_LIMIT address [15:8] (must be byte 1 of MMIO_BASE + 0x100008)
DRAM_CACHEABLE_LIMIT address [7:0] (must be byte 0 of MMIO_BASE + 0x100008)
PRELIMINARY SPECIFICATION 13-7

PNX1300/01/02/11 Data Book Philips Semiconductors
39
40
41
42

DRAM_CACHEABLE_LIMIT value [31:24]
DRAM_CACHEABLE_LIMIT value [23:16]
DRAM_CACHEABLE_LIMIT value [15:8]
DRAM_CACHEABLE_LIMIT value [7:0]

43
44
45
46

repeat of DRAM_BASE value [31:24]
repeat of DRAM_BASE value [23:16]
repeat of DRAM_BASE value [15:8]
repeat of DRAM_BASE value [7:0]

47
48
49
50

byte 0 of DSPCPU bootstrap program (stored at DRAM_BASE + 3)
byte 1 of DSPCPU bootstrap program (stored at DRAM_BASE + 2)
byte 2 of DSPCPU bootstrap program (stored at DRAM_BASE + 1)
byte 3 of DSPCPU bootstrap program (stored at DRAM_BASE + 0)

.

.

.

.

.

.

j+47 byte j of DSPCPU bootstrap program (stored at DRAM_BASE + ((j div 4) + (3 – (j mod 4))))

.

.

.

.

.

.

(n–1)
+47 last byte of DSPCPU bootstrap program (bits [7:0] of last 32-bit word, stored at DRAM_BASE + n – 4)

Table 13-5. Serial boot EEPROM contents

Line
Data Byte

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
13-8 PRELIMINARY SPECIFICATION

Philips Semiconductors System Boot
13.5 EEPROM ACCESS PROTOCOLS

Figure 13-3 shows the SDA (serial data) line protocols
for three types of read accesses supported by I2C serial
EEPROMs. A read from the address currently latched in-
side the EEPROM can be for either a single byte or for
an arbitrary series of sequential bytes. The master
makes the choice by setting the ACK bit after a byte has
been transferred.

A random-access read is accomplished by performing a
dummy write, which overwrites the latched address
stored inside the EEPROM. Once the internal address
latch is set to the desired value, one of the other two read
protocols can be used to read one or more bytes.

The boot logic inside PNX1300 uses a single random
read transaction to location 0 of device address 1010000
followed by a sequential read extension to read all re-
quired EEPROM bytes in a single pass.

SDA Line Protocol:
Random Read

S
T
A
R
T

Device Address

W
R
I
T
E

W
A
7

W
A
6

W
A
5

W
A
4

W
A
3

W
A
2

W
A
1

W
A
0 1 0 1 0

A
0

P
1

P
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

S
T
A
R
T

R
E
A
D

S
T
O
P

A
C
K

A
C
K

A
C
K1 0 1 0

D
A
0

P
A
0

P
A
0

N
O

A
C
K

Device Address

Dummy Write

1 0 1 0
A
0

P
0

P
0

S
T
A
R
T

R
E
A
D

S
T
O
P

A
C
K

A
C
K

Device Address

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

N
O

A
C
K

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A
C
K

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A
C
K

SDA Line Protocol:
Sequential Read

Data n Data n+1 Data n+2 Data n+3

1 0 1 0
A
0

P
0

P
0

S
T
A
R
T

R
E
A
D

A
C
K

N
O

A
C
K

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

SDA Line Protocol:
Current-Address Read

Data n

Device Address

S
T
O
P

Figure 13-3. Protocols supported by the boot block for reading the EEPROM
PRELIMINARY SPECIFICATION 13-9

PNX1300/01/02/11 Data Book Philips Semiconductors
13-10 PRELIMINARY SPECIFICATION

Image Coprocessor Chapter 14

14.1 IMAGE COPROCESSOR OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The Image Coprocessor (ICP) connects to the PNX1300
on-chip data highway to perform SDRAM block read and
write actions. It also connects to the PCI interface to al-
low block write transactions across PCI.

The major functions of the ICP are:

• Filter an image by reading the image from SDRAM
and writing the image back to SDRAM, while apply-
ing a user-defined polyphase filter with optional hori-
zontal up- or down-scaling.

• Filter an image by reading the image from SDRAM
and writing the image back to SDRAM, while apply-
ing a user defined polyphase filter with optional verti-
cal up- or down-scaling.

• Filter an image and convert it from planar to RGB or
YUV composite by reading the image from SDRAM
and writing the image out to PCI bus memory (graph-
ics card) or SDRAM, while performing horizontal
scaling and conversion to one of a several RGB or
YUV formats. The programmer can add optional bit-
map masking to selectively enable/disable pixel
writes to PCI (to refresh only the exposed part of a
video window) and an optional image overlay with
alpha blending and optional chroma keying (PCI out-
put only).

• Move an image by reading the image from SDRAM
and writing it back to SDRAM.

All of the ICP functions move and transform data from
memory to memory or memory to the PCI bus. Hence,
the DSPCPU can use the ICP in a time-sharing fashion
to simultaneously achieve:

1. Vertical and horizontal resizing/subsampling on the
image stream from the Video In (VI) unit.

2. Vertical and horizontal resizing/upsampling on the im-
age stream sent to the Video Out (VO) unit.

3. Presentation of a collection of live video windows with
programmable up and down scaling and arbitrary
overlap configuration on PCI graphics cards.1

Full 2D scaling and filtering requires two passes over the
data: one for horizontal scaling and filtering and one for
vertical scaling and filtering.

Figure 14-1 shows a block diagram of the PNX1300 with
the ICP. Figure 14-2 shows a block diagram of the inter-
nal structure of the ICP. The ICP contains a 5-tap filter,
YUV to RGB converter, an overlay and alpha blending
unit, and an output formatter. These blocks communicate
with each other through FIFOs that also buffer the block
data to and from the PNX1300 Data Highway. The ICP
uses a microprogram-controlled sequencer to control its
internal timing. The program for this sequencer is in a ta-
ble in SDRAM. The ICP reads the appropriate portion
from the SDRAM each time the ICP is commanded to
perform a function. Microprogram control simplifies and
minimizes the ICP hardware and increases the flexibility
of the ICP to perform additional tasks without adding
hardware.

14.2 REQUIREMENTS

14.2.1 Functions

The major functions of the ICP include:

1. Read an image from SDRAM and write the image
back to SDRAM, while applying a user defined
polyphase filter with optional up or down scaling in
horizontal direction.

2. Read an image from SDRAM and write the image
back to SDRAM, while applying a user defined
polyphase filter with optional up or down scaling in
vertical direction.

3. Read an image from SDRAM and write the image out
to PCI bus memory (graphics card) or SDRAM, while
performing horizontal scaling and conversion to one
of a several RGB and YUV formats. The PCI output
mode includes optional bitmap masking to selectively
enable/disable pixel writes to PCI (to refresh only the
exposed part of a video window) and optional RGB
overlay with alpha blending and optional chroma key-
ing.

14.2.2 Bandwidth

ICP bandwidth can be estimated from the worst-case im-
age processing bandwidth. If the worst case image is
1024 x 768 at 30 Hz in YUV 4:2:2 format, the pixel rate is
1024 x 768 x 30 = 23.59 Mpix/sec. For YUV 4:2:2 image
coding at 2 bytes per pixel, this is 23.59 x 2 = 47.19 MB/

1. Note that function 2 and 3 don’t normally occur simulta-
neously, and if an application attempts both simulta-
neously, some performance limitations are incurred.
PRELIMINARY SPECIFICATION 14-1

PNX1300/01/02/11 Data Book Philips Semiconductors
sec. The minimum bandwidth for the ICP function is
therefore 47.18 MB/sec., or approximately 50 MB/sec.

Video DMA In

Audio DMA In

Audio DMA Out

I$

D$

I2C Interface

Image
coprocessor

PNX1300Memory
Controller

PCI Master/Slave Interface

VLD

Video Out

Digital

DMSD
or Raw

Video

Serial
Digital
Audio

JTAG

Clock

PCI Local Bus

SDRAM

SDRAM
Highway

SSI

Camera

Figure 14-1. PNX1300 chip block diagram

DSPCPU

Coprocessor

FIFO
Bank

5-tap
Filter

Microprogram Control Unit

To
 P

C
I

Y

U

V

Overlay

Bit Mask

To SDRAM

Microcode

O
ve

rla
y

+
A

lp
ha

 B
le

nd
in

g
+

C

hr
om

a
K

ey
in

g

Y
U

V
 =

>
 R

G
B

C
on

ve
rs

io
n

O
ut

pu
t F

or
m

at
tin

g
+

B

it
M

as
ki

ng

Image Coprocessor

Overlay

Bit Mask

To SDRAM

P
N

X
13

00
 D

at
a

H
ig

hw
ay

Figure 14-2. Image coprocessor block diagram
14-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
Scaling and filtering of the two dimensional image re-
quires two passes of the image data through the filter,
one for vertical and one for horizontal. Scaling an image
and sending it to the PCI bus requires three transfers of
the image over the SDRAM bus: one transfer to read the
image for vertical filtering, one transfer to write the fil-
tered data back, and one transfer to read the image for
horizontal filtering and output to the PCI bus. This means
an average of SDRAM bus bandwidth of 3 x 50 = 150
MB/sec for the 1024 x 768 image case described above,
assuming a scaling factor of 1.0. A larger or smaller scal-
ing factor means that either the input or output image will
be smaller than 1024 x 768. The bandwidths required are
determined by the larger of the two images, input or out-
put. This is because all input pixels must be scanned to
generate all the output pixels.

14.2.3 Image Size and Scaling

Image sizes in the PNX1300 have a nominal range of 16
x 16 to 1024 x 768. Sizes smaller than 16 x 16 are pos-
sible, but are too small to be recognizable images. Imag-
es larger than 1024 x 768 (up to 64 K x 64 K) are possible
but they cannot be processed in real time and require
larger SDRAM sizes. Scaling factors have a nominal
range of 1/4 (down scaling by 4) to 4 (upscaling by 4).
Larger up and down scaling factors are possible, up to
1000 and beyond; however, very large upscaling factors
result in a large magnification of a few pixels, and very
large down scaling factors give only a few pixels as a re-
sult.

14.3 INTERFACE

The ICP unit has no PNX1300 external pins. It interfaces
internally to the Data Highway and the PCI Interface.

14.4 DATA FORMATS

The ICP unit accepts input and overlay image data to
generate output image data. The ICP accommodates a
variety of formats for the input, overlay and output data.
These image data formats define the relationship be-
tween the Y, U, and V or R, G, and B components of the
image as they are stored in memory. The ICP accepts in-
put image data in planar format, where the Y, U and V
components are in separate tables in SDRAM. The vari-
ous input image data formats differ in the position of the
U and V components relative to the Y component and the
amount of U and V data relative to the Y data.

In all modes except the YUV to RGB conversion modes,
each ICP operation processes one Y, U, or V image com-
ponent. Three separate commands are required to pro-
cess all three components of an image. Since each com-
ponent is scaled and filtered separately, the software
defines the image format and format conversion by how
it scales each component.

For pixel format conversion for PCI or SDRAM output
mode, each output pixel is a combination of RGB or YUV
components as defined by the output format. The YUV
input data and the RGB or YUV overlay data are com-
bined by the ICP hardware pixel by pixel to form the RGB
or YUV output pixels. Because all three YUV compo-
nents are simultaneously woven together to create each
output pixel, the ICP hardware must know the image
data format in SDRAM, defined as how the components
of the image data are to be found and combined.

In the YUV to RGB conversion mode, the ICP accepts
the following input data formats: YUV 4:2:2 co-sited,
YUV 4:2:2 interspersed, and YUV 4:2:0. In this mode, the
ICP will also accept image overlay data when PCI output
is specified. The ICP accepts image overlay data in sev-
eral combined formats: RGB 24+α, RGB 15+α, and YUV
4:2:2+α. In this mode, the ICP generates output data in
several RGB and YUV formats. These formats are com-
patible with a wide variety of PCI frame buffers.

14.4.1 Image Input Formats

The ICP image input formats define the relative positions
of the Y component and the U and V components of the
input image pixel data. There are three input formats to
the ICP: 4:2:2 co-sited, 4:2:2 interspersed, and 4:2:0 in-
terspersed. The 4:2:2 formats have 2 U and 2 V pixels for
every 4 Y pixels, so the ratio of Y to U or V is 2:1. The
4:2:0 format has 1 U and 1 V pixel for every 4 Y pixels,
so the ratio of Y to U or V is 4:1. The input formats are
given below. The input formats have a significant impact
on the 2 dimensional scaling operation.

14.4.1.1 YUV 4:2:2 Co-Sited

In the YUV 4:2:2 co-sited format, the U and V pixels co-
incide with the Y pixel on every other pixel, as shown in
Figure 14-3.

14.4.1.2 YUV 4:2:2 Interspersed

In the YUV 4:2:2 interspersed format, the U and V pixels
lie between the Y pixels on every other pixel of the hori-
zontal line, as shown in Figure 14-4.

14.4.1.3 YUV 4:2:0 XY Interspersed

In the YUV 4:2:0 interspersed format, the U and V pixels
lie between the Y pixels on every other pixel of the hori-
zontal line, as shown in Figure 14-5.

14.4.1.4 YUV 4:1:1 Co-Sited

In the YUV 4:1:1 co-sited format, the U and V pixels co-
incide with the Y pixel on every fourth pixel, as shown in
Figure 14-6.
PRELIMINARY SPECIFICATION 14-3

PNX1300/01/02/11 Data Book Philips Semiconductors
Figure 14-3. 4:2:2 Co-sited input format

Chrominance
(U,V) samples

Luminance
samples

Figure 14-4. 4:2:2 Interspersed input format

Chrominance
(U,V) samples

Luminance
samples

Figure 14-5. 4:2:0 XY Interspersed input format

Chrominance
(U,V) samples

Luminance
samples

Figure 14-6. 525-60 YUV 4:1:1 Co-Sited input format

Chrominance
(U,V) samples

Luminance
samples
14-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
14.4.2 Image Overlay Formats

The ICP accepts image overlay data in three formats,
RGB 24+α, RGB 15+α, and YUV-4:2:2+α as shown in
Table 14-1. The overlay image format must be the same
type as the output image format generated by the ICP for
the main image. For example, if the output image is one
of the RGB formats, the overlay must be one of the two
RGB overlay formats, RGB-24-α and RGB-15+α. If the
output image format is YUV, the overlay format must be
in YUV-4:2:2+α format. The formats must be of the same
type because the ICP does no conversion on the overlay
data.

In RGB 24+α, pixels are packed 1 pixel/word, a full byte
of alpha information (stored in the most significant byte)
is included with each pixel. In RGB 15+α, one bit of alpha
is included for each pixel. The pixels in the overlay image
are packed as 2 pixels per 32-bit word, and the alpha bit
is the most significant bit of each half word. In the same
manner, the YUV-4:2:2+α format packs two pixels into
one 32-bit word, and has one bit of alpha for each pixel.
The least significant bit of the U and V components sup-
plies the alpha bit for the Y0 and Y1 pixels, respectively.
The alpha bit in these formats selects between two alpha
values stored in the ICP, alpha 1 and alpha 0. The alpha
1 and alpha 0 values are loaded from the parameter
block when the ICP is started.

14.4.3 Alpha Blending Codes

Image overlay uses alpha blending, which combines the
overlay image with the main image according to the al-
pha value. The alpha value is supplied by the alpha byte
in RGB 24+α format and by the alpha registers, Alpha 0
and Alpha 1 in the other formats. The alpha code format
is shown in Table 14-2.

14.4.4 Output Formats

The output formats are the RGB image formats sent to
the PCI interface or SDRAM. These formats are shown
in Table 14-3. Note: B1 = Byte 1 of blue = [b7...b0]1.

Table 14-1. Image Overlay Formats

Format Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

RGB 24+α a7 - a0 r7 - r0 g7 - g0 b7 - b0

YUV-4:2:2+α Y1 (v7-v1) + α Y0 (u7-u1) + α
Pixel 1 Pixel 0

RGB 15+α α r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0 α r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

Table 14-2. Alpha Blending Codes

Alpha Code Alpha Value Image Overlay

00h 0 100% 0%

20h 32 75% 25%

40h 64 50% 50%

60h 96 25% 75%

80h - FFh 128-255 0% 100%

Table 14-3. Output Data Formats

Format Word Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

Pixel 3 Pixel 2 Pixel 1 Pixel 0

RGB 8A: 233 1 r1 r0 g2 g1 g0 b2 b1 b0 r1 r0 g2 g1 g0 b2 b1 b0 r1 r0 g2 g1 g0 b2 b1 b0 r1 r0 g2 g1 g0 b2 b1 b0

RGB 8R: 332 1 r2 r1 r0 g2 g1 g0 b1 b0 r2 r1 r0 g2 g1 g0 b1 b0 r2 r1 r0 g2 g1 g0 b1 b0 r2 r1 r0 g2 g1 g0 b1 b0

Pixel 1 Pixel 0

RGB 15+α 1 α r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0 α r4 r3 r2 r1 r0 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

RGB-16 1 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3 g2 g1 g0 b4 b3 b2 b1 b0

1 Pixel/Word

RGB 24+α 1 a7 - a0 r7 - r0 g7 - g0 b7 - b0

Packed 4 Pixels/3 Words

RGB 24-packed 1 B1 R0 G0 B0

2 G2 B2 R1 G1

3 R3 G3 B3 R2

Packed 2 Pixels/Word

YUV- 4:2:2 1 Y1 V0 Y0 U0
PRELIMINARY SPECIFICATION 14-5

PNX1300/01/02/11 Data Book Philips Semiconductors
14.5 ALGORITHMS

14.5.1 Introduction

The ICP provides filtering, resizing (scaling) and YUV to
RGB conversion of the source image. Filtering provides
image enhancement. Scaling generates a new image
that is larger or smaller than the current image. YUV to
RGB conversion is used to generate an RGB version of
the image for output to an RGB format frame buffer
through the PCI interface or to SDRAM.

The filtering, scaling, and YUV to RGB conversion algo-
rithms are discussed separately. The ICP uses these al-
gorithms in two ways.

1. It provides one pass horizontal scaling with horizontal
5-tap filtering of Y, U, or V.

2. It provides one pass vertical scaling with vertical 5-tap
filtering of Y, U, or V.

14.5.2 Filtering

The ICP provides high quality, 5-tap polyphase filtering,
both horizontal and vertical, of Y, U, or V data. Each filter
type is performed as a separate one dimensional filter
pass. Two dimensional filtering of the image requires two
passes of the one dimensional filters.

Multi-tap FIR filtering

In multi-tap FIR filtering of an image, the new filter output
(pixel) value is a weighted sum of adjacent pixels. The
weighting coefficients determine the type of filtering
used. A 5-tap filter generates the new pixel value as a
weighted sum of the current value and the two pixels on
either side (2 left and 2 right for horizontal filtering, 2
above and 2 below for vertical).

A multi-tap FIR filter can be used to generate values for
new pixels that are displaced from the original (‘center’)
pixel in the same way as linear interpolation. For exam-
ple, assume the new pixel location is shifted slightly to
the right of the center pixel of the input image. A horizon-
tal filter can be used to estimate the new pixel value by
weighting the right pixel filter coefficients more heavily
than the left, proportional to the relative position offset of
the new pixel. (In this sense, interpolation is a 2-tap fil-
ter.) This is shown in Figure 14-7. The ICP horizontal and
vertical filter operations use this method to combine scal-
ing with filtering.

Mirroring pixels at the start and end of a line or window

A line may start and/or end at the edge of the input im-
age. In this case, the two start and/or end pixels needed
for the first and last pixels of the line, respectively, are
missing. The ICP uses pixel mirroring to solve this prob-
lem. In pixel mirroring, the two available pixels are used
to substitute the two missing pixels. The first pixel, uses
copies of the two pixels to the right as though they were
the two pixels to the left. Specifically, P+2 substitutes for
P-2, and P+1 substitutes for P-1. The last pixel uses cop-
ies of the two pixels to the left as though they were the
two pixels to the right. Since the left and right pixels are
now the same, this is called pixel mirroring.

There are five states of pixel mirroring: first output pixel,
second output pixel, middle pixels, next to last output pix-
el and last output pixel. The first output pixel uses pixels
numbered (2,1,0,1,2). The second pixel uses (1,0,1,2,3).
The middle pixels use (P-2, P-1, P, P+1, P+2). The next
to last pixel uses (N-3, N-2, N-1,N, N-1), where N is the
number of the last input pixel. The last pixel uses (N-2,
N-1, N, N-1, N-2).

In some cases of upscaling, one more input pixel may be
needed at the end of the line. In these cases, the pixel
value(s) are not generated by the mirror logic. Instead,
the ICP uses a copy of the last output pixel as the best
estimate of the required output pixel.

14.5.3 Scaling

Scaling overview

Resizing, or scaling, the image means generating a new
image that is larger or smaller than the original. The new
image will have a larger or smaller number of pixels in the
horizontal and/or vertical directions than the original im-
age. A larger image is scaling up (more new pixels); a
smaller image is scaling down (fewer newer pixels). A
simple case is a 2:1 increase or decrease in size. A 2:1
decrease could be done by throwing away every other
pixel (although this simple method results in poor image
quality). A 2:1 increase is more interesting. The new pix-
els can be generated in between the old ones by:

1. Duplicating the original pixels
2. Linear interpolation, where the new in-between pixels

are the weighted average of the adjacent input pixels

Input Pixels

Output Pixels

Filter (uses 5 input pixels)

Interpolation (uses 2 input pixels)

Figure 14-7. Pixel generation by interpolation and filtering
14-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
3. Multi-tap filtering, where the new in-between pixels
are multi-pixel filtered version of the adjacent input
pixels. This approach results in the best image.

The more general case is where the output image reso-
lution is not an integral multiple or sub-multiple of the in-
put image resolution, such as converting from 640 x 480
to 1024 x 768. In this case, the output pixels have differ-
ing positions relative to the input pixels in the horizontal
or vertical dimensions. In converting from 640 to 1024,
the first output pixel on a line corresponds to the first in-
put pixel. The second output pixel is at 640/1024 of the
distance between the first and second input pixels. The
third output pixel is at (2*640)/1024 of the distance =
1280/1024 = 1+ 256/1024 = 256/1024 of the distance be-
tween the second and third input pixels, etc. The output
pixels shift with respect to the input pixel grid as you
move along the line in the horizontal or vertical dimen-
sions. This is shown in Figure 14-8.

New pixels are generated by interpolation or filtering of
the original pixels. Interpolation is the weighted average
of the input pixels adjacent to the output pixel. Filtering
extends interpolation to include input pixels beyond the
input pair adjacent to the output pixel. The number of pix-
els used to generate the output defines the filter type. In-
terpolation is a 2-tap filter. A 4-tap filter would use the two
pixels to the left and the two pixels to the right of the out-
put pixel. A 5-tap filter identifies the single pixel nearest
the output as the center pixel, and uses this pixel plus
two to the left and two to the right to generate the output.

If the ratio of the output pixel count per line (in H or V) to
input pixel count per line is the ratio of small integers,
there is a repeating pattern in these relative positions of
input to output pixel locations. For example, for 640 to
1024, the ratio is 8/5. The pattern repeats for every 8 out-
put and every 5 input pixels. If the ratio is not a ratio of
small integers, the pattern will take a long time to repeat.
The worst case would be 640 to 641, for example. There
would be no exact repetition for the whole line.

The interpolator or filter coefficients must be weighted
according to the relative position of the new pixel relative
to the old pixels. The weighting factor is between 0.0 and
1.0, corresponding to the relative position of the new pix-
el with respect to the old pixel grid. With a repeating pat-
tern, fewer weighting factors are needed, and therefore
fewer coefficients in the linear interpolator or filter gener-
ating the new pixels, since you can reuse them each time
the pattern repeats. A filter with a repeating pattern is

called polyphase, indicating a repeating pattern in the
phase (offset position) of the output pixels relative to the
input pixels.

Generating the output pixels: relating the output grid to the
input grid

Scaling is a pixel transformation in which an array of out-
put pixels is generated from an array of input pixels. The
value of each pixel on the output pixel grid is calculated
from the values of its adjacent pixels on the input grid. To
find these adjacent pixels, you overlay the output grid on
the input grid and align the starting pixels, X0Y0, of the
two grids. To identify the adjacent input pixels for a given
output pixel, you divide the output pixel X (pixel number
along the output line) and Y (pixel line number within win-
dow) by their corresponding scaling factors:

Xin = Xout / (horizontal scaling factor)
where: horizontal scaling factor =
output length / input length

Yin = Yout / (vertical scaling factor)
where: vertical scaling factor =
output height / input height

Note that the resulting Xin and Yin values will be real
numbers because the output pixels will usually fall be-
tween the input pixels. The fractional portion indicates
the fractional distance to the next pixel. To calculate the
output pixel value, you use the value for the nearest pixel
to the left and above and combine it with the value of the
other adjacent pixel(s). For example, horizontal interpo-
lation uses the starting pixel to the left interpolated with
the next pixel to the right, with the fractional value used
to determine the weighting for the interpolation.

ICP scaling output resolution

In the ICP, scaling is forced to have a repeating pattern
by limiting the resolution of the new pixel position to 1/32;
the new position is forced to be at a location n/32 in H
and V relative to the position of the original pixel grid.
This results in a worst case error of approximately 1.5%
in amplitude relative to calculations using exact output
pixel positions. This is comparable to the errors caused
by quantizing the amplitude of the pixels. The additional
quantization noise can be avoided by choosing an appro-
priate scale factor which, when inverted, results in frac-
tional values which are expressed in 32nds, such as the
8/5 scaling factor in the 640 to 1024 example above. A
diagram of the input to output pixel relationship and the

1 2 3 4 5 1

187654321

Input Pixels

Output Pixels

Figure 14-8. 640 to 1024 upscaling example
PRELIMINARY SPECIFICATION 14-7

PNX1300/01/02/11 Data Book Philips Semiconductors
output fractional X and Y subpixel offset is shown in
Figure 14-9.

Output scaling calculation method

The output pixel distance in H and V in the ICP is calcu-
lated to high precision (16-bit fraction) even though the
output resolution is fixed at 1/32 of the input grid. Each
output pixel’s location relative to the input pixel grid is giv-
en by:

X location of output pixel = X0 of input line + output
pixel number / X Scale Factor

Y location of output pixel = Y0 of input window
+ output line number / Y scale factor

The X and Y locations may not be integer values, de-
pending on the scale factor. The resulting X and Y pixel
locations can be separated into an integer and a fraction-
al part. The integer part of the X and Y location selects
the pixel and line number closest to the output pixel, re-
spectively. The fractional part gives the fractional dis-
tance of the output pixel to the next X and Y input pixel
values. These fractional parts are the dX and dY values
shown in Figure 14-9.

The output pixel value can be calculated by interpolation
between the two input pixels or by 5-tap filtering using the
5 nearest pixels rather than the 2 nearest pixels. Interpo-
lation or filtering uses the fractional position values, ∆X
and ∆Y, to select the appropriate filter coefficients. In the
ICP, these values are limited to 5 bits for a resolution of
1/32, even though the actual position value has much
higher resolution. The ICP uses fractional values cen-
tered around the center pixel with a range of -16/32 to
+15/32.

To perform scaling, the X and Y locations of the output
pixel relative to the input pixel grid must be generated.
This includes both the integer part to locate the adjacent
pixels and the fractional part to choose the filter coeffi-
cients which generate the output value from the adjacent
pixels. This could be done by generating the output pixel
X and Y numbers and dividing each by its associated
scale factor. Since dividing is expensive in hardware and

time, the ICP effectively multiplies the X and Y pixel num-
bers by the inverse of the X and Y scaling factors, resp .
This is done by incrementing the X and Y input pixel
counters by X and Y increment values that are the in-
verse of the X and Y scale factors, resp. For output pixel
Xn, the inverse of the scale factor is added to the X input
location n times. This is equivalent to multiplying n by the
inverse of the scale factor.

The ICP uses a 16-bit integer and a16-bit fractional value
for the X and Y increment values. This allows a fractional
value resolution of 1/64K. Since the increment value will
be added 1024 times in a 1024-pixel line, any error in an
individual calculation will be multiplied by 1024. The high
resolution of the calculation prevents an accumulation of
error as you increment along the line.

Only the most significant 5 bits of the fractional value are
used by the filter coefficient RAMs. However, the X and
Y counters are incremented by the high-resolution X and
Y increment values. The result of this truncation is a
worst case error of approximately 1.5% in amplitude rel-
ative to arbitrary pixel output positions.

The error caused by discrete (1/32) resolution can be re-
duced to exactly zero if the output image size is adjusted
to have a repeating pattern that fits on these 1/32 bound-
aries. For zero error, this implies that the scaling factor
must be of the form of B/A, where B (the output pixel
count factor) is a sub-multiple of 32 [i.e. 1, 2, 4, 8, 16, 32],
and A (the input pixel count factor) is an integer deter-
mined by the nearest acceptable scale factor for a given
B. In the 640 to 1024 conversion case, the B/A ratio was
8/5, meeting this requirement.

The integer values, if accumulated, would be equal to the
total number of input pixels when scaling is complete.
The integer values for each pixel define the number of
pixels to read from memory and shift in to generate the
next output pixel. For example, a scaling factor of 1.0 will
result in one pixel shifted in for each output pixel gener-
ated. Upscaling will have integer increment values of
less than one. This means that the integer value will be
‘0’ for some pixels and ‘1’ for others. For example, up-
scaling by 2.0 will result in integer values of ‘1’ half the
time and ‘0’ for the other half, depending on the carry out
from the fractional increment.

Pixel shift bypassing for large down scaling

Down scaling will have integer increment values of great-
er than one. In this case, the integer value indicates the
number of pixels to read to obtain filter pixels for the next
output pixels. There are two ways to read and shift in the
pixels for down scaling: shift all and shift bypass. In the
shift all mode (the default mode) all five pixels are shifted
for each input value read and shifted in. Shift all mode
uses the five input pixels nearest the output pixel, inde-
pendent of scaling factor. In the shift bypass case, only
the last pixel is shifted in. For example, in a down scaling
of 10, nine pixels are read and the 10th pixel is shifted in
to the filter. Shift bypass mode is used for large down
scaling, i.e. down scaling factors of 2.0 or greater. The
shift bypass mode is selected by setting the GETB bit in
the parameter table. It uses input pixels that are nearest
the output pixel and those nearest each of the four output

Figure 14-9. ICP 1/32 output resolution

1 2

Input Pixels

Output Pixels

dY

dX
14-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
pixels adjacent to the output pixel. The shift bypass
mode also forces the coefficient RAM inputs to ‘0’, since
interpolation between adjacent input pixels is no longer
being performed.

Using scaling to convert from YUV 4:2:0 to YUV 4:2:2

YUV information in the 4:2:0 format has the UV pixels off-
set from the input grid in both X and Y. Also, the U and V
pixels are at 1/2 of the horizontal and 1/2 of the vertical
frequencies of the Y pixels. This means the UV pixels
must be filtered and additionally scaled in both X and Y
in order to line up with the output Y pixels even if no initial
scaling is done. To generate 4:2:2 interspersed data,
vertically up-scale U and V by a factor of 2 with a start off-
set of -1/4 pixel. Upscaling by 2 generates the additional
lines required, and starting with a -1/4 pixel offset (rela-
tive to U, V space) moves the output up to the same line
as the Y pixels. To generate 4:2:2 co-sited, then filter hor-
izontally with no scaling factor but with a start offset of -
1/4 pixel, moving the output left 1/4 pixel.

14.5.4 YUV to RGB Conversion

In the ICP, YUV to RGB conversion is done by sequen-
tially processing triplets of Y, U, and V pixel data to con-
vert the pixels to an internal YUV 4:4:4 format and apply-
ing the YUV to RGB conversion algorithm on the YUV
4:4:4 pixels. The results of this conversion normally go to
the PCI bus but can also go back to SDRAM.

YUV to RGB conversion has two steps. First the Y, U and
a V pixel data are used to generate an RGB pixel at the
output location. When the Y,U, and V pixels are ready,
YUV to RGB conversion is performed using the following
algorithms:

R = Y + 1.375(V)= Y + (1 + 3/8)(V)
G = Y - 0.34375(U) - 0.703125(V)

= Y - (11/32)(U) - (45/64)(V)
B = Y + 1.734375(U)

= Y + (1 + 47/64)(U)

In CCIR601, the U and V values are offset by +128 by in-
verting the most significant bit of the 8-bit byte. This is the
way the U and V values are stored in SDRAM. The above
algorithms assume that the U and V values are convert-
ed back to normal signed two’s complement values by in-
verting the MSB before being used.

14.5.5 Overlay and Alpha Blending

The ICP can add an overlay image to the main image
when in the horizontal filter to RGB/YUV mode with PCI
output. The overlay image is a user-defined rectangle
within the main image. When the overlay is active, each
overlay pixel is combined with each main image pixel to
generate the resulting pixel to be displayed. Each pixel
combination is controlled by an alpha value which deter-
mines the proportions of overlay and main image that
contribute to the output pixel. The relation is given by:

Pout = (alpha) * Poverlay + (1-alpha) * Pmain =
(alpha) * (Poverlay-Pmain) + Pmain

where: alpha ranges from 0 to 1

In the ICP, the alpha value range is limited by the hard-
ware to five values: {0.0, 0.25, 0.50, 0.75, 1.0}.

An alpha value is supplied for each overlay pixel. In the
RGB 24+α overlay data format: an 8-bit alpha value is
contained within the overlay data.

In all other overlay data formats (RGB 15+α, etc.), an al-
pha bit in the overlay data determines the alpha value.
The alpha bit selects between two 8-bit values, alpha 1
and alpha 0, supplied by a pair of internal ICP registers.
These registers are loaded from the parameter block
when the ICP is started. When the alpha bit is ‘1’, alpha
1 value is used as the alpha value; when the alpha bit is
‘0’, alpha 0 is used as the alpha value. The two alpha reg-
isters allow translucent images and backgrounds while
being restricted to one bit per pixel for alpha selection.

Alpha blending has several uses.

1. Alpha can be used to disable portions of the overlay,
called keying. When the alpha for a pixel is ‘0’, there
is no overlay. When the alpha is ‘1’, the overlay is
100%, replacing the image. This allows the user to put
an irregular shaped object in an image without show-
ing the bounding rectangle of the overlay.

2. Alpha blending allows translucent (smoky) back-
grounds and/or translucent (ghostly) overlay images

3. Using alpha at the edges of small images such as font
characters increases their effective visual resolution.

Chroma keying

The ICP also optionally provides a restricted form of
chroma keying sometimes called color keying. When the
overlay Y value is ‘0’ (an illegal value in the YUV 4:2:2+α
format) or the RGB values are all ‘0’ (RGB15+α format),
the alpha value is forced to ‘0’ and no overlay or blending
occurs. This provides three levels of overlay: none, alpha
zero, and alpha one. This combination can be used to
generate an irregularly shaped menu (an oval shape, for
example) which is translucent (e.g. an alpha value of
50%) that contains opaque (alpha = 100%) letters. In a
game, this could be a message written on a foggy back-
ground in an oval window. The chroma keying provides
the definition of the oval shape, the alpha zero value de-
fines the translucent foggy background and the alpha
one value defines the opaque characters on the foggy
background.

Chroma keying in the ICP is intended for computer gen-
erated or modified overlays. Chroma keying turns off the
overlay process for selected pixels by forcing an alpha
value of ‘0’ for those pixels. Chroma keyed pixels use
special codes to identify them. These codes must be
computer generated in most cases. For example, the
DSPCPU or other CPU would process an overlay image
and convert the overlay pixels to be turned off into chro-
ma keyed pixels by changing the data for those pixels to
the chroma key code.

The ICP does not have full chroma keying. Full chroma
keying has adjustable threshold values for the pixel com-
ponents. Adjustable thresholds allow the user to auto-
matically select an overlay sub-image from a larger over-
lay background, such as selecting an image of an actor
PRELIMINARY SPECIFICATION 14-9

PNX1300/01/02/11 Data Book Philips Semiconductors
against a bright blue background while inhibiting the blue
background.

14.5.6 Dithering

Short output codes, such as RGB 8, have few bits for out-
put-value determination. RGB 8R has (2,3,3) bits for
(R,G,B). The result is a coarse, patchy image if nothing
is done to correct for the limited resolution. Dithering sig-
nificantly improves the effective resolution of these imag-
es. For example, RGB 8 images dithering looks nearly as
good as RGB 16.

Dithering works by adding a random dithering value to
the pixel before it is truncated by the output formatter.
The dither is added to the portion which will be truncated.
The carry from this add will occasionally propagate into
the most significant portion of the pixel before truncation.
The carry from the add thus ‘dithers’ the displayed val-
ue.In the example shown in Figure 14-10, a random dith-
er value is added to the original data before truncation.
The dither value should have a range of from approxi-
mately 0 to 1 LSB of the truncated value. The dither value
should be symmetrical around 1/2 the LSB of the quan-
tizing error of the truncation. In the example shown, the
dither signal has values of (1/8, 3/8, 5/8, 7/8). This set of
values has a range of approximately 0 to 1 LSB, and it is
symmetrical around 1/2 LSB.

In this example, the input signal has a value of 2.83.
Without dithering, this value would be truncated to an
output value of 2 in all cases. Averaging the un -dithered
signal over four pixels still gives you a value of 2. By add-
ing the dither signal, the output value is 2 or 3 depending
on the value of the added dither signal. Averaging over
four pixels, the average output value is 2.75, much closer
to the input value than without the dither signal. The dith-
er signal has significantly reduced the error when aver-
aged over four pixels.

Two types of dithering are combined in the ICP: quad pix-
el and full image dithering. Quad pixel dithering, also
known as ordered dithering, adds one of four dithering
values to each pixel. The four dithering values corre-

spond to four-pixel quads in the output image. The pixels
in each quad have fixed positions in the input image, so
the dither values are chosen on the bases of odd or even
line number and odd or even pixel number in the line.
The dither values of (0/4, 3/4, 2/4, 1/4) are added by line
and pixel number: even line & even pixel, even line & odd
pixel, odd line & even pixel, odd line & odd pixel. This
gives a four value ordered function for four adjacent pix-
els in the image. The (0,3,2,1) pattern is chosen specifi-
cally to prevent pairs of high or low pixel values from
clustering. Spatial dithering provides a significant im-
provement in effective resolution.

Full image dithering adds a single randomly generated
number to every pixel of the image. The result is that the
intensity and color accuracy increases as the size of the
sample is enlarged. The random number has a long bit
length to prevent repeating patterns in the image. The
random number can be static or dynamic. In the static
case, the random number generator starts with a fixed
seed at the start of the image. The random number spa-
tial pattern is fixed for the image even though the image
data may change from frame to frame. In the dynamic
case, the random number generator runs continuously,
and the dithering pattern changes from frame to frame.

The ICP combines quad pixel dithering with full image
dithering to provide the final dithering signal for each pix-
el. The quad pixel dither provides the two most signifi-
cant bits of the dither signal, and the full image dither pro-
vides the least significant 4-bits of the dither signal. The
combined dither signal is 6 bits.

From 1 to 6 bits of dither signal are used, depending on
the output format. If fewer than 6 bits are needed, only
the MSBs of the dither signal are used. For example in
the RGB 8R output format, the R output value is 3 bits in
size. The output uses the 3 MSBs of the R input value
and truncates the 5 LSBs. The dither unit adds 5 bits of
dither signal (the 5 MSBs) to the 5 LSBs of the R input
value before truncation, and the RGB formatter truncates
the result after adding.

0

1

2

3
2.830

Dither = 0
Output = 2

0

1

2

3
2.955

Dither = 1/8
Output = 2

0

1

2

3 3.205

Dither = 3/8
Output = 3

0

1

2

3 3.455

Dither = 5/8
Output = 3

0

1

2

3
3.705

Dither = 7/8
Output = 3

No Dithering:
Output = 2.0

1/4 LSB Dithering
Output = (2+3+3+3)/4 = 11/4 = 2.750

Error = +0.830

No Dithering 1/4 LSB Dithering

Error =(2.830 - 2.750) = +0.080

Figure 14-10. Dithering
14-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
14.5.7 Implementation Overview: Horizontal
Scaling and Filtering

Figure 14-11 shows a data flow block diagram of the ICP
horizontal scaling algorithm implementation. Blocks of
pixels are provided by the input block buffer. Each block
of pixels is transferred sequentially to the 5-tap filter. The
filter does scaling and filtering of the data and puts the re-
sulting pixels in the output buffer. Completed pixels in the
output buffer are written back to SDRAM or to the PCI
output. A bypass multiplexer allows the filter to be by-
passed for SDRAM to SDRAM block moves.

Input pixel access is controlled by the Y Counter. The Y
Counter selects the word and byte for the current pixel in
the Y FIFO buffer. The Y Increment register, Y LSB Reg-
ister and the Y MSB Counter control the increment of the
Y Counter. If the Y MSB Counter contents is not ‘0’, the
Y Counter is incremented and the Y MSB register is dec-
remented until the Y MSB Counter is ‘0’.

The Y MSB Counter is loaded with the integer portion of
the results of the Y Counter Increment operation. Y
Counter Increment involves adding the Y Increment frac-
tion and integer values to the Y LSB register and Y MSB
Counter, respectively. If there is no scaling (scaling fac-
tor = 1.0), the Y Increment integer value will be ‘1’, and
the Y Increment fractional value will be ‘0’. Each Y
Counter Increment operation will increment the Y
Counter by one in this case.

The Y Counter keeps track of horizontally indexed pixels
sent to the filter. The Y Counter is incremented once (1.0
for no scaling) for each pixel. For a line of pixels begin-
ning with Xa and ending with Xb, the Y Counter reads pix-
els from the block buffer beginning with Xa-2 and ending
with Xb+2. The extra pixels are required by the 5-tap filter,
which uses a total of 5 pixels to generate each output pix-
el, two pixels before and two pixels after each pixel. The
horizontal filter uses the current output from the block
buffer and four delayed versions of it to generate the filter
output as the weighted sum of the center pixel plus the
two on either side. (For the case where the scaling factor
= 1.0, the LSBs are always ‘0’.)

For up or down scaling, the Y Increment value is not 1.0,
it is the inverse of the scaling factor (See “ICP scaling
output resolution,” on page 14-7). For up scaling by a
factor of 2.0, the effective Y increment value is 0.5, for
example. This means two output pixels are generated for
each input pixel. The Y Counter effectively increments as
0.0, 0.5, 1.0, 1.5, 2.0, etc. The LSBs of the counter (i.e.
the fractional part less than 1) in the Y LSB register are
used by to the filter to generate the intermediate values.
An LSB value of 0.5 indicates that the output pixel is half
way between Xn and Xn+1. The filter contains a set of 5
filter parameter RAMs, one for each coefficient. The 5
most significant LSBs from the counter select the filter
coefficients which will generate the correct value for the
output pixel at the relative offset from 0.0 indicated by the
LSBs.

SDRAM

To
 S

D
R

A
M

Y MSB Cntr

Pixel Clock

5 Stage Multipli-
er-Accumulator

Y LSBs

R
eg

R
eg

R
eg

R
eg

P
ix

el
 D

at
a

a +
2

R
A

M

a +
1

R
A

M

a +
0

R
A

M

a -
1

R
A

M

a -
2

R
A

M

Z Counter

M
ux

Bypass

Bypass

SDRAM

Address
Block

Y Counter

Y Incr Fraction

Y LSB Reg
Carry Out

Filter Source Select

5-tap Filter

YUV Code Delay

Y Incr Integer

N Byte Incr

Figure 14-11. ICP horizontal scaling data flow block diagram

Output
Buffers 6,7
Block FIFO

Buffers 0,1
Block FIFO

via
highway

or
 P

C
I

PRELIMINARY SPECIFICATION 14-11

PNX1300/01/02/11 Data Book Philips Semiconductors
The Y Counter indicates the next pixel from the input
buffer. A new pixel is clocked into the filter registers only
when the Y Counter contents change, which happens
when the Y MSB Counter is loaded with a value greater
than ‘0’. Note that for Y increment values less than 1.0
(up scaling), the change will be caused by carry incre-
ment from the Y LSBs, and a new pixel will not be
clocked into the filter shift register on every Y clock.

For increment values of 2.0 or for values of 1.0 or greater
with carry in (down scaling), multiple new pixels will be
clocked into the filter shift register before the filter inputs
are ready. The number of new bytes needed for the next
pixel is the sum of the Y Increment Integer value and the
carry out of the Y LSB adder. This result is loaded into
the Y MSB Counter. The filter clock is stalled until the in-
puts are ready. The integer value of the increment -- in-
cluding carry -- defines the number of new pixels to be
clocked through the shift register before the filter inputs
are ready for use.

In this discussion, the Y Counter LSBs form a 16-bit bi-
nary number. The upper 5 bits of this 16-bit number form
a 5-bit binary number between 0 and 31 representing a
fractional distance between Y pixels between 0/32 and
32/31. If the new pixel relative distance is 31/32, it is
nearest the right pixel of the two pixels it is between, and
the right 2 pixels will be more heavily weighted than the
left 3.

The horizontal filter shown in Figure 14-11 is pipelined to
generate a pixel for every integer increment of the Y
Counter. The filter input is always 5 clocks ahead of its
output. The first stage generates the filter term an+2Xn+2
using the data from the input block and the an+2 coeffi-
cient from the coefficient RAM driven by the Y LSBs. The
second stage registers hold the data for Xn+1 and its cor-
responding Y LSBs and generate an+1Xn+1. The last
stage registers hold the data for Xn-2 and the Xn-2 LSBs
and generate an-2Xn-2.

The LSB Register contents can change on every clock.
In the 2:1 scaling example, the LSBs alternated between
0.0 and 0.5. The LSB Counter represents each output
pixel’s x offset value from the input pixel grid. The LSB In-
crement value is 16 bits long. The 5 upper bits go to the
coefficient RAMs, and the 11 lower bits provide precision
increment of the LSB Counter for precision in represent-
ing the scaling factor. The 11 lower bits of the LSB Incre-
ment value added to the 11 lower bits of the LSB Counter
determine when to increment the 5 LSBs that drive the
coefficient RAMs and when to clock a new Y pixel into
the filter.

14.5.7.1 Loading the extra pixels in the filter

For a 5-tap filter, 4 more pixel inputs are needed to the
filter than are generated at the filter output, two before
the first pixel and two after the last pixel. In the worst
case of a window that is exactly N blocks wide and starts
at the first pixel of the first block, two extra blocks must
be read - one at each end of the window - in order to get
these 4 pixels! This is an unavoidable problem with a
multi-tap filter. For an n-tap filter, n-1 extra pixels are

needed. There are two techniques that avoid this effi-
ciency hit of fetching extra blocks.

1. Move the window edges so they are not within 2 pix-
els of a 64 input pixel boundary.

2. Simulate the edge pixels, such as by mirroring the
pair of pixels you have on the other side. This is the
only solution to the problem of starting (or ending) at
the edge of the image, where there are no pixels to
the left (or right) of the image window.

The ICP uses automatic mirroring to supply these pixels.
Mirroring is used in both horizontal and vertical filter
modes.

14.5.7.2 Mirroring pixels at the ends of a line

A line may start and/or end at the edge of the input im-
age. In this case, the two start and/or end pixels needed
for the first and last pixels of the line, respectively, are
missing. The start mirror uses the two pixels to the right
of the first pixel, and the end mirror uses the two pixels to
the right of the last pixel. These pixels are supplied by
controlling the Y counter.

A mirror multiplexer in the 5-tap filter provides mirroring
of one or two pixels at the filter inputs. This mirror multi-
plexer is used for both horizontal and vertical filtering. In
horizontal filtering, the first and last two pixels in the line
are mirrored. The mirror multiplexer is set to the appro-
priate mirror code for the first and last two pixels in the
line. The first two pixels are mirrored for the first two clock
pulses, and the last two pixels are detected using the pix-
el counter for the line.

Mirroring is optional, depending on whether the start or
end of the line is on a window boundary. The DSPCPU
or microprogram must detect this and enable start and/or
end mirroring as required.

14.5.7.3 Horizontal filter SDRAM timing

Figure 14-13 shows a timing diagram for block data flow
between the SDRAM and the filter for a scaling factor of
1.0. The bus block reads and writes are one fourth of the
filter processing time because the filter processes data at
100 Mpix/sec, and the SDRAM reads and writes blocks
of pixels at 400 Mpix/sec. The SDRAM logic reads the
next block while the current block is being processed.
This also provides the two pixels from the next block re-
quired to finish filtering the current block.

If the scaling factor is greater or less than 1.0. the
SDRAM bus activity will be different. For scaling factors
greater than 1.0, there will be fewer SDRAM reads for the
same number of writes generated by the filter. For exam-
ple, a scale factor of 2.0 means that it is necessary to
read only half as many blocks to generate the same num-
ber of output blocks. For a scale factor less than one,
there will be more reads for the same number of writes.
For a scale factor of 0.5, two blocks must be read for ev-
ery block of output. If the scale factor is less than 1/3,
more time will be spent reading and writing SDRAM than
filtering.
14-12 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
14.5.8 Implementation Overview: Vertical
Scaling and Filtering

Figure 14-14 shows a data flow block diagram of the ICP
vertical scaling algorithm implementation. Blocks of pix-
els are loaded sequentially into five input block buffers,
one for each of the 5 terms of the 5-tap filter. Each block
of pixels is transferred sequentially to the 5-tap filter. The
filter does scaling and filtering of the data and puts the re-
sulting pixels in the output buffer. Completed pixels in the
output buffer are written back to SDRAM.

In vertical scaling, five separate blocks of pixels, one for
each line, are required because the pixels are stored in
horizontal sequence in the SDRAM. The Y Counter steps
through the 64 horizontal pixels of the five input blocks
and writes the resulting pixels into the output block. Four
of the five blocks are used on the next pass, so that one
block of pixels in generates one block of pixels out except
for end conditions. The image is processed in 64-pixel
columns. Since the image to be filtered will not generally
start or end on a block boundary, the number of horizon-
tal pixels for the first and last columns will be less than 64
in these cases. Also, the data in the columns must be
aligned vertically. This results in the requirement that the
line-to-line address offset value must be a multiple of 64
bytes. Note that only the address offset value is modulo
64; the image to be filtered can start and stop anywhere.
Block alignment is not required.

Vertical scaling and filtering processes five 64-pixel input
line segments to generate one 64-pixel output segment.
When input lines Yn-2 to Yn+2 have been processed to
generate one 64-pixel output segment for output line Yn,
five new input segments are needed for the next output
line segment in the 64-pixel column, Yn+1. If the vertical

scale factor is 1.0 (no scaling), line segments Yn-1 to
Yn+2 are reused, a new block for Yn+3 is loaded and the
block for line Yn-2 is discarded.

To load Yn+3, the MCU adds the Y offset value to the
block address (upper 26 bits) of the Y Counter, and the
Y Counter selects the next Y block to be read from
SDRAM. The Y Counter points to the line block address
for last Y block loaded, and the Y offset value is the ad-
dress difference between the start of one line and the
start of the next, X0Y0 to X0Y1. The line offset is always
an integral number of SDRAM blocks. The line offset val-
ue must be added to the current line address to get the
next line address.

Up and down scaling use the U Counter and U Increment
value. The U Counter is used to detect how many lines
must be read (0 to 5) to generate the next output line and
to generate the vertical offset fraction for the 5-tap filter
for output lines that fall between the input lines. The U
Counter is set to its starting value (typically ‘0’) at the
start of the column, and the U Increment value is added
to the U Counter for each output line segment generated
in the column. For a scaling factor of 1.0, the U Increment
value is 1.0, and each line processed will generate a re-
quest for one block. If the scaling factor is 1/2, the incre-
ment value will be two, corresponding to moving down
two lines. In this case, twice the line offset is added to the
Y Counter value.

For up scaling by a factor of 2.0, the Y increment value is
0.5. This means two output lines are generated for each
input line. The U Counter increments as 0.0, 0.5, 1.0, 1.5,
2.0, etc. The LSBs of the U Counter (i.e. the fractional
part less than 1) are passed along to the filter to generate
the intermediate values. An LSB value of 0.5 means that

Input Pixels: Y

Output Pixels: Y’

1 2 3 4 5 6

Y’=F(Y3,Y2,Y1,Y2,Y3)

Y’=F(Y2,Y1Y2,Y3,Y4)

Y’=F(Y1,Y2,Y3,Y4,Y5)

Y’=F(Y2,Y3,Y4,Y5,Y6)

Y’=F(Y3,Y4,Y5,Y6,Y5)

2N: Y’=F(Y4,Y5,Y6,Y5,Y4)

(3) (2) (5) (4)

Mirrored Pixels

Figure 14-12. Horizontal Pixel Mirroring

SDRAM Bus

Filter Action

Read X0 Write Xa Read X1

Filter X1 => Xb Filter X0 => Xa

Read X2 Write Xb

Filter X2 => Xc

Read X3

Figure 14-13. SDRAM and horizontal filter block timing
PRELIMINARY SPECIFICATION 14-13

PNX1300/01/02/11 Data Book Philips Semiconductors
the output line is half way between Yn and Yn+1. The filter
contains a set of 5 filter parameter RAMs, one for each
coefficient. The 5 most significant LSBs from the counter
select the filter coefficients which will generate the cor-
rect value for the output pixel at the relative offset from
0.0 indicated by the LSBs.

For down scaling, the increment factor will be greater
than one. If the increment factor is 2.0, two new blocks
will have to be loaded before starting the next vertical fil-
ter pass. If the increment factor is 5 or greater, all five
blocks must be loaded. The number of blocks to be load-
ed for the next line is equal to the integer increment value
plus carry out from the LSB portion of the U Counter in-
crement.

Note that the LSB adder carry out is available before the
U Counter has been updated. This allows the current U
Counter value LSB bits to be used for the filter coeffi-
cients while using the carry out for the next value to pre-
dict how many blocks to fetch. The integer value from the
U increment value plus the carry in from the LSB portion
of the Increment adder is the number of blocks to be
loaded. These blocks must be sequentially loaded (and
not skipped) so that the filter has the necessary 5 adja-
cent lines to perform the filtering. The contents of the in-
teger portion of the U Counter (updated after the add) are
not used.

Only one new block can be loaded while the current line
is being processed. If two or more blocks are needed to
process the next line, load one in overlap. Wait until the
current line is done, then load the rest of the blocks. The
microprogram only has to make two decisions for the
next line: is the increment value ‘0’ or greater than ‘0’,
and if greater than ‘0’, is it greater than five. If it is ‘0’, do
nothing: you will reuse all five blocks. If it is 1-4, load the
next block. If it is five or more, calculate the address of
the first block -- by adding N times the address offset to
the Y counter -- and fetch it.

When a new block is loaded and it is time to process the
next line, the block which was Yn+2 becomes Yn+1. The
Y blocks, in effect, shift up one line as you scan down the
image. This shifting action is implemented by shifting the
block select codes in the Filter Source Select Register
(FSSR). The FSSR contains six 3-bit register fields.
These 3-bit fields are rotated by a shift command to the
FSSR. The output of five of the FSSR fields go to the in-
put multiplexer, which selects the next block combination
and sends it to the filter. The output of the sixth field is the
free block to be filled for the next line while the current
line is being processed. The select code is also the block
code (0 to 5), so the free block is identified by its block
code in the FSSR. The FSSR codes for the six cases of
vertical filtering are shown in Table 14-4.

SDRAM

To
 S

D
R

A
M

O
ut

pu
t B

uf
fe

rs
 6

,7

B
lo

ck
 F

IF
OY Counter

Yn+2 Buffer

5-tap Filter

a +
2

R
A

M

a +
1

R
A

M

a
+0

 R
A

M

a -
1

R
A

M

a -
2

R
A

M

Yn+1 Buffer

Yn+0 Buffer

Yn-1 Buffer

Yn-2 Buffer

U Incr Integer

U LSBs

U LSB Reg

U Incr Fraction

Z Counter

Filter Source Select
6 In x 5 Out
Multiplexer

FSSR

Y
 L

in
e

cl
oc

k

Line Clock
Carry

Byte Index

Pixel Clock

Block Count
to Microcode U MSB Cntr

Block Address
to SDRAM

Output
Pixel clock

Figure 14-14. ICP vertical scaling data flow block diagram
14-14 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
14.5.8.1 Mirroring lines at the ends of an
image

A window may start and/or end at the edge of the input
image. In this case, the two start and/or end lines needed
for the first and last lines of the window, respectively, are
missing. These pixels are supplied by the mirror multi-
plexer at the 5-tap filter which mirrors the input lines.The
mirror multiplexer is controlled by the mirror counter and
mirror end register in the same manner as in horizontal
filtering. The mirror register in vertical filtering is incre-
mented by the output line counter. Mirroring is performed
on the first two and last two lines of the column. Mirroring
is optional, depending on whether the start or end of the
line is on a window boundary. The DSPCPU or micropro-
gram must detect this and enable start and/or end mirror-
ing as required.

14.5.8.2 Vertical filter SDRAM block timing

Figure 14-15 shows a timing diagram for block data flow
between the SDRAM and the filter for a scaling factor of
1.0. The bus block reads and writes require one fourth of
the filter processing time because the filter processes
data at 100 Mpix/sec, and the SDRAM reads and writes
blocks of pixels at 400 Mpix/sec (peak). The vertical filter
starts by reading in the five blocks necessary to generate
the next output block. While the current block is being
processed, the next block is read from SDRAM to pre-
pare for the next output block.

14.5.9 Horizontal Scaling and Filtering for
RGB Output

Figure 14-16 shows a data flow block diagram of the ICP
horizontal scaling to RGB output algorithm implementa-
tion. The six input block buffers are arranged as three
block FIFOs, one each for Y, U and V pixel streams.
These three streams are sequentially filtered, pixel by
pixel by the 5-tap filter to generate a scaled output se-
quence of Y, U, V, Y, U, V, etc. This YUV stream is fed

to the YUV to RGB converter where it is converted to one
of several RGB output formats, blended with RGB over-
lay pixels supplied by the Overlay FIFO and masked by
bit mask pixels from the bit mask block. The resulting
scaled, converted, overlay blended and masked RGB
stream is sent to the PCI interface -- typically to an RGB
format frame buffer on the PCI bus -- or to SDRAM.

The input pixel streams from the input FIFOs are trans-
ferred sequentially to the 5-tap filter. Each stream has its
own set of four-stage delay registers used to perform
horizontal filtering on the stream. A pair of 3-way multi-
plexers switch the five filter data inputs and the 5-bit filter
coefficient select codes to the 5-tap filter. This set of mul-
tiplexers is driven by the YUV Sequence counter, a 2-bit
counter that provides the YUV processing sequence.

In horizontal scaling and filtering from SDRAM to
SDRAM, each Y, U and V component is filtered sepa-
rately as a complete image. In RGB output horizontal
scaling and filtering, the image is processed as three in-
terwoven streams of all three YUV components.

In the RGB output mode, the ICP normally generates
RGB data and writes it into a frame buffer memory on the
PCI bus or to the SDRAM. The frame buffer memory for-
mat is RGB with one R, one G and one B value per pixel.
This could be called RGB 4:4:4. To generate this image,
the ICP generates a YUV 4:4:4 image and converts it to
RGB. This process is done one RGB output pixel at a
time. The ICP generates a U pixel and saves it in a reg-
ister, generates a V pixel and saves it in a register, then
generates a Y pixel for output. The YUV to RGB convert-
er combines each Y pixel as it is generated with the pre-
viously stored U and V pixels to generate the RGB output
data. This process is repeated until the whole image has
been converted and sent to the PCI bus or SDRAM.

14.5.9.1 YUV sequence counter in YUV 4:2:2
output Mode

For RGB output formats, the YUV data must be scaled to
YUV 4:4:4 format before conversion to RGB. The YUV
data in SDRAM is typically stored in YUV 4:2:2. This
means that the U and V data must be upscaled by 2 rel-
ative to the Y data to generate the internal YUV 4:4:4 for-
mat required for RGB conversion.

For the YUV 4:2:2 output formats, the U and V data do
not need to be up scaled to 4:4:4. The YUV 4:4:4 data
would be upscaled only to be decimated back to YUV
4:2:2. For YUV 4:2:2 output, the U and V pixels are used
twice. This is done by having a half-speed mode for the
YUV Sequence Counter. In this mode, the sequence is
U0, V0, Y0, Y1, U2, V2, Y2, Y3, etc. The U and V are not

Table 14-4. FSSR codes for vertical filtering.

Case Pn-2 Pn-1 Pn+0 Pn+1 Pn+2 IO Block

1 5 4 3 2 1 0

2 0 5 4 3 2 1

3 1 0 5 4 3 2

4 2 1 0 5 4 3

5 3 2 1 0 5 4

6 4 3 2 1 0 5

SDRAM Bus

Filter Action

Read Y5 Write Ya Read Y6

Filter Y3-6 => Yb Filter Y2-5 => Ya

Read Y7 Write Yb

Filter Y4-7 => Yc

Read Y8

Figure 14-15. SDRAM and vertical filter block timing
PRELIMINARY SPECIFICATION 14-15

PNX1300/01/02/11 Data Book Philips Semiconductors
up scaled by 2 relative to the Y component for YUV 4:4:4
output, although they could be up scaled as part of gen-
eral up scaling of the image.

The YUV 4:2:2 output mode also provides higher pro-
cessing bandwidth relative to YUV 4:4:4 up scaling. Half
as many U and V pixels are processed.The output pixel
rate is one pixel per 20 nanoseconds for the YUV 4:2:2
output mode versus one pixel per 30 for conversion to
YUV 4:4:4. This can be used to provide some processing
performance improvement for very large images at the
expense of some chroma quality.

14.5.9.2 PCI output block timing

The ICP outputs pixels to the PCI interface at a peak rate
of 33 Mpix/sec in RGB mode and 50 Mpix/second in the

YUV mode using YUV sequencing. For one word per pix-
el output codes, such as RGB-24, this is a peak rate of
33 Mwords/sec or 132 Mpix/sec in the RGB sequencing
mode. This is the same speed as the 132 MB/sec peak
rate of the PCI interface. (At 50 Mpix/sec, the result
would be 200 MB/sec.) The BIU control for the PCI inter-
face has a FIFO for buffering data from the ICP, but this
buffer is only 16 words deep. Therefore, the ICP will oc-
casionally have to wait for the PCI to accept more data.
In the PCI output mode, this stalls the ICP clock.

14.6 OPERATION AND PROGRAMMING

The ICP uses a combination of hardware and a Micro-
program Control Unit (MCU) to implement its scaling, fil-
tering and conversion functions. The microprogram is a

To
 P

C
I

5 Stage Multiplier-
Accumulator

Y, U, V LSBs

Reg

a
+2

 R
A

M

a +
1

R
A

M

a +
0

R
A

M

a -
1

R
A

M

a -
2

R
A

M

Y Counter
Y LSB Counter

Buffers 0,1
Block FIFO

Filter Source Select

5-tap Filter

Reg
Reg
Reg

Reg

U Counter
U LSB Counter

Buffers 2,3
Block FIFO

Reg
Reg
Reg

Reg

V Counter
V LSB Counter

Buffers 4,5
Block FIFO

Reg
Reg
Reg

OL Counter

B, BX Counter

Buffer 8
Bit Mask

Buffers 6,7
Overlay

FIFO

M
u

lt
ip

le
xe

r:
 Y

, U
, V

 S
el

ec
t

M
u

x

Y
U

V
 t

o
 R

G
B

 C
o

nv
er

si
o

n
, F

o
rm

at
ti

n
g

, A
lp

h
a

B
le

n
d

in
g

 &
 B

it
 M

as
ki

n
g

YUV

Counter
Sequence

Pixel
Clock Y, U, V Data FIFO Clocks

M
ir

ro
r

M
u

lt
ip

le
xe

r

Y Mirror Cntr
U Mirror Cntr
V Mirror Cntr

M
u

x

RGB to SDRAM case

RGB to PCI case

Figure 14-16. ICP horizontal scaling for RGB output data flow block diagram
14-16 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
factory-supplied state machine that resides in SDRAM. It
is read each time the ICP executes an operation. Using
an SDRAM-resident microprogram-controlled state ma-
chine minimizes hardware and provides flexibility in han-
dling special conditions without additional hardware.

Important Note: You must set the ICP DMA Enable bit
(IE) in the BIU_CTL register of the PCI interface for RGB
output to PCI. This bit must be set before initiating RGB
to PCI operations, or the ICP will stall waiting for the PCI
to become ready. Refer to Section 11.6.5, “BIU_CTL
Register.”

14.6.1 ICP Register Model

The ICP is controlled by the DSPCPU through five MMIO
registers: the MicroProgram Counter (MPC), the Micro
Instruction Register (MIR), the Data Pointer (DP), the
Data Register (DR) and the ICP Status register (SR), as
shown in Figure 14-17. The MPC, DP and SR are used
in normal operations, and the MIR and DR are used in
test and debug. Note that the MMIO registers should
never be written while the ICP is executing microcode, i.e
test the Busy bit in the SR register before writing any ICP
MMIO register.

The MPC is the MCU instruction counter. It points to the
next microinstruction to be executed. The entry point in
the microprogram defines which ICP operation is to be
executed.The DP points to the location in SDRAM of a
table of parameters used by the ICP to process the im-
age data, such as the image input and output start ad-
dresses, scaling factor, etc.

The SR has 13 active bits: Busy (B), Done (D), done In-
terrupt Enable (IE), ACK_DONE (A), Little Endian (L),
Step (S), Diagnostic (DG), Reset (R), Priority Delay (PD,
4 bits). Bits 12 .. 30 are reserved.

• (B)usy indicates the ICP is busy executing micro-
code.

• (D)one indicates that the previous requested function
is complete, and that the ICP clock is stopped.

• (D)one causes an interrupt to the DSPCPU when
Interrupt Enable is set.

• (A)CK_DONE clears (D)one and the corresponding
interrupt.

• (L)ittle Endian sets the highway endian swap multi-
plexer to little endian mode for data on the SDRAM
bus.

• (S)tep causes the MCU to execute one microinstruc-
tion. Step is used for diagnostics to step the ICP
through its microinstructions one clock step at a time.
Writing a ‘1’ to Step sets Busy, which is reset at the
end of execution of the next microinstruction.

• (DG) allows SDRAM operations in step mode.
• (R) is a write-only bit that resets ICP internal regis-

ters.
• (PD) sets a timer for bus activity that defines the min-

imum bus bandwidth available to the ICP.

The ICP Status Register contains 20 read-only status
bits. The upper 16 bits of the Status Register can contain
a 16-bit code returned by the microprogram upon com-
pletion. Bits 15 through 12 are reserved for error flags.

Important Note: You must set the ICP DMA Enable bit
(IE) in the BIU_CTL register of the PCI interface for RGB
output to PCI. This bit must be set before initiating RGB
to PCI operations, or the ICP will stall waiting for the PCI
to become ready. Refer to Section 11.6.5, “BIU_CTL
Register.”

14.6.2 Power Down

The ICP block enters in power down state whenever
PNX1300 is put in global power down mode.

MicroProgram Counter (MPC, ICP_MPC)

Data Pointer (DP, ICP_DP)

ICP Status (ICP_SR) D

1 031

31 0

BIE

2

MicroInstruction Register (MIR, ICP_MIR)

Data Register (DR, ICP_DR)

3

ALS

45

0x10 2400

0x10 2404

0x10 2408

0x10 2410

0x10 2414

MMIO Offsets

Priority Delay

12 11 6

DGR

78

Figure 14-17. ICP MMIO Registers

30
PRELIMINARY SPECIFICATION 14-17

PNX1300/01/02/11 Data Book Philips Semiconductors
The ICP block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. Refer
to Chapter 21, “Power Management.”

It is recommended that ICP is in an idle state before
block level power down is activated.

14.6.3 ICP Operation

The DSPCPU commands the ICP to perform an opera-
tion by loading the DP with a pointer to a parameter
block, loading the MPC with a microprogram start ad-
dress and setting Busy in the SR. For example to cause
the ICP to scale and filter an image, set up a block of
SDRAM with the image and filter parameters, load the
MPC with the starting address of the appropriate micro-
program entry point in SDRAM, load the DP with the ad-
dress of the parameter block, and set Busy in the SR by
writing a ‘1’ to it. When the filter operation is complete,
the ICP will set Done and issue an interrupt. The
DSPCPU clears the interrupt by writing a ‘1’ to
ACK_DONE. Note: The interrupt should be set up as a
‘level triggered.’

When the DSPCPU sets Busy, the MCU begins reading
the microprogram from SDRAM. The microinstructions
are read in from SDRAM as required by the ICP, and in-
ternal pre-fetching is used to eliminate delays. Setting
Busy enables the MCU clock, the first block of microin-
structions is automatically read in, and the MCU begins
instruction execution at the current address in the MPC.
Clearing Busy stops the MCU clock. Busy can be cleared
by hardware reset, by the MCU, or by the DSPCPU.
Hardware reset clears the Status register, including Busy
and Done, and internal registers, such as the TCR.
When the MCU completes a microprogram operation,
the microprogram typically clears Busy and sets Done,
causing an interrupt if IE is enabled.

The DSPCPU performs a software reset by clearing
(writing a ‘0’ to) Busy and by writing a ‘1’ to Reset. The
DSPCPU can also set Done to force a hardware inter-
rupt, if desired.

14.6.4 ICP Microprogram Set

The ICP comes with a factory-generated microprogram
set which implements the functions of the ICP. The mi-
croprogram set includes the following functions:

1. Loading the filter coefficient RAMs.
2. Horizontal scaling and filtering from SDRAM to

SDRAM of an input image to an output image. The in-
put and output images can be of any size and position
that fits in SDRAM. The scaling factors are, in gener-
al, limited only by input and output image sizes.

3. Vertical scaling and filtering from SDRAM to SDRAM
of an input image to an output image. The input and
output images can be of any size and position that fits
in SDRAM. The scaling factors are, in general, limited
only by input and output image sizes.

4. Horizontal scaling, filtering and YUV to RGB conver-
sion of an input image from SDRAM to an output im-
age to PCI or SDRAM, with an alpha-blended and

chroma-keyed RGB overlay and a bit mask. The input
and output images can be of any size and position
that fit in SDRAM and can be output to the PCI bus or
SDRAM. In general, scaling factors are limited only by
input and output image sizes.

The microprogram is supplied with the ICP as part of the
device driver. The entry point in the microprogram de-
fines which ICP operation is to be done. The entry points
are given below in terms of word offsets from the begin-
ning of the microprogram:

Offset Function

 0 Load coefficients

 1 Horizontal scaling and filtering

 2 Vertical scaling and filtering

 3 Horizontal scaling, filtering, YUV to RGB
conversion, bit masking (PCI) and over-
lay (PCI) with alpha blending and
chroma keying

14.6.5 ICP Processing Time

The processing time for typical operations on typical pic-
ture sizes has been measured.

Measurements were performed with the following config-
uration:

• CPU clock and SDRAM clock set to 100 MHz
• PCI clock set to 33MHz
• All measurement with PCI as pixel destination were

done with an Imagine 128 Series II graphics card,
which never caused a slowdown of the ICP opera-
tion.

• TRITON2 mother-board with SB82437UX and
SB82371SB based Intel Pentium chipset.

• PNX1300 arbiter set to default settings
• PNX1300 latency timer set to maximum value = 0xf8.
• Overlay sizes were the same as picture sizes.

Results are tabulated below for three different cases of
available memory bandwidth:

1. No other load to SDRAM, i.e. full SDRAM bandwidth
available for ICP. See Table 14-5.

2. SDRAM memory loaded to 95% of its bandwidth by
DCACHE traffic from DSPCPU. Priority delay = 1, i.e.
ICP did wait one block time before competing for memo-
ry. See Table 14-6.

3. SDRAM memory loaded to 95% of its bandwidth by
DCACHE traffic from DSPCPU. Priority delay = 16, i.e.
ICP did wait 16 block times before competing for memo-
ry. See Table 14-7.

Note: A load of 95% of the memory bandwidth is very
rarely found in a real system. So the results in these ta-
bles may be useful to estimate upper bounds for the
computation time in a loaded system.

The priority delays were set to the minimum and maxi-
mum possible values, so the computation time for other
priority delay values should be somewhere in between.
14-18 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
A simple linear model of computation time has been fit-
ted to the tabular data and to corresponding measure-
ments with half the number of pixels per line.

It was assumed that

processing time = (time per line start)* (number of lines)

+(time per pixel) * (number of pixels)

Table 14-8, Table 14-9 and Table 14-10 give the time
per line start and the time per pixel in this equation for the
three memory bandwidth cases.

The maximum deviation between measured time and fit-
ted model is on the order of 10% in the range W = 180 ...
1024, H = 240 ...768. The deviation is much less in most
cases. The values were found by least squares fit to the
measured data.

In some cases the cumulative time for line starts contrib-
uted so little to the total computation time that the value

per line start could only be determined relatively inaccu-
rately. In other words the pixel time portion dominated
the equation so much that the line time portion was neg-
ligible, given the inaccuracies of the model.

Therefore the simple model is only thought to allow inter-
polation for other picture sizes within the range W = 180
...1024, H = 240 ... 768. Extrapolation to picture sizes
much outside this range should not be attempted using
this data.

In some cases the real ICP performance may be much
better than that predicted by the model, due to irregular
behavior of the ICP.

For horizontal and vertical up/down-scaling operations
use the larger W or H value occurring at input/output with
the H/V filter times table or model.

This will lead to overestimation of processing time by up
to 20%.

Table 14-5. Measured processing time in ms - no other load to SDRAM

W in pixels 360 640 720 720 800 800 1024

H in pixels 240 480 480 768 480 600 768

horizontal filter, 1 component 1.22 3.82 4.43 7.08 4.78 5.98 9.27

horizontal filter, 3 components YUV 4:2:2 2.68 8.18 9.29 14.86 10.08 12.60 19.35

vertical filter, 1 component 2.57 8.73 10.24 16.36 11.19 13.97 22.30

vertical filter, 3 components YUV 4:2:2 5.15 17.47 20.48 32.72 22.95 28.65 44.60

yuv to rgb8a, pci output 3.36 10.74 11.93 19.08 13.04 16.30 26.02

yuv to rgb15a, pci output 3.39 10.79 11.96 19.12 13.10 16.41 26.15

yuv to rgb24, pci output 3.72 12.24 13.52 21.62 14.85 18.59 29.98

yuv to rgb24a, pci output 4.34 14.52 16.04 25.02 17.58 21.63 35.01

yuv to rgb8a, sdram output 3.39 10.78 11.95 19.09 13.13 16.40 26.08

yuv to rgb15a, sdram output 3.46 11.04 12.26 19.60 13.46 16.82 26.87

yuv to rgb24, sdram output 3.62 11.69 13.06 20.88 14.43 18.03 28.71

yuv to rgb24a, sdram output 3.90 12.69 14.11 22.57 15.65 19.56 31.07

yuv to rgb8a, bitmask, pci output 3.37 11.42 12.49 19.97 13.61 17.01 27.83

yuv to rgb8a, RGB 15a overlay, pci output 3.67 11.72 12.92 20.67 14.23 17.79 28.23

yuv to rgb8a, RGB 24a overlay, pci output 4.23 13.57 15.32 24.51 16.93 21.15 33.15

yuv to rgb8a, yuv 422a overlay, pci output 3.67 11.72 12.92 20.67 14.23 17.79 28.23

yuv to rgb8a, 422 sequencing, pci output 2.52 7.77 8.57 13.70 9.32 11.65 18.40

Table 14-6. Measured processing time in ms - SDRAM loaded 95%, priority delay = 1

W in pixels 360 640 720 720 800 800 1024

H in pixels 240 480 480 768 480 600 768

horizontal filter, 1 component 2.01 6.37 7.60 12.16 8.02 10.02 16.02

horizontal filter, 3 components YUV 4:2:2 4.11 13.69 15.62 24.96 16.56 20.68 32.65

vertical filter, 1 component 2.60 8.79 10.34 16.50 11.25 14.05 22.43

vertical filter, 3 components YUV 4:2:2 5.20 17.59 20.66 32.96 23.15 28.89 44.87

yuv to rgb8a, pci output 3.51 11.08 12.17 19.46 13.51 16.88 26.56

yuv to rgb15a, pci output 3.52 11.11 12.22 19.51 13.47 16.82 26.65

yuv to rgb24, pci output 3.88 12.51 13.79 22.08 15.21 18.99 30.26
PRELIMINARY SPECIFICATION 14-19

PNX1300/01/02/11 Data Book Philips Semiconductors
yuv to rgb24a, pci output 4.39 14.29 15.84 25.30 17.72 22.00 34.83

yuv to rgb8a, sdram output 3.69 11.67 12.75 20.39 14.20 17.80 27.95

yuv to rgb15a, sdram output 4.25 13.15 14.64 23.41 16.79 20.98 31.49

yuv to rgb24, sdram output 5.17 16.56 18.71 29.90 20.85 26.06 40.82

yuv to rgb24a, sdram output 5.82 18.64 21.02 33.62 23.23 29.03 45.34

yuv to rgb8a, bitmask, pci output 3.65 12.37 13.45 21.50 14.68 18.34 30.13

yuv to rgb8a, rgbl15a overlay, pci output 4.94 15.30 17.23 27.51 19.06 23.78 36.70

yuv to rgb8a, rgbl24a overlay, pci output 6.77 21.93 24.85 39.73 27.44 34.31 53.67

yuv to rgb8a, yuv422a overlay, pci output 4.95 15.30 17.22 27.51 19.06 23.80 36.70

yuv to rgb8a, 422sequencing, pci output 3.04 8.92 9.63 15.39 10.53 13.16 20.37

Table 14-6. Measured processing time in ms - SDRAM loaded 95%, priority delay = 1

W in pixels 360 640 720 720 800 800 1024

H in pixels 240 480 480 768 480 600 768

Table 14-7. Measured processing time in ms, SDRAM loaded 95%, priority delay = 16

W in pixels 360 640 720 720 800 800 1024

H in pixels 240 480 480 768 480 600 768

horizontal filter, one component 7.70 24.28 29.32 46.90 30.05 37.56 60.39

horizontal filter, 3 components YUV 4:2:2 15.28 52.00 60.08 96.10 63.13 78.90 123.29

vertical filter, one component 7.50 26.71 30.92 49.31 33.57 41.93 68.18

vertical filter, 3 components YUV 4:2:2 14.48 53.45 60.70 96.83 68.69 85.79 136.40

yuv to rgb8a, pci output 10.55 31.61 34.95 55.84 37.18 46.47 74.29

yuv to rgb15a, pci output 10.55 31.61 34.93 55.84 37.17 46.45 74.29

yuv to rgb24, pci output 10.39 31.71 34.93 55.84 37.25 46.54 73.58

yuv to rgb24a, pci output 10.49 31.95 35.06 55.98 37.15 46.46 74.10

yuv to rgb8a, sdram output 13.83 41.93 48.10 76.94 51.57 64.42 99.33

yuv to rgb15a, sdram output 17.58 55.55 60.95 97.49 65.82 82.24 137.71

yuv to rgb24, sdram output 20.25 65.46 74.67 119.44 81.74 102.12 158.43

yuv to rgb24a, sdram output 24.05 78.51 88.98 142.21 98.69 125.67 196.99

yuv to rgb8a, bitmask, pci output 11.05 35.04 37.75 60.37 40.15 50.19 85.13

yuv to rgb8a, rgbl15a overlay, pci output 18.19 57.11 62.60 100.04 70.84 88.26 136.03

yuv to rgb8a, rgbl24a overlay, pci output 24.81 80.19 91.86 145.57 100.72 125.00 198.15

yuv to rgb8a, uv422a overlay, pci output 18.20 57.11 62.60 100.04 70.00 88.28 135.98

yuv to rgb8a, 422sequencing, pci output 10.56 31.09 34.79 55.63 36.27 45.33 74.43
14-20 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
14.6.6 Priority Delay and ICP Minimum Bus
Bandwidth

The Priority Delay field in the Status register sets the time
the ICP will wait for SDRAM service before changing
from a low-priority bus request to a high-priority request.
The ICP normally requests SDRAM bus service at the
lowest-priority level, since it is a background processing
device. In some cases, service to the ICP could be con-
tinuously delayed by other background devices, such as
the VLD processor or by high-priority requests from the
DSPCPU.

The PD field sets a timer on the currently active bus re-
quest. The timer is loaded with the PD value and started
each time a bus request is submitted. The timer is incre-
mented once each block time, the time required to load
one block of 64 bytes. If the timer reaches 16 before the
request is serviced, the ICP changes its bus request pri-
ority from low to high.

The resulting time delay until the ICP changes to high pri-
ority is:

timer delay = (16 - PD)*(block time)

One block time is 16 clock cycles.

Table 14-8. Line start and pixel time for linear model,
no other load on SDRAM

function t/linestart
(µs)

t/pixel
(ns)

horizontal filter, 1 component 1.1 11

horizontal filter, 3 components YUV 4:2:2 3.2 22

vertical filter, 1 component 0.2 29

vertical filter, 3 components YUV 4:2:2 0.7 58

yuv to rgb8a, pci output 3.2 30

yuv to rgb15a, pci output 3.3 30

yuv to rgb24, pci output 3.7 34

yuv to rgb24a, pci output 5.3 40

yuv to rgb8a, sdram output 3.4 30

yuv to rgb15a, sdram output 3.3 31

yuv to rgb24, sdram output 3.1 33

yuv to rgb24a, sdram output 3.4 36

yuv to rgb8a, bitmask, pci output 2.5 32

yuv to rgb8a, rgbl15a overlay, pci output 3.8 32

yuv to rgb8a, rgbl24a overlay, pci output 4.0 39

yuv to rgb8a, yuv422a overlay, pci output 3.8 32

yuv to rgb8a, 422sequencing, pci output 3.2 20

Table 14-9. Line start and pixel time for linear model,
SDRAM loaded 95%, priority delay = 1

function t/linestart
(µs)

t/pixel
(ns)

horizontal filter, 1 component 0.9 20

horizontal filter,3 components YUV 4:2:2 2.8 40

vertical filter, 1 component 0.2 29

vertical filter, 3 components YUV 4:2:2 0.7 58

yuv to rgb8a, pci output 3.8 30

yuv to rgb15a, pci output 3.8 30

yuv to rgb24, pci output 4.5 34

yuv to rgb24a, pci output 6.0 39

yuv to rgb8a, sdram output 4.3 31

yuv to rgb15a, sdram output 4.9 36

yuv to rgb24, sdram output 4.6 47

yuv to rgb24a, sdram output 5.0 53

yuv to rgb8a, bitmask, pci output 3.2 34

yuv to rgb8a, rgbl15a overlay, pci output 5.5 42

yuv to rgb8a, rgbl24a overlay, pci output 5.8 63

yuv to rgb8a, yuv422a overlay, pci output 5.5 42

yuv to rgb8a, 422sequencing, pci output 4.9 21

Table 14-10. Line start and pixel time for linear
model, SDRAM loaded 95%, priority delay = 16

function t/linestart
(µs)

t/pixel
(ns)

horizontal filter, 1 component 2.9 77

horizontal filter, 3 components YUV422 8.7 154

vertical filter, 1 component 0.4 87

vertical filter, 3 components YUV 4:2:2 1.2 174

yuv to rgb8a, pci output 13.9 82

yuv to rgb15a, pci output 13.8 82

yuv to rgb24, pci output 13.7 82

yuv to rgb24a, pci output 14.0 82

yuv to rgb8a, sdram output 15.8 115

yuv to rgb15a, sdram output 18.5 151

yuv to rgb24, sdram output 17.5 187

yuv to rgb24a, sdram output 16.6 233

yuv to rgb8a, bitmask, pci output 14.3 91

yuv to rgb8a, rgbl15a overlay, pci output 20.7 153

yuv to rgb8a, rgbl24a overlay, pci output 21.6 232

yuv to rgb8a, yuv422a overlay, pci output 20.8 153

yuv to rgb8a, 422sequencing, pci output 14.0 80
PRELIMINARY SPECIFICATION 14-21

PNX1300/01/02/11 Data Book Philips Semiconductors
Table 14-11 gives the delay in block times as a function
of the PD field.

The priority delay mechanism in interaction with the arbi-
ter mechanism allows the user to allocate enough band-
width for the ICP to do its processing in the required
frame time. For details of the arbiter mechanism see
Chapter 20, “Arbiter.”

14.6.7 ICP Parameter Tables

Each microprogram in the microprogram set has an as-
sociated parameter table used by the ICP to process the
image data, such as the image input and output start ad-
dresses, scaling factor, etc. The DP points to the location
in SDRAM of the first word of the parameter table. The
parameter table address must be word aligned. The pa-
rameter table can be more than one SDRAM block (16
32-bit words) long.

Note: In packed RGB24 to PCI operation the output ad-
dress offset from the start of video memory must be a
multiple of 6 bytes, i.e. on an even pixel boundary.

14.6.8 Load Coefficients

This routine loads the filter coefficient RAMs with coeffi-
cient data in the parameter table. A total of 32 sets of five
10-bit coefficients are loaded. Each set of five coeffi-
cients forms a 50-bit coefficient word. Two coefficients
are stored in each 32-bit word in SDRAM. Three 32-bit
words are used for each set of five coefficients that form
a coefficient word. The parameter table is 96 words (6
SDRAM blocks) long. Each coefficient is stored as the 10
LSBs of each 16-bit half word of the 32-bit word.

The parameter table for the coefficient load function con-
tains the coefficient data directly, as shown below. The
parameter table is 96 words long.

14.6.9 Horizontal Filter - SDRAM to SDRAM

This routine performs horizontal scaling and filtering of
one component (Y, U or V) of an N x M image from one
location in SDRAM to another.

14.6.9.1 Algorithms

The routine reads image data from SDRAM using the Y
address counter, then scales and filters the data in the
horizontal direction and writes it back to the SDRAM us-
ing the Z address counter. The 5-tap filter scales and fil-
ters the data. The LSB Increment value supplied by the
parameter table determines the scaling. The routine
reads and writes a line at a time until the full image is
transferred. The filter mirrors the ends of each line to pro-
vide the extra pixels needed by the filter at the ends of
each line.

14.6.9.2 Parameter table

The parameter table, shown in Table 14-13, supplies the
input and output starting addresses and offsets, the im-
age height in lines and width in pixels, and the increment
value, which is derived from the scale factor.

The input and output addresses are the byte addresses
of their respective tables. They do not need to be word-
or block-aligned.

The input and output line offsets define the difference in
bytes from the address of the first pixel in the first line to
the address of the first pixel in the second line for their re-
spective blocks. The line offset must be constant for all
lines in each table. The line offset allows some space be-
tween the end of one line and the start of the next line. It
also allows the ICP to scale and filter a subset of an ex-
isting image, such as magnifying a portion of an image.
There are no restrictions on line offset values other than
they must be 16-bit, two’s complement integer values.
(Note that this allows negative offsets. You can use this
to flip an image vertically.)

The input and output image height and width values are
the height in lines and width in pixels per line for their re-

Table 14-11. ICP priority delay vs. PD code

PD
Code

Delay
block times

1111 1

1110 2

1101 3

1100 4

1011 5

1010 6

1001 7

1000 8

0111 9

0110 10

0101 11

0100 12

0011 13

0010 14

0001 15

0000 16

Table 14-12. Load coefficients parameter table

Parameter Word

DescriptionUpper 2
bytes

Lower 2
bytes

a+2 a+1 RAM Coefficient word 0

a+0 a-1

a-2 0

a+2 a+1 RAM Coefficient word 1

a+0 a-1

a-2 0

a+2 a+1 RAM Coefficient word 31

a+0 a-1

a-2 0
14-22 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
spective images. The height and width are 16-bit positive
binary numbers between 0 and 64K-1.

The Integer increment and Fraction increment values are
the scaling parameters. The Integer value is a 16-bit in-
teger, and the Fraction value is a positive binary fraction
between 0 and 0.99999+. For up scaling (output image
bigger), the increment value is the inverse of the scaling
value. If you are upscaling by a factor of 2.5, the incre-
ment value will be the inverse of 2.50 = 0.40. The Integer
increment value will be 0 and the Fraction increment val-
ue will be 0.40. For down scaling, the increment value is
equal to the scaling value. If you are down scaling by 2.5
(output image smaller), the Integer increment value will
be 2, and the Fraction increment value will be 0.500.

To perform scaling, the Integer and Fractional increment
values must be generated and placed in the parameter
table. The simplest way to generate these values in com-
mon computer languages such as C is as follows:

1. Generate the Increment Value as a floating point
number = Input Width / Output Width

2. Multiply the Increment Value by 65536
3. Convert the result to a Long Integer (32 bits). The up-

per 16 bits of the Long integer will be the Integer in-
crement value, and the lower 16 bits will be the Frac-
tional value.

4. Store the 32-bit Long integer in the parameter table as
the combined Integer and Fractional increment val-
ues.

The Start Fraction defines the starting value in the scal-
ing counter for each line. It is a 16-bit, two’s complement
fractional value between -0.500 and +0.49999. The Start
Fraction allows the input data to be offset by up to half a
pixel, referred to the input pixel grid. It is ‘0’ for Y and for
UV co-sited data, and set to ‘-0.25’ (C000h) for inter-
spersed to co-sited conversion of U and V data. The ‘-
0.25’ value effectively shifts the U and V data toward the
start of the line by 1/4 pixel, the amount required for con-
version.

14.6.9.3 Control word format

The Control word provides bit fields which affect the hor-
izontal filtering operation. The format of the Control word
is as follows.

Bit Name Function

15 Bypass Bypass filter. Picks nearest input pixel
and passes it to output unfiltered.

When Bypass is set & scale factor is
1.0, this results in an image block
move

9 GETB Large down-scaling bit. Picks nearest
input pixels and passes them to filter.

Equivalent to bypass + 5-tap filter of
output pixels. LSB value = 0 for filter-
ing.

The Bypass bit causes the data to bypass the 5-tap filter.
The scaling operation selects the center pixel, and this
pixel is passed to the filter output. No filtering or interpo-
lation is provided. If the scaling factor is ‘1.0’, the result is
an image block move where the image is moved from
one part of SDRAM to another without modification. If the
scaling factor is other than ‘1.0’, the effective algorithm is
pixel picking, where the input pixel nearest the output
pixel location is used as the output pixel.

The GETB bit is an optional bit for large (> 4) down scal-
ing. When GETB is ‘0’ (normal operation), the 5-tap filter
receives the pixel nearest the output pixel as its center
pixel plus the two adjacent input pixels on either side of
this pixel to form the five filter inputs. When GETB is set,
the filter receives the pixel nearest the output pixel as its
center pixel plus the two pixels nearest the adjacent out-
put pixels on either side of this pixel to form the five filter
inputs. The effective algorithm is pixel picking plus 5-tap
filtering of the result. GETB also forces the scaling LSB
value to ‘0’, since output pixels are being filtered and no

Table 14-13. Horizontal filter parameter table

Parameter Word
Description

Upper 2 bytes Lower 2 bytes

Input image start address Start address of X0Y0 (byte address)

Y counter
Start fraction

Input image
Line offset

Starting value: may be 0.5, etc. for interspersed convert;
Line offset from X0Y0 to X0Y1

Fraction increment Integer increment Increment value for Y = 1/scale factor

Input image height Input image Width Height and width in input lines and pixels

Output image start address Start address of X0Y0 (byte address)

Control Output Image
Line offset

Control bits; Line offset from X0Y0 to X0Y1

Output image height Output image width Height and width in output lines and pixels
PRELIMINARY SPECIFICATION 14-23

PNX1300/01/02/11 Data Book Philips Semiconductors
interpolation is used. (See Section 14.5.2, “Filtering”)
This is shown in Figure 14-18.

14.6.10 Vertical Filter - SDRAM to SDRAM

This routine performs vertical scaling and filtering of one
component (Y, U or V) of an N x M image from one loca-
tion in SDRAM to another.

14.6.10.1 Algorithms

The routine reads image data from SDRAM using the Y
address counter, scales and filters the data in the vertical
direction, and writes it back to the SDRAM using the Z
address counter. The 5-tap filter scales and filters the da-
ta. The U LSB register is used as the scaling coefficient
register. The U LSB Increment value supplied by the pa-
rameter table determines the scaling. Lines at the top
and bottom of the image are mirrored to provide the extra
line data needed by the 5-tap filter.

The routine reads and writes data in 64-byte (one
SDRAM block) columns of pixels until the entire image is
transferred. For each column, line segments of 64 pixels
are processed until the entire column has been pro-
cessed. Each 64-pixel line segment generated requires
five vertically adjacent 64-pixel line segments as input to
the 5-tap filter. The routine processes the image in pixel
columns to eliminate redundant read of input pixel data:
each new line segment typically requires reading only
one new 64 byte line segment.

The routine processes data in 64-pixel blocks, corre-
sponding to the input block buffer sizes. Five buffers are
used in processing the current line segment, while the
sixth buffer reads in the next line segment in overlap with
current processing.

14.6.10.2 Parameter table

The parameter table, as shown in Figure 14-19, supplies
the input and output starting addresses and offsets, the
image height in lines and width in pixels, and the scale
factor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 1920

0 1 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20

P2N = F(10, 11, 12, 13, 14)

P2L = F(2, 7, 12, 17, 22)

21 22 23 2425

Normal Down Scaling

Large Down Scaling

Input Pixels

Output Pixels

Input Pixels

Output Pixels

Figure 14-18. Normal vs. Large down scaling for scale factor = 5.0

Figure 14-19. Vertical filter parameter table

Parameter Word
Description

Upper 2 bytes Lower 2 bytes

Input image start address Start address of X0Y0 (byte address)

U counter
Start fraction

Input image
Line offset

Starting value: may be 0.5, etc. for interspersed convert;
Line offset from X0Y0 to X0Y1

Fraction increment Integer increment Increment value for U = 1/scale factor

Input image height Input image width Height and width in input lines and pixels

Output image start address Start address of X0Y0 (byte address)

Control Output image
Line offset

Control Word; Line offset from X0Y0 to X0Y1

Output image height Output Image Width Height and width in output lines and pixels
14-24 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
The input and output addresses are the byte addresses
of their respective tables. The input and the output ad-
dress need to be 64-byte aligned.

The input and output line offsets define the difference in
bytes from the address of the first pixel in the first line to
the address of the first pixel in the second line for their re-
spective blocks. The line offset must be constant for all
lines in each table. It allows some space between the
end of one line and the start of the next line. It also allows
the ICP to scale and filter a subset of an existing image,
such as magnifying a portion of an image. Offset values
are 16-bit, two’s complement integer values.

Vertical filtering has a restriction on input and output line
offset values: they must be positive, and they must be
multiples of 64. Note that this only applies to the line-to-
line spacing. Even with this restriction, input images may
be any height and any width and may start at any byte
address. Also, image subsets of arbitrary height and
width can be used. As long as the original image has a
line offset which is a multiple of 64, all subsets of that im-
age will also automatically have a line offset, which is a
multiple of 64 - the same as the original image. All imag-
es should have line offsets which are multiples of 64 as
good programming practice, even though this restriction
only applies to vertical filtering. If an image does not have
a multiple of 64 line offset, it can be converted to that by
using horizontal filtering in the image block move mode
with the output offset value being a multiple of 64.

The input and output image height and width values are
the height in lines and width in pixels per line for their re-
spective images. The height and width are 16-bit positive
binary numbers between 0 and 64K-1.

The Integer increment and Fraction increment values are
the scaling parameters. The Integer value is a 16-bit in-
teger, and the Fraction value is a positive binary fraction
between 0 and 0.99999+. For up scaling (output image
bigger), the increment value is the inverse of the scaling
value. If you are upscaling by a factor of 2.5, the incre-
ment value will be the inverse of 2.50 = 0.40. The Integer
increment value will be 0 and the Fraction increment val-
ue will be 0.40. For down scaling, the increment value is
equal to the scaling value. If you are down scaling by 2.5
(output image smaller), the Integer increment value will
be 2, and the Fraction increment value will be 0.500.

To perform scaling, the Integer and Fractional increment
values must be generated and placed in the parameter
table. The simplest way to generate these values in com-
mon computer languages such as C is as follows:

1. Generate the Increment Value as a floating point
number = Input Height / Output Height

2. Multiply the Increment Value by 65536
3. Convert the result to a Long Integer (32 bits). The up-

per 16 bits of the Long integer will be the Integer in-
crement value, and the lower 16 bits will be the Frac-
tional value.

4. Store the 32-bit Long integer in the parameter table as
the combined Integer and Fractional increment val-
ues.

The Start Fraction defines the starting value in the scal-
ing counter for each line. It is a 16-bit, two’s complement
fractional value between -0.500 and 0.49999+. This val-
ue is placed in the Start Fraction allows the input data to
be offset by up to half a line, referred to the input pixel
grid. It is set to ‘0’ for all conventional YUV input data.

14.6.10.3 Control word format

The Control word provides bit fields which affect the ver-
tical filtering operation. The format of the Control word is
as follows.

Bit Name Function

15 Bypass Bypass filter. Picks nearest input line
and passes it to output unfiltered.

When Bypass is set & scale factor is
1.0, this results in an image block
move

The Bypass bit causes the data to bypass the 5-tap filter.
The scaling operation selects the center line, and this
line is passed to the filter output. No filtering or interpola-
tion is provided. If the scaling factor is 1.0, the result is an
image block move where the image is moved from one
part of SDRAM to another without modification. If the
scaling factor is other than 1.0, the effective algorithm is
line picking, where the input line nearest the output line
location is used as the output line.

14.6.11 Horizontal Filter with RGB/YUV
Conversion to PCI or SDRAM

This routine moves an N x M image in YUV 4:2:2, YUV
4:2:0 or YUV 4:1:1 format from SDRAM to the PCI bus or
to SDRAM. The image is scaled and filtered in the hori-
zontal direction during the move. Optional bit masking
and/or RGB overlay can be used during the move when
PCI output is specified.

14.6.11.1 Algorithms

The routine reads image data from SDRAM using the Y,
U, and V address counters, scales and filters the data in
the horizontal direction and writes it to the PCI interface
or SDRAM. The 5-tap filter scales and filters the data.
The LSB Increment value for each of the Y, U and V com-
ponents supplied by the parameter table determines the
scaling. Separate scaling factors allows YUV 4:2:2 inter-
spersed to co-sited transformation as the data is being
filtered. The scaled and filtered data is converted to RGB
or YUV format before being sent to the PCI interface or
to SDRAM. In the PCI output case, overlay data with al-
pha blending and chroma keying can be added to the
output image, and the output image can be gated by a bit
mask before it is sent to the PCI interface.

The routine reads and writes a line at a time until the full
image is transferred. The filter mirrors the ends of each
line to provide the extra pixels needed by the filter at the
ends of each line.
PRELIMINARY SPECIFICATION 14-25

PNX1300/01/02/11 Data Book Philips Semiconductors
14.6.11.2 Parameter table

The parameter table, shown in Table 14-14, supplies the
input and output starting addresses and offsets for Y, U,
V, OL, B and Z, the image height in lines and width in pix-
els, and the scale factors for each component.

The input and output addresses are the byte addresses
of their respective tables. They do not need to be word or
block aligned. Note the following restriction: in packed
RGB24 to PCI operation the output address offset from
the start of video memory must be a multiple of 6 bytes,
i.e. on an even pixel boundary.

The input and output line offsets define the difference in
bytes from the address of the first pixel in the first line to

the address of the first pixel in the second line for their re-
spective blocks. The line offset must be constant for all
lines in each table. The line offset allows some space be-
tween the end of one line and the start of the next line. It
also allows the ICP to scale and filter a subset of an ex-
isting image, such as magnifying a portion of an image.
There are no restrictions on line offset values other than
they must be 16-bit, two’s complement integer values.
(Note that this allows negative offsets. You can use this
to flip an image vertically.)

The input and output image height and width values are
the height in lines and width in pixels per line for their re-
spective images. The height and width are 16-bit positive
binary numbers between 0 and 64K-1.

The Integer increment and Fraction increment values are
the scaling parameters. There is a separate scaling pa-
rameter for each of the Y, U and V input components.
The Integer value is a 16-bit integer, and the Fraction val-
ue is a positive binary fraction between 0 and 0.99999+.
For up scaling (output image bigger), the increment val-
ue is the inverse of the scaling value. If upscaling by a
factor of 2.5, the increment value will be the inverse of

2.50 = 0.40. The Integer increment value will be ‘0’ and
the Fraction increment value will be ‘0.40’. For down
scaling, the increment value is equal to the scaling value.
If you are down scaling by 2.5 (output image smaller), the
Integer increment value will be ‘2’, and the Fraction incre-
ment value will be ‘0.500’.

To perform scaling, the Integer and Fractional increment
values must be generated and placed in the parameter

Table 14-14. Horizontal filter to RGB output parameter table

Parameter Word
Description

Upper 2 bytes Lower 2 bytes

Input image Y start address Y Start address of X0Y0 (byte address)

Y Counter
Start fraction

Input image
Y line offset

Starting value: may be 0.5, etc. for interspersed convert;
Y Line offset from X0Y0 to X0Y1

Y fraction increment Y integer increment Increment value for U = 1/scale factor

Y input image height Y input image width Y Height and width in pixels

Input image U start address U Start address of X0Y0 (byte address)

U counter
Start fraction

Input image
U line offset

Starting value: may be 0.5, etc. for interspersed convert;
U Line offset from X0Y0 to X0Y1

U fraction increment U integer increment Increment value for Y = 1/scale factor

U input image height U input image Width U Height and width in pixels

Input image V start address V Start address of X0Y0 (byte address)

V Counter
Start fraction

Input image
V line offset

Starting value: may be 0.5, etc. for interspersed convert;
V Line offset from X0Y0 to X0Y1

V fraction increment V integer increment Increment value for V = 1/scale factor

V Input image height V input image width V Height and width in pixels

Output image start address Start address of X0Y0 (byte address)

Control Output image
Line offset

Input & output formats & control bits;
Line offset from X0Y0 to X0Y1

Output image height Output image width Height and width in output pixels

Bit Map image start address Start address of X0Y0 (byte address)

0 Bit map image
Line offset

Line offset from X0Y0 to X0Y1

RGB overlay start address Start address of X0Y0 (byte address)

Alpha 1 & Alpha 0 Overlay
Line offset

Alpha 1 & Alpha 0 blend code for RGB15+ α, etc.;
Line offset from X0Y0 to X0Y1

Overlay end pixel Overlay start pixel Start and end pixels along line

Overlay end Line Overlay start line Start and end lines in frame
14-26 PRELIMINARY SPECIFICATION

Philips Semiconductors Image Coprocessor
table. The simplest way to generate these values in com-
mon computer languages such as C is as follows:

1. Generate the Increment Value as a floating point
number = Input Width / Output Width

2. Multiply the Increment Value by 65536
3. Convert the result to a Long Integer (32 bits). The up-

per 16 bits of the Long integer will be the Integer in-
crement value, and the lower 16 bits will be the Frac-
tional value

4. Store the 32-bit Long integer in the parameter table as
the combined Integer and Fractional increment values

For YUV 4:2:2 or YUV 4:2:0 input data and RGB output
data, the scaling factor for U and V must be twice the
scaling factor for Y, unless YUV4:2:2 sequencing is used
for speed. In YUV 4:2:2 or YUV 4:2:0 data, the horizontal
components of U and V are half those of Y. The U and V
must be upscaled by 2 to generate a YUV 4:4:4 format
internally for YUV to RGB conversion. For YUV 4:1:1 in-
put data, the U and V components must be upscaled by
a factor of 4 to generate the required internal YUV 4:4:4
format.

The Start Fraction defines the starting value in the scal-
ing counter for each line. It is a 16-bit, two’s complement
fractional value between -0.500 and 0.49999+. The Start
Fraction allows the input data to be offset by up to half a
pixel, referred to the input pixel grid. It is ‘0’ for Y and for
UV co-sited data, and is set to ‘-0.25’ (C000) for inter-
spersed to co-sited conversion of U and V data. The ‘-
0.25’ value effectively shifts the U and V data toward the
start of the line by 1/4 pixel, the amount required for con-
version.

The Alpha 1 and Alpha 0 values are 8-bit fields within the
16-bit Alpha field. These values are loaded into the Alpha
1 and Alpha 0 registers, resp., for use by RGB 15+α and
YUV 4:2:2+α overlay formats in alpha blending.

The Overlay start and end pixels and lines define the
start and end pixels and lines within the output image for
the overlay. The first pixel of the overlay image will be
blended with the pixel at the Overlay Start Pixel and
Overlay Start Line in the output image.

14.6.11.3 Control word format

The Control word provides bit fields which affect the hor-
izontal filtering operation. The format of the Control word
is as follows.

Bits Name Function

15 Bypass Normally set to 0 to enable filtering.
Can be set to 1 to accomplish data
move without filtering.

14 422SEQ 4:2:2 Sequence bit. Used with YUV
4:2:2 output

13 YUV420 YUV 4:2:0 input format

12 OEN Overlay enable. Valid only for PCI out-
put

11 PCI PCI output enable. Otherwise SDRAM
output

10 BEN Bit mask enable. Valid only for PCI

output

 9 GETB Large down scaling bit. Picks five
input pixels nearest 5 output pixels
and passes to filter.

Equivalent to filter bypass + 5-tap filter
of output pixels. LSB value = 0 for fil-
tering.

 8 OLLE Overlay little endian enable

7-6 OFRM Overlay format

0 = RGB 24+α
1 = RGB 15+α
2 = YUV 4:2:2+α

 5 CHK Chroma keying enable

 4 LE RGB output little endian enable

3-0 RGB RGB Output Code

0 = YUV 4:2:2+α
1 = YUV 4:2:2

2 = RGB 24+α
3 = RGB 24 packed

4 = RGB 8A (RGB 233)

5 = RGB 8R (RGB 332)

6 = RGB15+α
7 = RGB 16

The 422SEQ bit controls the internal sequencing of the
YUV to RGB operation. It is set to ‘1’ when YUV 4:2:2
output is selected. When 422SEQ is ‘0’, normal RGB out-
put is assumed. In this mode, the input is YUV 4:2:2 or
YUV 4:2:0, and the output is RGB. To generate the RGB
output, the YUV 4:2:2 or YUV 4:2:0 input must be up-
scaled to YUV 4:4:4 before conversion to RGB. This
means the scaling factor for U and V must be twice the
scaling factor for Y. The internal sequencing of the filter
in this case is UVY, UVY, UVY to generate RGB, RGB,
RGB. For YUV 4:2:2 output formats, no upscaling of U
and V is required. In this case, the 422SEQ bit is set to
one, and the filter sequence is UVYY, UVYY, UVYY.

The 422SEQ bit can be set in RGB output mode to de-
crease the processing time for the image at the expense
of color bandwidth and some corresponding decrease in
picture quality. If the 422SEQ bit is set for RGB output,
the filter will perform the UVYY sequence. In this case,
the U and V components are not upscaled by 2, and the
YUV to RGB converter updates its U and V components
every other pixel. In the normal case (422SEQ=0), it
takes 6 clock cycles to generate two RGB pixels. In the
422SEQ=1 case, it takes 4 clock cycles to generate two
RGB pixels, reducing processing time by 33%.

The YUV420 bit indicates that the input data is in YUV
4:2:0 format. In YUV 4:2:0 format, the U and V compo-
nents are half the width and half the height of the Y data.
YUV 4:2:0 data is normally converted to YUV 4:2:2 data
by a separate vertical upscaling by a factor of 2.0 for best
quality. The YUV420 bit allows using YUV 4:2:0 data di-
rectly but with some quality degradation. When YUV420
is set, the ICP up scales the data vertically by line dupli-
cation. Each U and V input line is used twice. The sepa-
PRELIMINARY SPECIFICATION 14-27

PNX1300/01/02/11 Data Book Philips Semiconductors
rate vertical scaling step is eliminated at the expense of
some quality since the lines are simply duplicated rather
than being fully scaled and filtered.

The OEN bit enables overlay. Set it to ‘1’ if an overlay is
used, ‘0’ if not. Overlays are only valid for PCI output.

The PCI bit selects PCI as the output port for the ICP da-
ta. A ‘1’ selects PCI output; a ‘0’ selects SDRAM output.

The BEN bit enables bit masking. Set it to ‘1’ if bit mask-
ing is used, ‘0’ if not. Bit masking is only valid for PCI out-
put.

The GETB bit is an optional bit for large (> 4) down scal-
ing. When GETB is ‘0’ (normal operation), the 5-tap filter
receives the pixel nearest the output pixel as its center
pixel plus the two adjacent input pixels on either side of
this pixel to form the five filter inputs. When GETB is set,
the filter receives the pixel nearest the output pixel as its
center pixel plus the two adjacent output pixels on either
side of this pixel to form the five filter inputs. The effective
algorithm is pixel picking plus 5-tap filtering of the result.
GETB also forces the scaling LSB value to ‘0’, since out-
put pixels are being filtered and no interpolation is used.

The OFRM bit field selects the overlay data format, as
shown in the Control word format list.

The CHK bit enables chroma keying. Set it to ‘1’ if chro-
ma keying is used, ‘0’ if not.

The OLLE bit sets the endian-ness of the overlay data in-
put. Set it to ‘1’ if the overlay data is little-endian, ‘0’ if big
endian. This bit is normally set to the same value as the
LE bit in the Status register.

The LE bit sets the endian-ness of the RGB/YUV output
data. Set it to ‘1’ if the output data is little-endian, ‘0’ if big
endian. The LE bit is normally set to the same value as
the LE bit in the Status register.

The RGB field defines the output data format, as shown
in the Control word format list.

Important Note: The ICP DMA Enable bit (IE) in the
BIU_CTL register of the PCI interface must be set for
RGB output to PCI. This bit must be set before initiating
RGB to PCI operations, or the ICP will stall waiting for the
PCI to become ready.
14-28 PRELIMINARY SPECIFICATION

Variable Length Decoder Chapter 15

by Gene Pinkston and Selliah Rathnam

15.1 VLD OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The variable length decoder (VLD) unit Huffman-de-
codes MPEG-1 and MPEG-2 (Main Profile) video bit-
streams[1-3]. This chapter describes a programmers
view of the VLD.

The VLD reads an MPEG stream from SDRAM, decodes
the bitstream under the control of DSPCPU and outputs
two data streams. The output data streams contain mac-
roblock header information and the run-length encoded
DCT coefficients. The output data streams are stored in
the SDRAM buffers.

The VLD unit, operates independently during the slice
decoding process. The remaining decoding of the MPEG
stream is carried out by the DSPCPU.

15.2 VLD OPERATION

Enabled by the DSPCPU, the VLD unit can be initialized
by hardware or software reset operations. Hardware re-
set is provided by the external TRI_RESET# pin. Soft-
ware reset is provided by one of the VLD commands.
The DSPCPU controls the VLD through the VLD com-
mand register. There are five commands supported by
the VLD:

• Shift the bitstream by some number of bits (a maxi-
mum of 15-bit shift)

• Search for the next start code
• Reset the VLD
• Parse some number of macroblocks
• Flush VLD output buffers to SDRAM

The normal mode of operation will be for the DSPCPU to
request that the VLD to parse some number of macrob-
locks. Once the VLD has begun parsing macroblocks, it
may stop for any one of the following reasons:

HWY_BUS

RD Buffer

Macroblock

DMA

ENGINE

Control
status

status

MMIO &
CONF REGs

SHIFTER

start_code_
 detector

mb_addr

mb_type

cbp

dmv &
motion

dct_lum

dct_chr

dctcoef
 (0)

dctcoef
 (1)

escape_codes

VLD

 FLOW

 Control

Interrupt

Run-Level

Hdr WR FIFO

WR FIFO

Figure 15-1. VLD block diagram

64 Bytes

64 Bytes

64 Bytes
PRELIMINARY SPECIFICATION 15-1

PNX1300/01/02/11 Data Book Philips Semiconductors
• The command was completed with no exceptions
• A start code was detected
• An error was encountered in the bitstream
• The VLD input DMA completed, and the VLD is

stalled waiting for more data
• One of the VLD output DMAs has completed and the

VLD is stalled because the output FIFO is full

The DSPCPU can be interrupted whenever the VLD
halts.

Consider the case in which the VLD has encountered a
start code. At this point, the VLD will halt and set the sta-
tus flag to indicate that a start code has been detected.
This event will generate an interrupt to the DSPCPU (if
corresponding interrupt is enabled). Upon entering the
interrupt routine, the DSPCPU will read the VLD status
register to determine the source of the interrupt. Once it
has determined that a start code was encountered, the
CPU will read 8 bits from the VLD shift register to deter-
mine the type of start code encountered. If it a ‘slice’ start
code, the DSPCPU reads from the shift register the slice
quantization scale and any extra slice information. The
slice quantization scale is then written back to the VLD
quantizer-scale register. Before exiting the interrupt rou-
tine, the DSPCPU will clear the start code detected sta-
tus bit in the status register and issue a new command to
process the remaining macroblocks.

15.3 DECODING UP TO A SLICE

MPEG decoding up to the slice layer is carried out by the
DSPCPU and the VLD. The VLD is controlled by the
DSPCPU for the decoding of all parameters up to the
slice-start code. During this process, the DSPCPU reads
from the VLD_SR register which contains the next 16 bits
of the bitstream. The DSPCPU also issues shift com-
mands to the VLD in order to advance the contents of the
shift register by the specified number of bits. The
DSPCPU may also command the VLD to advance to the
next start code. Refer to Table 15-6 for a complete list of
VLD commands and their functions. Once at the slice
layer, the VLD operates independently for the entire slice
decoding. The slice decoding starts once the DSPCPU
issues a parse command.

15.4 VLD INPUT

Input to the VLD is controlled by the VLD input DMA en-
gine. The input DMA engine is programmed by the
DSPCPU to read from SDRAM. The DSPCPU programs
this DMA engine by writing the address and the length of
the SDRAM buffer containing the MPEG stream. The ad-
dress of the buffer is written to the VLD_BIT_ADR regis-
ter. The length, in bytes, of the buffer is written to the
VLD_BIT_CNT register.

Esc Count MBA Inc MB Type Mot Type DCT Type MV count MV Format DMV

MV Field Sel [0][0] Motion Code [0][0][1]Motion Residual [0][0][0] Motion Residual [0][0][1]Motion Code [0][0][0]

MV Field Sel [1][0] Motion Code [1][0][1]Motion Residual [1][0][0] Motion Residual [1][0][1]Motion Code [1][0][0]

MV Field Sel [0][1] Motion Code [0][1][1]Motion Residual [0][1][0] Motion Residual [0][1][1]Motion Code [0][1][0]

MV Field Sel [1][1] Motion Code [1][1][1]Motion Residual [1][1][0] Motion Residual [1][1][1]Motion Code [1][1][0]

quant scaleCBPdmvector[0]dmvector[1]

31

First Forward Motion Vector

Second Forward Motion Vector (for MPEG2 only)

First Backward Motion Vector

Second Backward Motion Vector (for MPEG2 only)

012346111725

71523293031 13

71523293031 13

71523293031 13

71523293031 13

410121431

Figure 15-2. MPEG-2 macroblock header output format

w1

w2

w3

w4

w5

w0

M
B

1
M

B
2

15-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Variable Length Decoder
The VLD reads data from SDRAM into an internal 64-
byte FIFO. The VLD processing engine then reads data
from the FIFO as needed. Once this internal FIFO is
empty the VLD reads more data from SDRAM. The
VLD_BIT_ADR and VLD_BIT_CNT registers are updat-
ed after each read from main memory. The content of the
VLD_BIT_ADR register reflects the next address from
which the bitstream data will be fetched. The content of
the VLD_BIT_CNT register reflects the number of bytes
remaining to be read before the current transfer is com-
plete. When the number of bytes remaining to be read
from SDRAM is zero, a status flag is set and an interrupt
can be generated to the DSPCPU. The DSPCPU will
provide the new bitstream buffer address and the num-
ber of bytes in the bitstream buffer to the VLD.

15.5 VLD OUTPUT

The VLD outputs two data streams which are written
back to main memory by two output DMA engines.
These DMA engines are programmed by the DSPCPU.
One of the output streams contains macroblock header
information and the other contains run-length encoded
DCT coefficients. Each DMA engine contains a 64-byte
FIFO which is transferred to main memory once it is full.
The main memory address and count for the macroblock
header output are contained in the VLD_MBH_ADR and
VLD_MBH_CNT registers respectively. The main mem-
ory address and count for the DCT coefficient output are
contained in the VLD_RL_ADR and VLD_RL_CNT reg-
isters respectively. The counts for both the macroblock
header and coefficient data are expressed in terms of 32-
bit (4 bytes) words.

15.5.1 Macroblock Header Output Data

For each MPEG-2 macroblock parsed by the VLD, six
32-bit words of macroblock header information will be
output from the VLD. Figure 15-2 pictures the layout of
the VLD output, the fields are described in Table 15-1.
Note that these fields may or may not be valid depending
upon the MPEG-2 video standard[2]. For example, mo-
tion vectors are not valid for intra coded macroblocks.
Similarly, ‘DCT Type’ is not valid for field pictures.

For each MPEG-1 macroblock parsed by the VLD, four
32-bit words of macroblock header information will be
output from the VLD. Figure 15-3 pictures the layout of
the VLD output, while the fields are described in
Table 15-2. Note that these fields may or may not be val-
id depending upon the MPEG-1 video standard[1].

Table 15-1. References for the MPEG-2 macroblock
header data

Item Default
value

References from MPEG-2
Video Standard, IS 13818-2

document

Esc count 0 Section 6.2.5

MBA inc - Section 6.2.5 and Table B-1

MB type unde-
fined

Section 6.2.5.1 and Tables B-
2, B-3, and B-4; Only 5 Msb
bits from the tables are used

Mot type unde-
fined

Section 6.2.5.1; Field or Frame
motion type will be decided by
the user

DCT type unde-
fined

Section 6.2.5.1

MV count unde-
fined

Tables 6-17 and 6-18. The MV
Count value is one less than
the value from the tables.

MV format unde-
fined

Tables 6-17 and 6-18

DMV unde-
fined

Tables 6-17 and 6-17

MV field Sel[0]0] to
MV field Sel[1][1]

unde-
fined

Section 6.2.5 and 6.2.5.2

Motion
code[0][0][0] to
Motion
code[1][1][1]

unde-
fined

Section 6.2.5.2.1 and
Table B-10

Motion Resid-
ual[0][0][0] to
Motion Resid-
ual[1][1][1]

unde-
fined

Section 6.2.5.2.1; the corre-
sponding rsize bits are
extracted from the bitstream
and stored as left justified; to
get the final value shift the
given number by 8 (corre-
sponding rsize). The rsize val-
ues are stored in VLD_PI
register

dmvector[1] and
dmvector[0]

unde-
fined

Section 6.2.5.2.1 and Table B-
11; signed 2-bit integer from
Table B11.

CBP - Section 6.2.5, 6.2.5.3 and
Table B-9

Quant scale - Section 6.2.5; 5-bit from bit-
stream and use Table 7-6 to
compute the quant scale value.

Table 15-2. References for the MPEG-1 macroblock
header data

Item Default
value

References from IS 11172-2
document

Esc count 0 Section 2.4.3.6

MBA inc - Section 2.4.3.6

MB type unde-
fined

Section 2.4.3.6 and Tables B-
2a to B2d

Motion
code[0][0][0] to
Motion
code[0][1][1]

unde-
fined

Section 2.4.2.7 and Table B-4

Motion resid-
ual[0][0][0] to
Motion resid-
ual[0][1][1]

unde-
fined

Section 2.4.2.7;the corre-
sponding rsize bits are
extracted from the bitstream
and stored as left justified; to
get the final value shift the
given number by (8 - corre-
sponding rsize). The rsize val-
ues are stored in VLD_PI
register.

CBP - Section 2.4.3.6 and Table B-3

Quant scale - Section 2.4.2.7
PRELIMINARY SPECIFICATION 15-3

PNX1300/01/02/11 Data Book Philips Semiconductors
15.5.2 Run-Level Output Data

The DCT coefficients associated with the macroblock are
output to a separate memory area and each DCT coeffi-
cient is represented as one 32-bit quantity (16 bits of run
and 16 bits of level). For intra blocks, the DC term is ex-
pressed as 16 bits of DC size and a 16-bit value whose
most significant bits (the number of bits used for DC level
is determined by DC size) represent the DC level. Each
block of DCT coefficients is terminated by a run value of
‘0xff’.

15.6 VLD TIME SHARING

The PNX1300 VLD is targeted for a single bitstream de-
code and there is no provision to decode more than one
bitstream at a time by using the VLD in time multiplexed
mode. However internal development has shown that up
to 4 simultaneous MPEG1 bitstreams can be decoded.
This procedure is beyond the scope of this databook but
can be discussed further by contacting customer sup-
port.

15.7 MMIO REGISTERS

To ensure compatibility with future devices, any unde-
fined MMIO bits should be ignored when read, and writ-
ten as ‘0’s.

15.7.1 VLD Status (VLD_STATUS)

This register contains the current status information most
pertinent to the normal operation of an MPEG video de-
code application. VLD status description is detailed in
Table 15-3 and pictured in Figure 15-4. Default value (af-
ter hardware reset) is ‘0’.

Interrupts can be enabled for any of the defined status
bits (see following VLD_IMASK description). Acknowl-
edgment of the interrupt is done by writing a ‘1’ to the cor-
responding bit in VLD_STATUS register. Writing a one to
the bits one through five clears the corresponding bits.
However bit 0 (COMMAND_DONE) is cleared only by is-
suing a new command. Writing a ‘0’ to bit 0 of the status
register will result in undefined behavior of the VLD. Note
that several status bits may be asserted simultaneously.
Thus it is recommended to use level triggered interrupts
(see Section 3.5.3.6 on page 3-11) and carefully ac-
knowledge the interrupt.

15.7.2 VLD Interrupt Enable (VLD_IMASK)

This register allows the DSPCPU to control the initiation
of the interrupt for the corresponding bits in the VLD Sta-
tus Register. Writing a ‘1’ into any of the defined
VLD_IMASK bits enables the interrupt for the corre-
sponding bit in the status register (VLD_STATUS). De-
fault value (after hardware reset) is ‘0’.

Esc Count MBA Inc MB Type

Motion Code [0][0][1]Motion Residual [0][0][0] Motion Residual [0][0][1]Motion Code [0][0][0]

Motion Code [0][1][1]Motion Residual [0][1][0] Motion Residual [0][1][1]Motion Code [0][1][0]

quant scaleCBP

31

First Forward Motion Vector

First Backward Motion Vector

012346111725

71523293031 13

71523293031 13

410121431

Figure 15-3. MPEG1 Macroblock Header Output Format

w1

w2

w3

w0

M
B

1
M

B
2

15-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Variable Length Decoder
15.7.3 VLD Control (VLD_CTL)

The VLD_CTL register has one bit indicating the endian-
ness of the VLD unit. Little-Endian = ‘1’, Big-Endian = ‘0’.
Default value (after hardware reset) is ‘0’.

15.8 VLD DMA REGISTERS

There are one input DMA engine and two output DMA
engines in the VLD block. Each of the three DMA en-
gines (or channels) for the VLD is controlled by two
MMIO registers. The address register always contains
the address of the next SDRAM transaction. The count
register always indicates the amount of data to be trans-
ferred to or from main memory. A DMA completes when
its count reaches zero. Once a DMA count register be-
comes zero, a bit is set in the status register and the

DSPCPU can be interrupted. The DSPCPU sets a non-
zero value to a DMA count register to initiate a new DMA
transaction. The input count register always contains
number of bytes to be fetched from the main memory.
The output count registers always contain the number of
words (4 bytes) to be written to the main memory.

Note that both of the DMA output engines write only to
64-byte aligned addresses and they always write 64
bytes. When flushing the DMA output FIFOs there may
not be 64 bytes of valid data at the time the flush com-
mand is received. In this case, 64 bytes are still written to
the main memory. The valid bytes can be determined
from the count register value before issuing the flush
command. The valid data always resides in the first N
bytes while the last 64-N bytes will contain random data
and should be ignored.

15.8.1 DMA Input

The bitstream input to the VLD is controlled by
VLD_BIT_ADR and VLD_BIT_CNT MMIO registers.
VLD_BIT_ADR contains the main memory address for
the next read from the main memory to the VLD input
FIFO. VLD_BIT_CNT register contains the number of
bytes remaining to be read before the current DMA is
completed.

The VLD input address is byte aligned.

15.8.2 Macroblock Header Output DMA

The macroblock header output of the VLD is controlled
by VLD_MBH_ADR and VLD_MBH_CNT registers.
VLD_MBH_ADR contains the address of the next write
of macroblock header data to the main memory.
VLD_MBH_CNT contains the remaining number of
words (4 bytes) to write before the current DMA expires.

The macroblock header output address is 64-byte
aligned.

15.8.3 Run-Level Output DMA

The run-level output of the VLD is controlled by
VLD_RL_ADR and VLD_RL_CNT. VLD_RL_ADR con-
tains the address of the next write of macroblock header
data to the main memory. VLD_RL_CNT contains the
number of 4-byte writes remaining before the current
DMA expires.

The run-level buffer address is 64-byte aligned.

Table 15-3. VLD_STATUS register

Name Size
(bits) Description

COMMAND_DONE 1 Indicates successful completion
of current command

STARTCODE 1 VLD encountered 0x000001
while executing parse or next
start code command

ERROR 1 VLD encountered an illegal
Huffman code or an unexpected
start code

DMA_IN_DONE 1 DMA transfer of given SDRAM
buffer has completed and VLD
is stalled waiting on more main
memory input data; DSPCPU is
responsible to provide the new
SDRAM buffer to VLD

MBH_OUT_DONE 1 Macroblock Header DMA trans-
fer has completed

RL_OUT_DONE 1 Run-level DMA transfer com-
plete

Table 15-4. VLD control (R/W)

Name Size
(bits) Description

Reserved 1

Little Endian 1 Forces VLD to operate in Little
Endian Mode when set to 1.
PRELIMINARY SPECIFICATION 15-5

PNX1300/01/02/11 Data Book Philips Semiconductors
Figure 15-4. VLD MMIO Registers Layout.

31 0371115192327

MMIO_base
offset:

VLD_COMMAND (r/w)0x10 2800

VLD_STATUS (r)0x10 2810

RL_OUT_DONE

MBH_OUT_DONE

DMA_IN_DONE

ERROR
STARTCODE

COMMAND_DONE

VLD_CTL (r/w)0x10 2818

COMMAND COUNT

31 0371115192327

31 0371115192327

31 0371115192327

VLD_SR (r)0x10 2804

31 0371115192327

31 0371115192327

31 0371115192327

VALUE

VLD_QS (r/w)0x10 2808

VLD_PI (r/w)0x10 280C

QS

VBRS HBRS VFRS HFRS

MPEG2
CONCEAL_MV

INTRA_VLC

FPFD

PICT_STRUC

PICT_TYPE

VLD_RL_CNT (r/w)0x10 2830
31 0371115192327

VLD_BIT_ADR (r/w)0x10 281C

VLD_BIT_CNT (r/w)0x10 2820
31 0371115192327

VLD_MBH_ADR (r/w)0x10 2824
31 0371115192327

VLD_MBH_CNT (r/w)0x10 2828
31 0371115192327

VLD_RL_ADR (r/w)0x10 282C
31 0371115192327

LITTLE_ENDIAN

BIT_ADR

MBH_ADR

RL_ADR

BIT_CNT

RL_CNT

MBH_CNT

VLD_IMASK (r/w)0x10 2814 Int. Enables

0 0 0 0 0 0

0 0 0 0 0 0
15-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Variable Length Decoder
15.9 VLD OPERATIONAL REGISTERS

15.9.1 VLD Command (VLD_COMMAND)

This register indicates the next action to be taken by the
VLD. Some commands have an associated count which
resides in the least significant 8 bits of this register. There
are currently five commands recognized by the VLD
block:

• Shift the bitstream by ‘count’ bits (‘count’ must be
less than or equal to 15)

• Parse ‘count’ un-skipped macroblocks
• Search for the next start code
• Reset the VLD
• Flush the VLD output buffers

The DSPCPU must wait for the VLD to halt before the
next command can be issued. Note that there are sever-
al ways in which a command may complete. Only a suc-

cessful completion is indicated by the
COMMAND_DONE bit in the status register. A command
may complete unsuccessfully if a start code or an error is
encountered before the requested number of items has
been processed. Note also that expiration of a DMA
count does not constitute completion of a command.
When a DMA count expires the VLD is stalled as it waits
for a new DMA to be initiated. It is not halted. Default val-
ue (after hardware reset) is ‘0’. VLD_COMMAND fields
are described in Table 15-5 and the different commands
explained in Table 15-6.

15.9.2 VLD Shift Register (VLD_SR)

This read only register is a shadow of the VLD’s opera-
tional shift register. Tt allows the DSPCPU to access the
bitstream through the VLD. Bits 0 through 15 are the cur-
rent contents of the VLD shift register. Bits 16 to 31 are
RESERVED and should be treated as undefined by the
programmer.

15.9.3 VLD Quantizer Scale (VLD_QS)

This 5-bit register contains the quantization scale code
(from the slice header) to be output by the VLD until it is
overridden by a macroblock quantizer scale code. The
quantizer scale code is part of the macroblock header
output.

Table 15-5. VLD Command Register

Name Size
(bits) Description

COUNT 8 Count for current command

COMMAND 4 VLD command to be exe-
cuted

Table 15-6. VLD Commands

Command Field
coding

Flags Set after
Completion of the

Command
Description

Shift the bitstream
by ‘count’ bits

1 COMMAND_DONE
or
DMA_IN_DONE

VLD shifts the number of bits in its internal shift register. The shift register value
is available in the VLD_SR register.
The DMA_IN_DONE flag will be set when VLD runs out of data from input FIFO.
The flag is reset by issuing the new command.

Search for the
next start code

3 STARTCODE
or
COMMAND_DONE
or
DMA_IN_DONE

VLD search for a start code. The search code has 0x000001 prefix and an addi-
tional 8-bit value.
The DMA_IN_DONE flag will be set when VLD runs out of data from input FIFO.
The STARTCODE detected flag is reset by writing a ‘1’ value to the flag.
The COMMAND_DONE flag is reset by issuing the new command.

Reset the VLD 4 None Refer section 15.12 for more details

Parse for a given
number of mac-
roblocks

2 COMMAND_DONE
or
STARTCODE
or
ERROR
or
DMA_IN_DONE

VLD parses for a given number of un-skipped macroblocks and the associated
run-level values. COUNT will indicate the remaining macroblocks to parse. Note
that this number is slightly inaccurate since a parsed macroblock can still be in
internal 64-byte FIFO.
If VLD encounters a start code, the parsing action will be terminated and VLD
sets only the STARTCODE detected flag. If VLD parses the given number of un-
skipped macroblocks without encountering a start code, VLD will set the
COMMAND_DONE flag.
The ERROR flag will be set when VLD encounters an error while parsing the bit-
stream.
The DMA_IN_DONE flag will be set when VLD runs out of data from input FIFO.
The STARTCODE detected flag is reset by writing a ‘1’ value to the flag.
The COMMAND_DONE flag is reset by issuing the new command.

Flush the VLD out-
put buffer

8 COMMAND_DONE VLD flushes the remaining macroblock header data and the remaining run-level
data to SDRAM. The highway byte-enables will be used in order to write only the
valid data to SDRAM. Only the valid word count values written to SDRAM will be
subtracted from the VLD_MBH_CNT and the VLD_RL_CNT registers.
PRELIMINARY SPECIFICATION 15-7

PNX1300/01/02/11 Data Book Philips Semiconductors
15.9.4 VLD Picture Info (VLD_PI)

This 32-bit register contains the picture layer information
necessary for the VLD to parse the macroblocks within
that picture. Again, the values for each of these fields are
determined by the appropriate standard (MPEG [1-3]).

15.10 ERROR HANDLING

Upon encountering a bitstream error, the VLD will set the
bitstream-error flag (ERROR) in the VLD_STATUS reg-
ister and interrupt the DSPCPU, if the interrupt is en-
abled. Note that if a start code is present (in the VLD shift
register) when an error is detected, then both the start
code and the error bits will be set. A separate flush com-
mand is required to flush any valid data in the run-level
and macroblock header output buffers.

The DSPCPU de-asserts the ERROR flags by writing a
‘1’ to the ERROR flag.

15.11 INTERRUPT

The interrupt source number for the VLD is 14 and it
should be set in level sensitive mode (see Section
3.5.3.6 on pag e3-11).

15.12 RESET

The VLD block is reset by a hardware reset or a software
reset. The hardware reset signal is generated from the
external pin TRI_RESET#. The software reset is initiated
by writing a ‘Reset VLD’ command in the
VLD_COMMAND register. Refer Table 15-8 for the de-
tails on the software reset procedure.

15.13 ENDIAN-NESS

VLD supports little-endian and big-endian modes of op-
erations. Refer to Appendix C for the endian-ness spec-
ification of the VLD input and output data.

15.14 POWER DOWN

The VLD block can be separately powered down by set-
ting a bit in the BLOCK_POWER_DOWN register. For a
description of powerdown, see Chapter 21, “Power Man-
agement.”

The VLD block should not be active when applying block
powerdown.

If the block enters power-down state while it is enabled,
its behavior upon power-up is undefined.

15.15 REFERENCES

[1] ISO/IEC IS 13818-2, International Standard (1994),
MPEG-2 Video.

[2] ISO/IEC IS 11172-2, International Standard (1992),
MPEG-1 Video.

[3] MPEG Video Compression Standard, by Joan L.
Mitchell, William B. Pennebaker, Chad E. Fogg, Didier J.
LeGall; ITP publication.

Table 15-7. VLD picture info register (r/w)

Name Size
(bits) Description

PICT_TYPE (picture
type)

2 I, P, or B picture

PICT_STRUC (picture
structure)

2 field or frame picture

FPFD (frame predic-
tion frame dct)

1 specifies that this picture
uses only frame prediction
and frame dct

INTRA_VLC 1 Use DCT table zero or one

CONCEAL_MV 1 concealment vectors present
in the bitstream

reserved 6 Reserved for future expan-
sion

MPEG2 mode 1 Switches VLD between
MPEG-1 and MPEG-2
decoding.
Value ‘1’ = MPEG-2 mode

reserved 2 reserved

HFRS (horizontal for-
ward rsize)

4 size of residual motion vector

VFRS (vertical forward
rsize)

4 size of residual motion vector

HBRS (horizontal
backward rsize)

4 size of residual motion vector

VBRS (vertical back-
ward rsize)

4 size of residual motion vector

Table 15-8. Software reset procedure

Cycle
no. Action Remarks

i DSPCPU issues the ‘Reset
the VLD’ command by writ-
ing the required value in the
VLD_COMMAND register.

i to j VLD will complete the pend-
ing, if any, highway transac-
tions.

Any highway transac-
tions, once started, will
not be aborted in the
middle

j+1 VLD will perform the full
reset.

All status and control
registers are reset and
all the buffers are
made empty.
MMIO Registers initial-
ized to zero includes
VLD_STATUS.
15-8 PRELIMINARY SPECIFICATION

I2C Interface Chapter 16

by Essam Abu-ghoush, Robert Nichols

16.1 I2C OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 includes an I2C interface which can be used to
control many different multimedia devices such as:

• DMSDs - Digital multi-standard decoders
• DENCs - Digital encoders
• Digital cameras
• I2C - Parallel I/O expanders

The key features of the I2C interface are:

• Supports I2C single master mode
• I2C data rate up to 400 kbits/sec
• Support for the 7-bit addressing option of the I2C

specification
• Provisions for full software use of I2C interface pins

for implementing software I2C or similar protocols

Note that the I2C pins are also used to load the initial boot
parameters and/or code from a serial EEPROM as de-
scribed in Section 13, “System Boot”. The boot logic is
only active upon PNX1300 hardware reset and quiescent
afterwards.

A typical system using the I2C interface is presented in
Figure 16-1. The PNX1300 is connected as a master to
a series of slave devices through SCL and SDA. Note
that the bus has one pullup resistor for each of the clock
and data lines. The pullup should be set to a voltage no
higher than VREF_PERIPH.

16.2 COMPARED TO TM-1000

The following are the main I2C differences from TM-
1000:

• The SEX bit is removed. Endian-ness is fixed.
• The I2C clock rate is closer to 100/400 kHz
• The GDI bit now correctly indicates write-completion
• Clock stretching is always enabled.

16.3 EXTERNAL INTERFACE

The I2C external interface is composed of two signals as
shown in Table 16-1.

16.4 I2C REGISTER SET

The I2C user interface consists of four registers visible to
the programmer. The registers are mapped into the
MMIO address space and are fully accessible to the pro-
grammer. Figure 16-2 shows the I2C register set. To en-
sure compatibility with future devices, any undefined
MMIO bits should be ignored when read, and written as
‘0’s.

16.4.1 IIC_AR Register

The IIC_AR is the I2C address register and is used in both
master receive and transmit modes. This register is writ-
ten with the address(es) of the I2C slave device and the
bytecount for transmit/receive. Table 16-2 lists the bit-
field definitions for the IIC_AR register.

Figure 16-1. Typical I2C system implementation

SCL

SDA

PNX1300
Slave
I2C

Slave
I2C

+ VREF_PERIPH

Rp Rp

Table 16-1. I2C External interface

Signal Type Description

IIC_SDA I/O I2C serial data

IIC_SCL O I2C clock

Table 16-2. IIC_AR Register

Bits Field Name Definition

31:25 ADDRESS 7-bit slave device address.

24 DIRECTION Read/Write control bit

23:16 reserved must be written to ‘0’

15:8 COUNT Byte count of requested transfer

7:0 reserved Read as ‘0’
PRELIMINARY SPECIFICATION 16-1

PNX1300/01/02/11 Data Book Philips Semiconductors
ADDRESS must be programmed to contain the 7 bits of
the desired slave address

The DIRECTION bitfield controls read/write operation on
the I2C interface. The bit definition is:

• DIRECTION = 0 –> I2C write
• DIRECTION = 1 –> I2C read

The COUNT field must contain the desired bytecount for
the current transfer. The COUNT field will decrement by
one for each data byte transferred across I2C. The re-
maining bytecount for the current transfer can be read
from the COUNT field at any time. Note that the
DSPCPU must refrain from rewriting the IIC_AR register
until the current transfer completes to avoid corrupting
the bytecount or address fields.

Note: For writes, the byte count decrements before the
byte is actually transferred over the I2C bus. However,
the last byte is saved in an internal register and the
DSPCPU can write a new word when COUNT = 0.

16.4.2 IIC_DR Register

The IIC_DR register contains the actual data transferred
during I2C operation. For a master transmit operation,
data transfer will be initiated when data is written to this
register. Transmission will begin with the transfer of the
address byte in the IIC_AR register followed by the data
bytes that were written to the IIC_DR register, byte3 first
and byte0 last. The I2C interface will interrupt for more
transmit data to be written to the IIC_DR until the transfer
bytecount COUNT in the IIC_AR register is reached.

In master receive operation, one or more data bytes re-
ceived are placed in the IIC_DR register by the I2C inter-
face. Data bytes received are loaded into the IIC_DR
register starting with byte3, then byte2, byte1 and byte0.:

The number of bytes the DSPCPU requests for a transfer
is written into the COUNT bitfield of the IIC_AR register.
The transfer completes when the I2C interface receives
the number of bytes indicated by the COUNT bitfield of
the IIC_AR register.

Figure 16-2. I2C registers

MMIO_base
offset:

IIC_AR (r/w)0x10 3400
037111519232731

COUNT

IIC_DR (r/w)0x10 3404
037111519232731

IIC_SR (r/o)0x10 3408
037111519232731

reserved

DIRECTION

ADDRESS

BYTE3 BYTE2 BYTE1 BYTE0

reserved
DIRECTION

STATE

SDNACKI
SANACKI

FI
GDI

GD_IEN
F_IEN

SDNACK_IEN
SANACK_IEN

IIC_CR (r/w)0x10 340C
037111519232731

CLRFI
CLRGDI

CLRSANACKI
CLRSDNACKI

ENABLE

RBC

SDA_STAT
SCL_STAT

SW_MODE_EN
SDA_OUT
SCL_OUT
16-2 PRELIMINARY SPECIFICATION

Philips Semiconductors I2C Interface
16.4.3 IIC_SR Register

The I2C status register contains status information re-
garding the transfer in progress and the nature of inter-
rupts associated with I2C operation.

The IIC_SR register is read only and is intended as the
primary source of status regarding current I2C operation.
The IIC_SR register must be used in conjunction with the
IIC_CR register. The interrupt sources of the IIC_SR reg-
ister are individually enabled by writing to the appropriate
enable bit in the IIC_CR register. The bitfield definitions
of the IIC_SR register are presented in Table 16-3. The
IIC_SR provides four sources of interrupts. Note: the in-
terrupt should be set up as level triggered interrupt.

• GDI interrupt — The GDI bit together with the FI bits
provide status about I2C transfer completion. The
interpretation of GDI/FI bit combinations are different
depending on whether the I2C interface is in master
transmit or master receive mode. Refer to Table 16-4
and Table 16-6 for GDI/FI interpretation.

• FI interrupt — See GDI bit definition and GDI/FI
transmit and receive definitions in Table 16-4 and
Table 16-6.

• SANACKI interrupt — This interrupt flag bit indicates
that a slave address was transmitted but no slave on

the I2C bus acknowledges the address to claim the
transaction. This is an error condition. Once the I2C
interface has set this interrupt flag, the interface is
idle. The DSPCPU should clear this interrupt flag by
writing a ‘1’ to IIC_CR.CLRSANACKI before re-
attempting this transfer or starting another I2C trans-
fer.

• SDNACKI interrupt — This interrupt flag bit indicates
that an addressed slave receiver device has refused
to acknowledge the current byte of data for an ongo-
ing transfer. This is an error condition. Once the I2C
interface has set this interrupt flag, the interface is
idle. The DSPCPU should clear this interrupt flag by
writing a ‘1’ to IIC_CR.CLRSDNACKI before retrying
this transfer or starting another.

The SDA_STAT and SCL_STAT bits indicate the current
state of the SDA and SCL signals. The STATE field indi-

Table 16-3. IIC_SR register

Bits Field Name Definition

31 GDI Good Data Interrupt. This is the nor-
mal transfer complete interrupt flag.
This interrupt may be asserted without
the IIC_SR.FI interrupt bit at the end of
an I2C transfer or after master abort of
an I2C transfer.

30 FI Full Interrupt. This interrupt indicates
the condition of the IIC_DR register

dependent upon whether the I2C inter-
face is in receive or transmit mode.

29 SANACKI Slave Address No Acknowledge Inter-
rupt.

28 SDNACKI Slave Data No Acknowledge Interrupt.

27 SDA_STAT This bit is used to examine the state of
the external I2C SDA data pin. Bit
polarity is:
1 = SDA pad is low
0 = SDA pad floated high

26 SCL_STAT This bit is used to examine the state of
the external I2C SCL clock pin. Bit
polarity is:
1 = SCL pad is low
0 = SCL pad floated high

25:23 STATE The STATE field indicates the microac-
tivity of the I2C bus.

22 DIRECTION Direction of current data transfer.

21 Reserved Read as ‘0’

15:8 RBC Remaining Byte Count.

7:0 Reserved Read as ‘0’

Table 16-4. Master transmit mode GDI/FI status

GDI FI Description

0 0 Message is not complete. The IIC_DR is not
empty. No interrupt.

0 1 Message is not complete. The IIC_DR is empty
and the requested transmit byte count is not
equal to 0. The DSPCPU must write additional
bytes of the current transfer to the IIC_DR regis-
ter.

1 X Message transmission has completed. The
IIC_DR is empty. The byte transmit count = 0.

Table 16-5. STATE field values

STATE Meaning

000 I2C Interface is idle.

001 RESERVED FOR FUTURE USE

010 IDLE (MSG is done, awaiting clear GDI to go to
000 state)

011 Address phase is being processed

100 BYTE3 (first byte) is being processed

101 BYTE2 is being processed

110 BYTE1 is being processed

111 BYTE0 (last) is being processed

Table 16-6. Master receive GDI/FI conditions

GDI FI Description

0 0 Message is not complete. IIC_DR is not full.
No interrupt.

0 1 IIC_DR contains received data and needs to
be read serviced. More data bytes are
expected since the receive byte count is not
equal to 0.

1 X The transfer has been completed and the
receive byte count is equal to 0. 0 to 4 valid
bytes are in the IIC_DR register awaiting read
servicing by the DSPCPU.
PRELIMINARY SPECIFICATION 16-3

PNX1300/01/02/11 Data Book Philips Semiconductors
cates the microactivity of the I2C interface. The field val-
ues and their meanings are presented in Table 16-5 The
DIRECTION status bit indicates if the I2C interface is in
transmit or receive mode.

• if DIRECTION = 0 then I2C is a transmitter.
• if DIRECTION = 1 then I2C is a receiver.

The RBC bitfield indicates the remaining bytecount for an
I2C transfer in progress. The IIC_SR.RBC bitfield serves
as a read-only ‘shadow register’ for the IIC_AR.COUNT
bitfield. During I2C transfer, the RBC bitfield will reflect
the remaining bytecount. To avoid corrupting an I2C
transfer, the DSPCPU must refrain from writing to the
IIC_AR.COUNT bitfield until a message is complete.
Completion is indicated by the RBC bitfield decrementing
to zero.

16.4.4 IIC_CR Register

The I2C control register contains control information re-
quired for enabling I2C transfers. This register is used to
enable and clear interrupt sources which normally occur
during I2C operation. The four interrupt sources de-
scribed in the section on the IIC_SR register are enabled
and cleared through the IIC_CR register. The enable bit-
fields are:

• GD_IEN — Enable for normal transfer complete
interrupt.

• F_IEN — Enable for IIC_DR data service request
interrupt.

• SANACK_IEN — Enable for slave address not
acknowledged interrupt. This is an error interrupt.

• SDNACK_IEN — Enable for slave data not acknowl-
edged interrupt. An addressed slave receiver has
refused to accept the last byte transmitted to it. This
is handled as an error interrupt.

In addition to the interrupt enable bits, the IIC_CR con-
tains interrupt clear bits associated with each of the inter-
rupt sources in the IIC_SR register. These IIC_CR inter-
rupt clear bits are defined as:

• CLRGDI — Clear bit for the GDI interrupt in the
IIC_SR register. Writing a ‘1’ to this bit clears the GDI
interrupt.

• CLRFI — Clear bit for the FI interrupt in the IIC_SR
register. Writing a ‘1’ to this bit clears the FI interrupt.

• CLRSANACKI — Clear bit for the SANACKI inter-
rupt in the IIC_SR register. Writing a ‘1’ to this bit
clears the SANACKI interrupt.

• CLRSDNACKI — Clear bit for the SDNACKI inter-
rupt in the IIC_SR register. Writing a ‘1’ to this bit
clears the SDNACKI interrupt.

The remaining bitfield of the IIC_CR register is:

• ENABLE — Master enable for I2C serial interface.
ENABLE must be set equal to ‘1’ to transfer any bits
from the I2C interface block. Writing a ‘0’ to the

Table 16-7. IIC_CR Register

Bits Field Name Definition

31 GD_IEN Enable for normal transfer complete
interrupt

30 F_IEN Enable for IIC_DR data service
request interrupt

29 SANACK_IEN Enable for slave address not
acknowledged interrupt

28 SDNACK_IEN Enable for slave data not acknowl-
edged interrupt. An addressed slave
receiver has refused to accept the
last byte transmitted to it

27:26 Reserved1 Always write ‘0’s to these bits.
(See Note1)

25 CLRGDI Clear bit for the GDI interrupt in the
IIC_SR register. Writing a ‘1’ to this
bit clears the GDI interrupt

24 CLRFI Clear bit for the FI interrupt in the
IIC_SR register. Writing a ‘1’ to this
bit clears the FI interrupt

23 CLRSANACKI Clear bit for the SANACKI interrupt
in the IIC_SR register. Writing a ‘1’ to
this bit clears the SANACKI interrupt.

22 CLRSDNACKI Clear bit for the SDNACKI interrupt
in the IIC_SR register. Writing a ‘1’ to
this bit clears the SDNACKI inter-
rupt.

21:6 Reserved2 Always write ‘0’s to these bits.
(See Note1)

10 SW_MODE_EN 0 (power-on/reset default) - Normal
I2C hardware operating mode.
1 - Enable software operating mode.
The I2C pins are entirely controlled
by user writes to the ‘sda_out’ and
‘scl_out’ register bits.

7 SDA_OUT Enabled by sw_mode_en. This bit is
used by sw to manually control the
external I2C SDA data pin. Bit polar-
ity is:
1 = SDA pad pulled low
0 = SDA pad left open drain

6 SCL_OUT Enabled by sw_mode_en. This bit is
used by sw to manually control the
external I2C SCL clock pin. Bit polar-
ity is:
1 = SCL pad pulled low
0 = SCL pad left open drain

5:2 Reserved3 Always write ‘0’s to these bits.
(See Note1)

1 Reserved4 Always write ‘0’s to these bits.
(See Note1)

0 ENABLE I2C serial interface enable

Table 16-7. IIC_CR Register (Continued)

Bits Field Name Definition
16-4 PRELIMINARY SPECIFICATION

Philips Semiconductors I2C Interface
ENABLE bit effectively resets the entire I2C interface,
including all status and interrupt flag bits. A transfer
in progress is aborted and the byte currently trans-
ferred is lost.
Note: For writes, Reserved1, 2, 3 and 4 bitfields
MUST always be written with ‘0’s.

16.5 I2C SOFTWARE OPERATION MODE

I2C software operation mode is intended for use by soft-
ware I2C or similar algorithm implementations. In this
case, the SCL and SDA pins are fully controlled and ob-
served by software, and the hardware I2C interface is
disconnected from the SCL and SDA pins. Refer to
Figure 16-3 for a clarification of the principles involved.
Software mode is by default disabled after boot. Soft-
ware mode is enabled by writing a ‘1’ to
IIC_CR.SW_MODE_EN. At that point, the SCL and SDA
pins can be controlled by the IIC_CR SDA_OUT and
SCL_OUT bits. Writing a ‘1’ to either bit causes the cor-
responding pin to become active, i.e. be pulled low. The
SDA and SCL lines are open-collector outputs, and can
hence also be pulled low by external devices. The actual
pin state can be observed by software by examining
IIC_SR SDA_STAT and SCL_STAT bits. A 1 in these
MMIO bits indicates that the corresponding pin is cur-
rently pulled low.

By appropriate software, possibly using a timer interrupt,
full I2C functionality can be implemented using this
mechanism.

16.6 I2C HARDWARE OPERATION MODE

Hardware operation of I2C is the default mode after boot.
The PNX1300 I2C hardware interface operates in one of
two modes:

1. Master-transmitter (to write data to a slave)
2. Master-receiver (to read data from a slave)

As a master, the I2C logic will generate all the serial clock
pulses and the START and STOP bus conditions. The
START and STOP bus conditions are shown in
Figure 16-4. A transfer is ended with a STOP condition
or a repeated START condition. Since a repeated
START condition is also the beginning of the next serial
transfer, the I2C bus will not be released.

Note: The I2C interface on PNX1300 will operate as a
master ONLY!

The number of bytes transferred between the START
and STOP conditions from transmitter to receiver is not
limited. Each 8-bit data byte is followed by one acknowl-
edge bit. The transmitter releases the SDA line which will
pull-up to a HIGH level during the acknowledge bit time.
The receiver acknowledges by pulling the data line LOW

SCL

SDA

hardware

DATA
HIWAY

open drain

scl_stat

scl_out
I2C

D Q

sda_stat

sda_out

tribuf

tribuf

sw_mode_en

sw_mode_en

buf

open drain

buf

D Q

Figure 16-3. I2C software mode only logic
PRELIMINARY SPECIFICATION 16-5

PNX1300/01/02/11 Data Book Philips Semiconductors
during this acknowledge period. The master must always
generate the SCL transitions for the acknowledge bit
time.

Two types of data transfers are supported by the
PNX1300 I2C interface:

• Data transfer from a master transmitter to a slave
receiver, also called a WRITE operation. The master
first transmits a 1-byte slave address, then the
desired number of data bytes. The slave receiver
returns an acknowledge bit after each byte. The mas-
ter terminates the transaction by a STOP after the
last byte.

• Data transfer from slave transmitter to master
receiver, also called a READ operation. The first byte
(the slave address) is transmitted by the master and
acknowledged by the slave. The selected slave
transmits successive data bytes which are each
acknowledged by the master, except the last byte
desired by the master, for which the master gener-
ates a ‘notack’ condition. This causes the slave to
terminate byte transmission. The slave transmitter
then must release the bus so that the master may
generate a STOP condition.

The type of transaction is indicated by the LSbit of the ad-
dress byte. Data transfer from a master transmitter to a
slave receiver is called a WRITE. It is signified by a ‘0’ in
the LSbit of the address byte. Data transfer from a slave
transmitter to a master receiver is called a READ. It is
signified by a ‘1’ in the LSBit of the address byte.

Example steps for successful programming of the I2C in-
terface on PNX1300 are outlined as follows for both
reads and writes. Enable the I2C interface prior to at-
tempting any accesses to external I2C devices.

To enable the interface:

• Set bit IIC_CR.ENABLE (0x10340c) = 1

For write addressing mode:

1. On entry, clear any possible I2C interrupt sources by
writing IIC_CR bits [25:22] = ‘1111’. (Note that pro-
grammers must mask and enable high-level interrupt
sources through the VIC facility in the DSPCPU. See
the appropriate PNX1300 databook chapter).

2. Enable desired I2C interrupt sources by setting
IIC_CR[31:28] bits appropriately.

3. Simultaneously load IIC_AR[31:25] with 7-bit slave
address, IIC_AR.DIRECTION = 0 and IIC_AR[15:8]
with the appropriate bytecount for the transfer.

4. Load IIC_DR[31:0] with data for the write. Note that
writing this register triggers the transfer across the I2C
bus.Up to 4 bytes will be transferred after writing, de-
pendent on bytecount in IIC_AR[8:15}.Transfers of
more than 4 bytes have to be done by breaking them
down into a sequence of 4-byte transfers and a last
transfer which may be less than 4 bytes. This is done
by repeatedly reloading the register until the byte-
count is fulfilled. Transfer is done high byte first, pro-
ceeding to low byte.

5. Detect I2C resulting condition code in IIC_SR[31:28]
and respond - OR - Detect I2C high level interrupt and
respond. (Note that this last step is dependent upon
system software requirements).

6. If transfer count is not yet fulfilled, clear GDI and FI
bits and proceed with step iv) until all data is written.

For read addressing mode:

1. On entry, clear any possible I2C interrupt sources by
writing IIC_CR bits [25:22] = ‘1111’. (Note that pro-
grammers must mask and enable high level interrupt
sources through the VIC facility in the DSPCPU. See
the appropriate databook chapter).

2. Enable desired I2C interrupt sources by setting
IIC_CR[31:28] bits appropriately.

3. Simultaneously load IIC_AR[31:25] with 7-bit slave
address, IIC_AR.DIRECTION = 1 and IIC_AR[15:8]
with the appropriate bytecount for the transfer. Note
that writing this register triggers the read across the
I2C bus.

4. Detect I2C resulting condition in IIC_SR[31:28] and
respond - OR - Detect I2C interrupt and respond.
(Note that this last step is dependent upon system
software requirements.)

5. Clear GDI and FI bits and read the contents of
IIC_DR. Up to 4 bytes will be available in IIC_DR, fe-
ver if the remaining bytecount was less than 4. Bytes
are stored high byte first, proceeding to low byte.

6. Proceed with step iv) until all data is read, i.e byte-
count is fulfilled.

16.6.1 Slave NAK

If a slave device does not generate an ACK where re-
quired, this is considered a NAK. Upon receipt of a NAK
after transmitting a device address or data byte, the mas-
ter takes the following actions:

• the I2C state becomes IDLE (STATE = 000)
• a STOP condition is issued on the bus
• no more data is sent

SDA

SCL S P

START STOP

Figure 16-4. START and STOP Conditions on I2C
16-6 PRELIMINARY SPECIFICATION

Philips Semiconductors I2C Interface
16.7 I2C CLOCK RATE GENERATION

The I2C hardware block diagram is shown in Figure 16-5
below. In hardware operating mode, the IIC__SCL exter-
nal clock is derived by division from the BOOT_CLK pin
on PNX1300. The BOOT_CLK pin is normally connected
to TRI_CLKIN. The IIC__SCL clock divider value is de-
termined at boot time and cannot be changed thereafter.
The value chosen depends on the first byte read from the
EEPROM, as described in Section 13.2.1, “Boot Proce-
dure Common to Both Autonomous and Host-Assisted
Bootstrap.”

The PNX1300 I2C block is able to ‘stretch’ the SCL clock
in response to slaves that need to slow down byte trans-
fer. This mechanism of slowing SCL in response to a
slave is called ‘clock stretching.’ This clock stretching is
accomplished by the slave by holding the SCL line ‘low’

after completion of a byte transfer and acknowledge se-
quence. Clock stretching is always enabled.

Table 16-8. I2C speed and EEPROM byte 0

BOOT_CLK
bits

EEPROM
speed bit

divider
value

actual I2C
speed

00 (100 MHz) 0 (100 kHz) 1008 99.2 kHz

00 1 (400 kHz) 256 390.6 kHz

01 (75 MHz) 0 (100 kHz) 752 99.7 kHz

01 1 (400 kHz) 192 390.6 kHz

10 (50 MHz) 0 (100 kHz) 512 97.6 kHz

10 1 (400 kHz) 128 390.6 kHz

11 (33 MHz) 0 (100 kHz) 336 98.2 kHz

11 1 (400 kHz) 96 343.8 kHz

Figure 16-5. I2C block diagram

Boot S/M
and Logic

Reset
Logic

I2C Clock
Gen Prog

PAD

I2C
I/F
S/M

Serializer/DeserializerPAD

n

0 1

0 1

PAD

Addr
Register

Data
Register

Boot Address
Boot Data

cpu-arst
TRI_RESET#

controls controls

cpu-arst

IIC_SCL

PAD

BOOTCLKIN

ATE
(eeprom image

Byte0,bit0)

IIC_SDA

controls

I2C low

level S/M
controls

boot addr

cpu-arst
boot_sclk

sclk

Boot
Data

IIC_AR reg

IIC_DR reg

I

sclk

.

. 4

sync

Data Hiway
PRELIMINARY SPECIFICATION 16-7

PNX1300/01/02/11 Data Book Philips Semiconductors
16-8 PRELIMINARY SPECIFICATION

Synchronous Serial Interface Chapter 17

17.1 SYNCHRONOUS SERIAL INTERFACE
OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 synchronous serial interface (SSI) unit in-
terfaces to an off-chip modem analog front end (MAFE)
subsystem, network terminator, ADC/DAC or codec
through a flexible bit-serial connection. The hardware
performs full-duplex serialization/deserialization of a bit
stream from any of these devices. Any such front end de-
vice connected must support transmitting, receiving of
data, and initialization via a synchronous serial interface.

Since the communication algorithm is implemented in
software by the PNX1300 DSPCPU and the analog inter-
face is off chip, a wide variety of modem, network and/or
FAX protocols may be supported.

The SSI hardware includes:

• A 16-bit receive shift register (RxSR), synchronized
by an external receive frame synchronization pulse
(SSI_RxFSX) and clocked by an external clock
(RxCLK)

• A 32-bit MMIO receive data register (SSI_RxDR) to
provide data access from the DSPCPU

• 32-entry deep,16-bit wide receive buffer (RxFIFO), to
buffer between the receive shift register (RxSR) and
MMIO receive data register (SSI_RxDR)

• A 16-bit transmit shift register (TxSR), synchronized
by an external or internal transmit frame synchroniza-
tion pulse and clocked by an external clock (either
SSI_IO1 or SSI_RxCLK)

• A 32-bit MMIO transmit data register (SSI_TxDR) to
transmit data from the DSPCPU.

• 30-entry deep, 16-bit wide transmit buffer (TxFIFO),
to buffer between the MMIO transmit data register
(SSI_TxDR) and transmit shift register (TxSR)

• Transmit frame sync pulse generation logic
• Control and status logic
• Interrupt generation logic

The SSI unit is not a hiway bus master. All I/O is complet-
ed through DSPCPU MMIO cycles. FIFOs are used to in-
crease allowable interrupt response time and decrease
interrupt rate.

17.2 INTERFACE

The external interface consists of the 6 pins described in
Table 17-1.

17.3 BLOCK DIAGRAM

The main block diagram of the SSI unit is illustrated in
Figure 17-1.

The I/O block is used for control of the I/O pins and for
selecting the transmit clock and transmit frame synchro-
nization signals.

The frame synchronization block can be used for gener-
ating an internal synchronization signal derived from re-
ceive clock input (SSI_RxCLK) or from an I/O pin
(SSI_IO1).

The SSI transmit block buffers and transmits the bits us-
ing the generated frame synchronization signal (TxFSX)
and the transmit clock. The transmit clock is either the re-
ceive clock or the clock present on SSI_IO1.

The SSI receive block receives and buffers the bits on
the SSI_RxDATA line, using the receive clock
(SSI_RxCLK) and the receive frame synchronization sig-
nal (SSI_RxFSX).

Each of the blocks will be described in detail in the next
subsections.

Table 17-1. Synchronous serial interface pins

Name Type Description

SSI_RxCLK IN-5 Serial interface clock signal; pro-
vided by an external communica-
tion device.

SSI_RxFSX IN-5 Frame synchronization reference
signal; provided by an external
communication device.

SSI_RxDATA IN-5 Receive serial data signal; provided
by the receive channel of an exter-
nal communication device.

SSI_TxDATA OUT Transmit serial data signal output.

SSI_IO1 I/O-5 Transmit clock input or general pur-
pose I/O pin.

SSI_IO2 I/O-5 Transmit Frame synchronization
signal input or output or general
purpose I/O pin.
PRELIMINARY SPECIFICATION 17-1

PNX1300/01/02/11 Data Book Philips Semiconductors
17.3.1 General Purpose I/O

Figure 17-2 illustrates the functionality of the general
purpose I/O pins. The SSI_IO1 and SSI_IO2 external
pins may be used as general purpose I/O by proper con-
figuration of the SSI_CTL register, or they may be used
as transmit clock input and as transmit framing signal in-
put or output. The SSI_CTL.IO1 and SSI_CTL.IO2 Mode
Select fields control the direction and functionality of
these two pins.

A hardware reset or a software reset of the transmitter
through SSI_CTL.TXR command sets the SSI_CTL.IO1
and SSI_CTL.O2 fields to 11b, a conflict-free initial pin
state.Table 17-2 shows the effect of SSI_CTL.IO1 on pin
SSI_IO1, Table 17-3 shows the effect of SSI_CTL.IO2
on SSI_IO2. Note: If SSI_IO1 is not selected as transmit
clock input, the transmit clock is taken from the receive
clock signal instead. If SSI_IO2 is not selected as trans-
mit framing signal input or output, the transmit framing
signal is taken from the receive framing signal instead.

SSI_RxCLK

TxFSX

SSI_RxFSX

Frame Synchronization
Block

Figure 17-1. The SSI interface block diagram

SSI_IO2

SSI_IO1
I/O Control

Block

SSI Transmit
Block

TxCLK

SSI_TxDATA

SSI Receive
Block

SSI_RxDATA

IO1[1:0]=00

RIO1

WIO1

Figure 17-2. I/O block diagram

internal TxFSX

2:1
MUX

IO2[1:0] = 00

WIO2
IO2[1:0] = 00

SSI_IO2

RIO2
IO2[0] = 0

IO2[0] = 1

SSI_IO1

IO1[1:0]=01

SSI_RxFSX TxFSX

SSI_IO2

2:1
MUX

IO2[1:0] = 11

2:1
MUX

IO2[1:0] = 10

internal TxFSX
IO2[1:0] = 10

IO2[1:0] = 11

TxCLK2:1
MUX

IO1[1:0]=10

IO1[1:0]=10
SSI_IO1

SSI_RxCLK
17-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Synchronous Serial Interface
17.3.2 Frame Synchronization

The internal frame synchronization logic is illustrated in
Figure 17-3. An internal Frame Synchronization signal
(TxFSX) is being generated from the transmit or receive
clock selected by SSI_CTL.IO1. The Clock is divided by
the word length (16) and a Frame Rate Divider which is
controlled by the FSS[3:0] bits in the SSI_CTL register.
FMS determines the Frame Mode operation, whether the
frame sync pulse is word-length or bit-length. The trans-
mit framing signal is selected depending on
SSI_CTL.IO2, as shown in Table 17-4.

17.3.3 SSI Transmit

The transmitter control block diagram is illustrated in
Figure 17-4. The transmitter clock can be selected from
two sources, i.e. SSI_IO1 or SSI_RxCLK by program-
ming IO1[1:0] bits in the SSI_CTL register (see
Figure 17-2). A transfer takes place on either the rising or
falling edge of the clock, which can be configured with
SSI_CTL.TCP.

The transmitter has a 30-entry deep, 16-bit transmit
buffer that buffers the data between the 32-bit
SSI_TXDR register and the 16-bit transmit shift register
(TxSR).

The TxSR is a 16-bit transmit shift register. It can be con-
figured to shift out MSB or LSB first with SSI_CTL.TSD.

A detailed description of the configuration of the transmit-
ter can be found in the SSI_CTL and SSI_CSR register
description (17.10.1 and 17.10.2)

SSI_TxDR is a 32-bit MMIO transmit register.

17.3.4 SSI Receive

The receiver control block diagram is illustrated in
Figure 17-5. The receiver clock, frame synchronization
and data signal are always taken from the external pins.

The receiver has a 32-entry deep, 16-bit receive buffer
that buffers the data between the 16-bit receive shift reg-
ister (RxSR) and the 32-bit SSI_RXDATA register.

The input pin SSI_RxDATA provides serial shift in data
to the RxSR. The RxSR is a 16-bit receive shift register.
RxSR can be configured to shift in from MSB or LSB first
using SSI_CTL.RSD. A transfer takes place on either the
rising or falling edge of the receiver clock, which can be
configured with the SSI_CTL.RCP.

Table 17-2 Effect of SSI_CTL.IO1 on SSI_IO1

IO1[0:1] Function of SSI_IO1

00 general purpose output with positive logic
polarity, reflecting the value in
SSI_CTL.WIO1

01 general purpose input, with optional change
detector function. The input state can be
read from SSI_CSR.RIO1. The change
detector is clocked by the highway bus. The
change detector may optionally generate an
interrupt, under the control of CDE bit of
SSI_CTL.

10 Transmit clock (TxCLK) input
11 tri-state, input signal value ignored

Table 17-3 Effect of SSI_CTL.IO2 on SSI_IO2

IO2[0:1] Function of SSI_IO2

00 General purpose output with positive logic
polarity, reflecting the value in
SSI_CTL.WIO2

01 General purpose input. The input state can
be read in from SSI_CSR.RIO2. No change
detector is provided for this pin.

10 Internal transmit framing signal (TxFSX) out-
put.

11 Transmit framing signal (TxFSX) input.

SSI_RxCLK

TxCLK

SSI_IO1

Word Length
Divider

Frame Rate
Divider

Frame Sync
Mode

FSS[3:0] FMS

Figure 17-3. Frame synchronization generation block diagram

internal TxFSX
2:1

MUX
IO1[1:0]=10

IO1[1:0]=10

Table 17-4. Effect of SSI_CTL.IO2 on transmit
framing signal

IO2[0:1] Source of transmit framing signal

00 taken from RxFSX

01 taken from RxFSX

10 internally generated

11 taken from SSI_IO2 pin
PRELIMINARY SPECIFICATION 17-3

PNX1300/01/02/11 Data Book Philips Semiconductors
A detailed description of the configuration of the receiver
can be found in the SSI_CTL and SSI_CSR register de-
scription (17.10.1 and 17.10.2)

SSI_RxDR is a 32-bit MMIO receive data register.

Due to the possibility of speculative reading of the
SSI_RxDR, the read itself can not be implemented to ac-
knowledge the data as a side effect. For this reason an
explicit acknowledge mechanism is provided by the
SSI_RxACK register.

The SSI_RxACK is a 1-bit MMIO register that is used to
signal the SSI receiver state machine that a word has
been successfully read from the SSI_RxDR.

Writing a ‘1’ to this register initiates updating of the inter-
nal state. Writing a ‘0’ has no effect.

The register cannot be read, its effect may be observed
in the WAR field of the SSI_CSR.

The status fields of the SSI_CSR will update within 1
highway clock cycle after writing to the SSI_RXACK reg-
ister.

SSI_TxDATA
Transmit
Shift Reg 64-byte Transmit Buffer

Transmit
Data Reg

TxCLK Transmit Control Logic
TxFSX

Transmit
Control Reg

Transmit
Status Reg

Figure 17-4. The Sync Serial Interface Transmit Block Diagram

TxSR SSI_TXDR

SSI_RxCLK

SSI_RxFSX
SSI_RxDATA

Receive
Shift Reg 64-byte Receive Buffer

Receive
Data Reg

Receive Control Logic

Receive
Control Reg

Receive
Status Reg

Figure 17-5. The SSI receive block diagram

RxSR SSI_RXDR
17-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Synchronous Serial Interface
17.4 SSI TRANSMIT OPERATION

17.4.1 Setup SSI_CTL

Write the SSI_CTL to reset and enable the transmitter.
Both the transmitter and receiver must be reset simulta-
neously. This will set all registers and internal logic to be
same as after a power-up reset. The recommended pro-
cedure is to set up all transmitter-related control bits be-
fore performing a TXE assert. In particular, fields TCP,
RSD, IO1, IO2, FMS, FSP, MOD and TMS should NOT
be changed after enabling the transmitter until after the
next transmitter reset.

The TxCLK is taken from the SSI_IO1 pin or from the re-
ceive clock, dependent on SSI_CTL.IO1. The direction of
shift in the TxSR and the clock edge on which to shift
must also be configured in SSI_CTL. If the DSPCPU
does not poll the SSI status registers, it should enable
the transmitter interrupt and set the ILS field by writing to
the SSI_CTL to allow interrupt driven servicing of the
SSI. Note that both transmit and receive use the same
ILS field. Set the framing controls, slot size, and mode re-
quired according to the external communication circuit’s
requirements by writing the SSI_CTL. Finally, set the in-
terrupt level to respond to empty levels in the TxFIFO.
Note that the Rx and Tx machines share the framing and
clock divide controls. They cannot be set to different val-
ues for Rx and Tx.

If the RxCLK used to derive the TxCLK needs a divide by
two, this is done by setting SSI_CSR.CD2.

17.4.2 Operation Details

The transmit state machine will wait for transmit data to
be written to the SSI_TxDR register. (see also
Figure 17-6) As soon as SSI_TxDR is written, it’s value

will be propagated through two entries of the TxFIFO
(TxFIFO is 16-bit and SSI_TxDR is 32-bit) and trans-
ferred to TxSR, synchronized to TxFSX. The order of
transferring the two 16-bit parts in the 32-bit SSI_TxDR
can be configured by the endian bit SSI_CTL.EMS. Data
will begin shifting out of TxSR, one bit for each active
edge of the TxCLK, from either bit 15 (MSB first SSI_CTL
setting) or from bit 0 (LSB first) until TxSR is empty. For
endian control and shift direction see also subsection
17.8. When the shift register is empty, the transmit state
machine will load the value from the next available
TxFIFO location and begin shifting out that data. The
transmission continues until the transmit state machine
is disabled or reset.

If the last available TxFIFO has not been updated at the
appropriate time to reload TxSR, the last transmitted
frame is retransmitted and a transmit underrun error is in-
dicated in the transmitter status SSI_CSR.TUE

17.4.3 Interrupt and Status

The refill status of the SSI_TxDR register is stored in
SSI_CSR. As the transmit state machine loads a TxFIFO
register to the TxSR, it sets the associated status bits.
The SSI will generate an internal interrupt when the num-
ber of empty words in the TxFIFO rises above the level
set by SSI_CSR.ILS. If the transmit state machine at-
tempts to read a TxFIFO while the last available TxFIFO
has not been updated, it will set the transmit underrun bit.
This can cause a protocol error in the transmission.

The number of available word buffers (SSI_CSR.WAW)
and transmitter data register empty (SSI_CSR.TDE) in-
formation is updated automatically by the SSI block.

... 7 6 5 4 3 2 1 0

T
xS

R

3
2-

bi
t M

M
IO

 R
eg

30-depth of 16-bit buffer

16-bit

SSI_TxDATA

29 28 27 ...

rd_ptr

From
Hiway

wr_ptr

SSI_TxDR

Figure 17-6. The transmit buffer operation
PRELIMINARY SPECIFICATION 17-5

PNX1300/01/02/11 Data Book Philips Semiconductors
17.5 SSI RECEIVE OPERATION

17.5.1 Setup SSI_CTL

Write the SSI_CTL to reset and enable the receiver. Both
the transmitter and receiver must be reset simultaneous-
ly. This will set all registers and internal logic the same as
after a power-up reset. The recommended procedure is
to set up all receiver related control bits before perform-
ing a RXE assert. In particular, fields TCP, RSD, IO1,
IO2, FMS, FSP, MOD and TMS should NOT be changed
after enabling the receiver until after the next receiver re-
set.

The direction of shift in the RxSR, mode, and the clock
edge polarity must also be configured in SSI_CTL. Set
the framing controls according to the external communi-
cation circuit’s requirements. Note that the Rx and Tx
machines share the framing and clock divide controls.

If the DSPCPU does not poll the SSI status registers, it
should enable the receiver interrupt and set the ILS field
by writing to the SSI_CTL to allow interrupt driven servic-
ing of the SSI receiver. Note that both transmit and re-
ceive use the same ILS field.

If the RxCLK is double the frequency of the data rate on
the SSI bus, SSI_CSR.CD2 can be used to divide the re-
ceive clock by two.

17.5.2 Operation Details

The receive state machine will begin shifting
SSI_RxDATA into the RxSR on the first active edge of
SSI_RxCLK received after the receiver is enabled (see
also Figure 17-7). When full, the RxSR is parallel trans-
ferred to the first available RxFIFO entry and possibly
SSI_RxDR. Reception continues and when RxSR is full
again, a parallel load of the next available RxFIFO entry
from RxSR is accomplished. This continues until the re-
ceiver is disabled or reset. If the receive state machine
must transfer RxSR into one of the RxFIFO entries and
none of the RxFIFO entries is available, the value will be
lost and the receive overrun bit will be set.

17.5.3 Interrupt and Status

The status of the RxFIFO is visible in SSI_CSR. WAR is
the number of 32-bit words available for read; it is more
than ILS (RDF). As the receive state machine loads
RxFIFO from the RxSR, it sets the associated status bit.
The SSI will generate an internal interrupt when the num-
ber of full entries in RxFIFO is more then SSI_CTL.ILS.
If the receive state machine attempts to load RxFIFO
while none of the RxFIFO entries is available, it will set
the receive overrun bit and generate an interrupt.

Due to the possibility of speculative reading of the
SSI_RxDR, the DSPCPU must explicitly indicate a suc-
cessful read of SSI_RxDR by writing a ‘1’ in the LSB to
the SSI_RxACK register. The status fields of the
SSI_CSR will update within 1 highway clock cycle after
completion of writing to SSI_RXACK register.

17.6 FRAME TIMING

The frame timing can be controlled by the FSS and VSS
fields in the SSI_CTL register.

The FSS[3:0] bits control the divide ratio for the program-
mable frame rate divider used to generate the frame
sync pulses. The valid value ranges from 1 to 16 slots of
16 bit each, e.g. a value of 5 indicates that a frame con-
tains 5 slots of 16 bits each. Note: the value ‘16’ is ac-
complished by storing a ‘0’ in this field. If a codec is con-
nected which generates 6 slots and the SSI block is
programmed to 5 slots a framing error is indicated in
SSI_CSR.FES; and if TIE or RIE is enabled, an interrupt
is generated.

For an example of a frame timing diagram see
Figure 17-11 and Figure 17-12.

The VSS[3:0] bits control the number of valid slots in the
frame, starting from slot 1. For example, if the VSB[3:0]
bits are if set to 4 and FSS set to 5, slots 1, 2, 3 and 4 in
the frame contain valid data from the transmitter FIFO
and slot 5 will contain non-valid data. The receiver will
only accept data in slot 1, 2, 3 and 4.

4 5 6 7 29 30 31

R
xS

R

32
-b

it
M

M
IO

 R
e

g

32-depth of 16-bit buffer

16-bit

SSI_RxDATA

0 1 2 3

rd_ptr wr_ptr

To
Hiway

SSI_RxDR

Figure 17-7. The receive buffer operation
17-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Synchronous Serial Interface
17.7 INTERRUPT GENERATION

Depending on the settings of the TIE, RIE and CDE bits
in the SSI_CTL register, the SSI unit can generate inter-
rupts. This is best illustrated by Figure 17-8. Note:
RXFES and TXFES are the internal receive and transmit
framing error conditions. When an SSI interrupt is detect-
ed, the interrupt service routine should check all status
bits.The interrupts should be set up as level-triggered in-
terrupts.

17.8 16-BIT ENDIAN-NESS AND SHIFT
DIRECTION

The SSI unit supports both access orders for the 16-bit
halves of a machine word. In addition, the shift direction
can be controlled to select MSB or LSB shifting first. The
SSI_CTL.EMS bit controls the 16-bit endian mode, and

the TSD and RSD bits control transmit and receive shift
direction.

When EMS is set, the first data word received in a frame
will be transferred to bit 15-0 of the SSI_RxDR, the sec-
ond word will be transferred to bits 31-16 of the
SSI_RxDR. EMS = ‘0’ reverses the order of the halves of
SSI_RxDR. Likewise in the transmitter, when EMS is set,
the first data word transmitted in a frame will be bits 15-0
of SSI_TxDR, the second word transferred will be bits
31-16 of SSI_TxDR.

TSD and RSD control the shift direction of transmit and
receive shift registers (TxSR and RxSR). Transmit data is
transmitted MSB first when TSD is ‘0’ or LSB first other-
wise. Receive data is received MSB first when RSD
equals ‘0’, LSB first otherwise.

For an example of the transmit operation see
Figure 17-9. Receive works the same, only that data is
shifted in.

Figure 17-8. Interrupt generation logic.

TUE
andorTDE

TXFES

TIE

ROE
andorRDF

RIE

or SSI interrupt

CDE & CDS

RXFES

Figure 17-9. 16-bit endian and shift direction operation.

SSI_TXDR
31 015

SSI_RXFSX

SSI_TXDATA D16 D15 D14 D13 D2 D1 D0 D31 D30 D29 D18 D17 D16 D15 D14 D13

1st word 3th word

SSI_RXFSX

SSI_TXDATA D31 D0 D1 D2 D13 D14 D15 D16 D17 D18 D29 D30 D31 D0 D1 D2

1st word 3th word

SSI_RXFSX

SSI_TXDATA D0 D31 D30 D29 D18 D17 D16 D15 D14 D13 D2 D1 D0 D31 D30 D29

1st word 3th word

SSI_RXFSX

SSI_TXDATA D15 D16 D17 D18 D29 D30 D31 D0 D1 D2 D13 D14 D15 D16 D17 D18

1st word 3th word

2nd word

2nd word

2nd word

2nd word

EMS = 1, TSD = 0

EMS = 1, TSD = 1

EMS = 0, TSD = 0

EMS = 0, TSD = 1
PRELIMINARY SPECIFICATION 17-7

PNX1300/01/02/11 Data Book Philips Semiconductors
17.9 SSI TEST MODES

The SSI unit has two test modes which can be controlled
by setting SSI_CSR.TMS. A remote and a local loop
back testmode are supported (see also Table 17-9).

17.9.1 Remote Loopback

This test mode allows a remote transmitter to test itself,
the intervening transmission media, and its associated
receiver. In this mode, the data received on the
SSI_RxDATA pin is buffered and transmitted on the
SSI_TxDATA pin. The data is not transferred to
SSI_TxDR/TxFIFO and the DSPCPU is never interrupt-
ed. The transmitter is clocked by the SSI_RxCLK pin with
a combinatorial clock delay.

17.9.2 Local Loopback

This test mode allows the DSPCPU to run local checks
of the SSI. Data written to the TxFIFO is serialized and

passed to the receiver via an internal serial connection.
The receiver deserializes the data and passes it to the
RxFIFO register. Interrupts will be generated if enabled.
During local loop back mode, the data on the
SSI_RxDATA pin is ignored and the SSI_TxDATA pin is
tristated. An external CLK must be provided during local
loop back mode or no transmission or reception will oc-
cur.

17.10 MMIO REGISTERS

The MMIO Control and Status registers are shown in
Figure 17-10. The register fields are described in
Table 17-5, Table 17-6, Table 17-7, Table 17-8, and
Table 17-9. To ensure compatibility with future devices,
any undefined MMIO bits should be ignored when read,
and written as ‘0’s.

SSI_CTL (r/w)0x10 2C00
31 0

MMIO_BASE
offset:

SSI_TXDR (w/o)0x10 2C10

SSI_RXDR (r/o)0x10 2C20

SSI_RXACK (w/o)0x10 2C24

371115192327

TXDATA

RXDATA

SSI_CSR (r/w)0x10 2C04 WAW

FMS
FSP

MOD
EMS

TDE
RDF

TUE

RIO1
RIO2

037111519

31 0371115192327

FES
CDS

ROE

TXR
RXR

TXE

TSD
RSD

TCP
RCP

RXE

IO1 IO2

WIO1
WIO2

TIE
RIE

FSS VSS ILS

WAR
31 2327

CTUE
SROE

CFES
CCDS

TMS

CDE
CD2

SLP

reset: 0x00f00000

reset: 0x0000f000

RX_ACK

Figure 17-10. SSI MMIO registers.
17-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Synchronous Serial Interface
17.10.1 SSI Control Register (SSI_CTL)

SSI_CTL is a 32-bit read/write control register used to direct the operation of the SSI. The value of this register after a
hardware reset is 0x00F00000.

Table 17-5. SSI control register (SSI_CTL) fields.

Field Description

TXR Transmitter Software Reset (Bit 31). Setting TXR performs the same functions as a hardware reset. Resets all
transmitter functions. A transmission in progress is interrupted and the data remaining in the TxSR is lost. The
TxFIFO pointers are reset and the data contained will not be transmitted, but the data in the SSI_TxDR and/or
TxFIFO are not explicitly deleted. The transmitter status and interrupts are all cleared. This is an action bit. This bit
always reads ‘0’. Writing a ‘1’ in combination with writing a ‘1‘ in the RXR field will initiate a reset for the SSI module.
Note: this bit is always set together with RXR because a separate transmitter or receiver reset is not implemented.

RXR Receiver Software Reset (Bit 30). Setting RXR performs the same functions as a hardware reset. Resets all
receiver functions. A reception in progress is interrupted and the data collected in the RxSR is lost. The RxFIFO
pointers are reset, and the SSI will not generate an interrupt to DSPCPU to retrieve data in the SSI_RxDR and/or
RxFIFO. The data in the SSI_RxDR and/or RxFIFO is not explicitly deleted. The receiver status and interrupts are
all cleared.This is an action bit.This bit always reads ‘0’. Writing a ‘1’ in combination with writing a ‘1‘ in the TXR field
will initiate a reset for the SSI module. Note: this bit is always set together with TXR, because a separate transmitter
or receiver reset is not implemented.

TXE Transmitter Enable (Bit 29). TXE enables the operation of the transmit shift register state machine. When TXE is set
and a frame sync is detected, the transmit state machine of the SSI is begins transmission of the frame. When TXE
is cleared, the transmitter will be disabled after completing transmission of data currently in the TxSR. The serial out-
put (SSI_TxDATA) is three-stated, and any data present in SSI_TxDR and/or TxFIFO will not be transmitted (i.e., data
can be written to SSI_TxDR with TXE cleared; TDE can be cleared, but data will not be transferred to the TxSR).

Status fields updated by the Transmit state machine are not updated or reset when an active transmitter is disabled.

RXE Receive Enable (Bit 28). When RXE is set, the receive state machine of the SSI is enabled. When this bit is cleared,
the receiver will be disabled by inhibiting data transfer into SSI_RxDR and/or RxFIFO. If data is being received while
this bit is cleared, the remainder of that 16-bit word will be shifted in and transferred to the SSI RxFIFO and/or
SSI_RxDR.

Status fields updated by the Receive state machine are not updated or reset when an active receiver is disabled.

TCP Transmit Clock Polarity (Bit 27). The TCP bit value should only be changed when the transmitter is disabled. TCP
controls on which edge of TxCLK data is output. TCP=0 causes data to be output at rising edge of TxCLK, TCP=1
causes data to be output at falling edge of TxCLK.

RCP Receive Clock Polarity (Bit 26). RCP controls which edge of RxCLK samples data. The data is sampled at rising edge
when RCP = ‘1’ or falling edge when RCP = ‘0’.

TSD Transmit Shift Direction (Bit 25). TSD controls the shift direction of transmit shift register (TxSR). Transmit data is
transmitted MSB first when TSD = ‘0’ or LSB first otherwise. The operation of this bit is explained in more detail in
section 17.8.

RSD Receive Shift Direction (Bit 24). The RSD bit value should only be changed when the receiver is disabled. RSD con-
trols the shift direction of receive shift register (RxSR). Receive data is received MSB first when RSD = ‘0’, LSB first
otherwise. The operation of this bit is explained in more detail in section 17.8.

IO1 Mode Select SSI_IO1 pin (Bit 23-22). The IO1 field value should only be changed when the transmitter and receiver
are disabled. The IO1[1:0] bits are used to select the function of SSI_IO1 pin. The function may be selected as listed
in table Table 17-6.

IO2 Mode Select SSI_IO2 pin (Bit 21-20). The IO2 field value should only be changed when the transmitter and receiver
are disabled. The IO2[1:0] bits are used to select the function of SSI_IO2 pin. The function may be selected according
to Table 17-7

WIO1 Write IO1 (Bit 19). Value written here appears on the SSI_IO1 pin when the pin is configured to be a general purpose
output.

WIO2 Write IO2 (Bit 18). Value written here appears on the SSI_IO2 pin when this pin is configured to be a general purpose
output.

TIE Transmit Interrupt Enable (Bit 17). Enables interrupt by the TDE flag in the SSI status register (transmit needs refill)
Also enables interrupt of the TUE (transmitter underrun error) and TXFES (transmit framing error)

RIE Receive Interrupt Enable (Bit 16). When RIE is set, the DSPCPU will be interrupted when RDF in the SSI status reg-
ister is set (receive complete). It will also be interrupted on ROE (receiver overrun error) and on RXFES (receive fram-
ing error).

FSS Frame Size Select (Bits 15-12). The FSS[3:0] bits control the divide ratio for the programmable frame rate divider
used to generate the frame sync pulses. The valid setup value ranges from 1 to 16 slot(s). The value ‘16’ is accom-
plished by storing a 0 in this field.
PRELIMINARY SPECIFICATION 17-9

PNX1300/01/02/11 Data Book Philips Semiconductors
VSS Valid Slot Size (Bit 11-8). The VSS[3:0] bits control the valid slot size (starting from slot 1) for different modem analog
front end devices. The valid setup value ranges from 1 to 16 slot(s). The value 16 is accomplished by storing a ‘0’ in
this field.

FMS Frame Sync Mode Select (Bit 7). The FMS bit value should only be changed when the transmitter and receiver are
disabled. FMS selects the type of frame sync to be recognized by both Rx and Tx. When FMS = ‘1’, frame sync is
word-length bit clock. When this bit = ‘0’, frame sync is a 1-bit clock.

FSP Frame Sync Polarity (Bit 6). The FSP bit value should only be changed when the transmitter and receiver are dis-
abled. FSP controls which edge of frame sync is the active edge for both Rx and Tx. This bit causes frame signal to
be active at rising edge when FSP = ‘0’ , or falling edge when FSP = ‘1’.

MOD Mode Select (Bit 5). The MOD bit value should only be changed when the transmitter and receiver are disabled. MOD
selects the operational mode of the SSI for ISDN functionality. When MOD is set, the SSI is configured as a U-inter-
face for ISDN NT. Otherwise, set to ‘0’. Setting MOD bit and CD2 supports the MC145574 and MC145572 ISDN in-
terface transceivers.

EMS Endian Mode Select (Bit 4). Selects the big- or little-endian mode operation. See Section 17.8 for more detail.

ILS Interrupt Level Select (Bit 3-0). Sets the point where an interrupt is generated for normal data buffer servicing. The
number ranges from 1 to 15. This field controls interrupt level of both transmit and receive functions.

Table 17-5. SSI control register (SSI_CTL) fields.

Field Description

Table 17-6. IO1 mode select

Bit Mode

00 General Purpose Output: Configures the SSI_IO1 pin for general purpose output. The pin follows the state of the WIO1
field of the SSI_CTL.

01 General Purpose Input: Change detector may be used. Value can be read in from the RIO1 field of the SSI_CSR.

10 Enable External TxCLK: Allows for use of an externally generated TxCLK. The clock is provided via the TxCLK pin. All
general purpose I/O functions are unavailable.

11 Disable: Pin is not used. Output buffer is tristated and the input is ignored. (RESET default)

Table 17-7. IO2 mode select

Bit Mode

00 General Purpose Output: Configures the SSI_IO2 pin as a general purpose output. The pin follows the state of the WIO2
field of the SSI_CTL.

01 General Purpose Input: Value can be read in from RIO2 field of the SSI_CSR.

10 Frame Signal TxFSX (Output): Outputs the frame signal generated by the internal frame signal generation logic.

11 Frame Signal TxFSX (Input): Allows for use of an externally generated TxFSX. The frame sync signal is provided via
TxFSX pin. All general purpose I/O functions are unavailable. (RESET default)
17-10 PRELIMINARY SPECIFICATION

Philips Semiconductors Synchronous Serial Interface
17.10.2 SSI Control/Status Register (SSI_CSR)

SSI_CSR is a 32-bit read/write register that controls the SSI unit and shows the current status of the SSI module. The
default value after hardware reset is 0x0000F000.

Table 17-8. SSI control/status register (SSI_CSR) fields

Field Description

TMS Test Mode Select (Bit 31-30). Value should only be changed when the transmitter and receiver are disabled. See
Table 17-9.

CDE Change Detector Enable (Bit 29). CDE enables the change detector function on the SSI_IO1 pin. When CDE is set,
the DSPCPU will be interrupted when CDS in the SSI status register is set. When CDE is cleared, this interrupt is
disabled. However, the CDS bit will always indicate the change detector condition.

When the change detector is enabled, the CLK samples SSI_IO1. The CDS bit will be set for either a ‘0’ –> ‘1’ or a ‘1’
–> ‘0’ change between the current value and the stored value.

CD2 RXCLK Divider (Bit 28). When CD2 = ‘1’, the internal RxCLK is divided by two. In the divide by 2 mode, the clock edge
that samples the asserted Frame Sync Pulse will resync the RxCLK divider to be a data capture edge. Data samples
will occur every other clock thereafter until the end of the valid slots in the frame.

SLP Sleepless (Bit 27). When set, this bit allows the SSI to ignore the global power down signal. If cleared, assertion of
the global power down signal will cause the SSI transmitter to finish transmission of the current 16-bit word, then enter
a state similar to transmitter disabled, (SSI_CTL.TXE = ’0’).

In the receiver, a 16-bit word currently being transmitted to RxSR will complete reception and be transferred to the
RxFIFO. The receiver will then enter a state similar to receiver disabled, (SSI_CTL.RXE = ‘0’).

CTUE Clear Transmitter Underrun Error (Bit 21). A control bit written by the DSPCPU to indicate that the transmitter underrun
error flag should be cleared. This is an action bit. Writing a ‘1’ clears SSI_CSR.TUE. The bit always reads ‘0’.

CROE Clear Receiver Overrun Error (Bit 20). A control bit written by the DSPCPU to indicate that the receiver overrun error
flag should be cleared. This is an action bit. Writing a ‘1’ clears SSI_CSR.TOE. The bit always reads ‘0’.

CFES Clear Framing Error Status (Bit 19). A control bit written by the DSPCPU to indicate that the receiver’s framing error
flag should be cleared. This is an action bit. Writing a ‘1’ clears SSI_CSR.FES. The bit always reads ‘0’.

CCDS Clear Change Detector Status (Bit 18). A control bit written by the DSPCPU to indicate that the change detector status
on IO1 flag should be cleared. This is an action bit. Writing a ‘1’ clears SSI_CSR.CDS. The bit always reads ‘0’.

WAW Word buffers Available for Write (Bit 15-12). The WAW[3:0] bits provide the number of 32-bit words available for write
in the transmit buffer (TxFIFO). The SSI can store 15 words in the transmit FIFO. When the FIFO is empty, WAW =
‘15’. When the FIFO is full, WAW = ‘0’ and the SSI will ignore any further attempts to add words to the FIFO. Note:
The fill routine should check that WAW is nonzero, before writing data.

WAR Word buffers Available for Read (Bit 11-8). The WAR[3:0] bits provide the number of 32-bit word available for read in
the receive buffer (RxFIFO). The SSI can store 16 words in the receive FIFO. However, the maximum value indicated
by the WAR register = ‘15’ (because it’s a 4-bit register field). When the FIFO is empty, WAR = ‘0’. When the FIFO is
full, WAR = ‘15’ and the SSI will generate an overrun error if more data is received.

TDE Transmit Data register Empty (Bit 7). In normal operation, this bit will be set when the number of empty words in the
TxFIFO is greater than the Interrupt Level Select value, SSI_CTL.ILS. If SSI_CTL.TIE is set, the SSI will generate an
interrupt. When set, it indicates that the SSI_TxDR/TxFIFO registers require DSPCPU service for refilling after normal
transmission. As the DSPCPU refills the TxFIFO during the interrupt service routine, this bit will be cleared by the SSI
when the number of empty slots drops below the value of SSI_CTL.ILS.

RDF Receive Data register Full (Bit 6). In normal operation, this bit will be set when the number of words in the RxFIFO is
greater than SSI_CTL.ILS. If SSI_CTL.RIE is set, the SSI will generate an interrupt. When set, this bit indicates that
normal received data resides in SSI_RxDR register and RxFIFO buffer for reading. DSPCPU must service the RxFIFO
before a receiver overrun occurs.

TUE Transmitter Underrun Error (Bit 5). No current data was available from the TxFIFO when a load of the TxSR was
scheduled. The transmitted message may have been corrupted. Generates interrupt if enabled by TIE.

ROE Receive Overrun Error (Bit 4). No RxFIFO slot in which to store received data. These bits have been lost and the mes-
sage stream is incomplete. Generates an interrupt if enabled by RIE.

FES Frame Error (Bit 3). A frame sync pulse has been detected where not expected or did not occur as expected during
transmit or receive. Received data may be invalid. Transmit data have been sent out of sync. Receive frame error
RXFES generates an interrupt if enabled by RIE. Transmit frame error TXFES generates an interrupt if enabled by TIE

CDS Change Detector Status (Bit 2). The input change detector on SSI_IO1 pin has detected a change in state.

RIO1 Read IO1 (bit 1). RIO1 reflects the value on the SSI_IO1 pin.

RIO2 Read IO2 (bit 2). RIO2 reflects the value on the SSI_IO2 pin.
PRELIMINARY SPECIFICATION 17-11

PNX1300/01/02/11 Data Book Philips Semiconductors
17.11 TIMING DIAGRAMS

Figure 17-11 and Figure 17-12 illustrate the timing of the
data signals and the frame timing.

17.12 POWER DOWN

SSI block can be separately powered down by setting a
bit in the BLOCK_POWER_DOWN register. For a de-
scription of powerdown, see Chapter 21, “Power Man-

agement.” The SSI block should not be active when ap-
plying block powerdown.

If the block enters power-down state while transmission
is enabled, behavior upon power-up is undefined.

Table 17-9. Test mode select

Bit Mode

0X Normal Operation.

10 Remote Loopback Test: Direct connection of receiver serial data to transmitter serial data. Transmitter is
clocked with RxCLK. No data loaded to the SSI_RxDR register or RxFIFO buffer and no CPU interrupt is gener-
ated. Useful to allow remote device to test the communication medium and the Rx and Tx front ends.

11 Local Loopback Test: Feedback is after SSI_TxDR and SSI_RxDR register and serializer/deserializer. Allows
DSPCPU to test the bulk of the Rx and Tx circuits. During Local Loopback Test, an external clock on
SSI_RXCLK should be present to clock the SSI unit.

Figure 17-11. SSI Serial timing. (FSP = 0, RSD = 0, TSD = 0, TCP = 0, RCP = 0, FMS = 0)

SSI_RXCLK

SSI_RXFSX

SSI_RXDATA

SSI_TXDATA

D0 D15 D14 D13 D12

D0 D15 D14 D13 D12

D11 D10 D9 D8

D11 D10 D9 D8

D7 D6 D5 D4

D7 D6 D5 D4

D3 D2 D1 D0

D3 D2 D1 D0

D15 D14 D13 D12

D15 D14 D13 D12

Figure 17-12. SSI Serial timing. (FSP = 0, RSD = 0, TSD = 0, TCP = 0, RCP = 0, FMS = 0, FSS = 5, VSS = 4)

SSI_RXCLK

SSI_RXFSX

SSI_RXDATA

SSI_TXDATA

1st DATA

1st DATA

1st Frame

2nd DATA

2nd DATA

3th DATA

3th DATA

4th DATA

4th DATA

1st DATA

1st DATA

2nd Frame
17-12 PRELIMINARY SPECIFICATION

JTAG Functional Specification Chapter 18

by Renga Sundararajan, Hans Bouwmeester and Frank Bouwman

18.1 OVERVIEW

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The IEEE 1149.1 (JTAG) standard can be used for vari-
ous purposes including testing connections between in-
tegrated circuits on board level, controlling the testing of
the internal structures of the integrated circuits, and mon-
itoring and communicating with a running system.

The JTAG standard defines on-chip test logic, four or five
dedicated pins collectively called the Test Access Port
(TAP) and a TAP controller.

The JTAG standard defines instructions that must al-
ways be implemented by a TAP controller in order to
guarantee correct behavior on board level. Apart from
mandatory instructions, the standard also allows user-
defined and private instructions. In PNX1300, user de-
fined and private instructions exist for debug purposes
and for production test. For debug there is communica-
tion between a debug monitor running on the PNX1300
DSPCPU and a debugger front-end running on a host
computer. This will be explained in chapter Section 18.3

18.2 TEST ACCESS PORT (TAP)

The Test Access Port includes three or four dedicated in-
put pins and one output pin:

• TCK (Test Clock)
• TMS (Test Mode Select)
• TDI (Test Data In)
• TRST (Test Reset, optional!)
• TDO (Test Data Out)

TRST is not present on PNX1300.

TCK provides the clock for test logic required by the stan-
dard. TCK is asynchronous to the system clock. Stored
state devices in JTAG controller must retain their state
indefinitely when TCK is stopped at 0 or 1.

The signal received at TMS is decoded by the TAP con-
troller to control test functions. The test logic is required
to sample TMS at the rising edge of TCK.

Serial test instructions and test data are received at TDI.
The TDI signal is required to be sampled at the rising
edge of TCK. When test data is shifted from TDI to TDO,
the data must appear without inversion at TDO after a
number of rising and falling edges of TCK determined by
the length of the instruction or test data register selected.

TDO is the serial output for test instructions and data
from the TAP controller. Changes in the state of TDO
must occur at the falling edge of TCK. This is because
devices connected to TDO are required to sample TDO
at the rising edge of TCK. The TDO driver must be in an
inactive state (i.e., TDO line HIghZ) except when data
scanning is in progress.

18.2.1 TAP Controller

The TAP controller is a finite state machine; it synchro-
nously responds to changes in TCK and TMS signals.
The TAP instructions and data are serially scanned into
the TAP controller’s instruction and data registers via the
common input line TDI. The TMS signal tells the TAP
controller to select either the TAP instruction register or
a TAP data register as the destination for serial input
from the common line TDI. An instruction scanned into
the instruction register selects a data register to be con-
nected between TDI and TDO and hence to be the des-
tination for serial data input.

TAP controller state changes are determined by the TMS
signal. The states are used for scanning in/out TAP in-
struction and data, updating instruction and data regis-
ters, and for executing instructions.

The controller state diagram (Figure 18-1) shows sepa-
rate states for ‘capture’, ‘shift’ and ‘update’ of data and in-
structions. The reason for separate states is to leave the
contents of a data register or an instruction register un-
disturbed until serial scan-in is finished and the update
state is entered. By separating the shift and update
states, the contents of a register (the parallel stage) is not
affected during scan in/out.

The TAP controller must be in Test Logic Reset state af-
ter power-up. It remains in that state as long as TMS is
held at ‘1’. It transitions to Run-Test/Idle state when TMS
= ‘0’. The Run-Test/Idle state is an idle state of the con-
troller in between scanning in/out an instruction/data reg-
ister. The ‘Run-Test’ part of the name refers to start of
built-in tests. The “Idle” part of the name refers to all other
cases. Note that there are two similar sub-structures in
the state diagram, one for scanning in an instruction and
another for scanning in data. To scan in/out a data regis-
ter, one has to scan in an instruction first.

An instruction or data register must have at least two
stages, a shift register stage and a parallel input/output
stage. When an n-bit data register is to be ‘read’, the reg-
ister is selected by an instruction. The registers contents
are ‘captured’ first (loaded in parallel into shift register
stage), n bits are shifted in and at the same time n bits
PRELIMINARY SPECIFICATION 18-1

PNX1300/01/02/11 Data Book Philips Semiconductors
are shifted out. Finally the register is ‘updated’ with the
new n bits shifted in.

Note: when a register is scanned, its old value is shifted
out of TDO. The new value shifted in via TDI is written to
the register at the update state. Hence, scan in/out in-
volve the same steps. This also means that reading a
register via JTAG destroys its contents unless otherwise
stated. We can specify some registers as read-only via
JTAG so that when the controller transitions to update
state for the read-only register, the update has no effect.
Sometimes, read-write registers are needed (for exam-
ple, control registers used for handshake) which can be
read non-destructively. In such cases, the value shifted
in determines whether the old value is ‘remembered’ or
something else happens.

18.2.2 PNX1300 JTAG Instruction Set

PNX1300 uses a 5-bit instruction register. The unspeci-
fied opcodes are private and their effects are undefined.
Table 18-1 lists the JTAG instructions.

0

0

1

0

1

1

0

0

1

1

Select
DR Scan

Capture
DR

Shift
DR

Exit1
DR

Pause
DR

Exit2
DR

Update
DR

0

0

1

0

1

1

0

0

1

1

Select
IR Scan

Capture
IR

Shift
IR

Exit1
IR

Pause
IR

Exit2
IR

Update
IR

1 1

0

1

0
1

Test Logic
Reset

Run-Test/
Idle

1 1 0 0

Figure 18-1. State diagram of TAP controller

0 0

Table 18-1. JTAG instruction encoding

Encoding Instruction name Action

00000 EXTEST Select (dummy) boundary
scan register

00001 SAMPLE/PRELOAD Select (dummy) boundary
scan register

11111 BYPASS Select bypass register

10000 RESET Reset TriMedia to power on
state

10001 SEL_DATA_IN Select DATA_IN register
18-2 PRELIMINARY SPECIFICATION

Philips Semiconductors JTAG Functional Specification
The JTAG instructions EXTEST, SAMPLE/PRELOAD,
and BYPASS are standard instructions and are not dis-
cussed here. The MACRO, BURNIN, and PASS_C_S in-
structions are used during hardware test mode, and are
also not discussed here. All other instructions are dis-
cussed in Section 18.3

18.3 USING JTAG FOR PNX1300 DEBUG

Figure 18-2 shows an overview of the JTAG access path
from a host machine to a target TriMedia system and a
simplified block diagram of the TriMedia processor. The
JTAG Interface Module shown separately in the diagram
may be a PC add-on card such as PC-1149.1/100F
Boundary Scan Controller Board from Corelis Inc. or a
similar module connected to a PC serial or parallel port.
The JTAG interface module is necessary only for TriMe-

dia systems that are not plugged into a PC. For PC-host-
ed TriMedia systems, the host based debugger front-end
can communicate with the target resident debug monitor
via the PCI bus.

The enhancements to the standard functionality of JTAG
test logic provides a handshake mechanism for transfer-
ring data to and from a TriMedia processor’s MMIO reg-
isters reserved for this purpose, for posting an interrupt,
and for resetting processor state. The actual interpreta-
tion of the contents of the MMIO registers is determined
by a software protocol used by the debug monitor run-
ning on the TriMedia processor and the debug front-end
running on a host machine.

The communication between a host computer and a tar-
get TriMedia system via JTAG requires, at a high level of
abstraction, the following components.

• A host computer with a serial or parallel inter-
face.
The host computer transfers data to and from the
JTAG interface module, preferably in word-parallel
fashion. A JTAG interface device driver is also
needed to access and modify the registers of the
JTAG interface module.

• A JTAG interface module (hardware) that asyn-
chronously transfers data to and from the host
computer.
The interface module synchronously transfers data to
and from the JTAG TAP on a TriMedia processor, and
supplies the test clock, TCK, and other signals to the

10010 SEL_DATA_OUT Select DATA_OUT register

10011 SEL_IFULL_IN Select IFULL_IN register

10100 SEL_OFULL_OUT Select OFULL_OUT regis-
ter

10101 SEL_JTAG_CTRL Select JTAG_CTRL regis-
ter

11110 MACRO Hardware test mode select

01010 BURNIN Private

01110 PASS_C_S Private

Table 18-1. JTAG instruction encoding

Encoding Instruction name Action

Host Machine
JTAG Interface

JTAG board
Connector

Serial or Parallel
Connection

JTAG TAP (TCK, TMS, TDI, TDO)

Main
Memory
(SDRAM)DSP

CPU
MMI

I$

D$

JTAG
controller

MMIO

Scan Chain connecting possibly
other chips on board

TriMedia Board

Figure 18-2. TriMedia system with JTAG test access

DATA Highway

Module
(such as a PC)

May be a PC plug-in board
PRELIMINARY SPECIFICATION 18-3

PNX1300/01/02/11 Data Book Philips Semiconductors
TriMedia JTAG controller. The interface module may
be a PC plug-in board.
This module may transfer data from and to the host
computer in bit-serial or word-parallel fashion. It
transfers data from and to the JTAG registers on a
TriMedia processor in bit-serial fashion in accordance
with the IEEE 1149.1 standard. The JTAG interface
module connects to a 4-pin JTAG connector on a Tri-
Media board which provides a path to the JTAG pins
on a TriMedia processor. It is the responsibility of the
interface module to scan data in and out of the TriMe-
dia processor into its internal buffers and make them
available to the host computer.

• A JTAG controller on the TriMedia processor
which provides a bridge between the external
JTAG TAP and the internal system.
The controller transfers data from/to the TAP to/from
its scannable registers asynchronous to the internal
system clock. A monitor running on a TriMedia pro-
cessor and the debugger front-end running on a host
computer exchange data via JTAG by reading/writing
the MMIO registers reserved for this purpose, includ-
ing a control register used for the handshake.

18.3.1 JTAG Instruction and Data Registers.

PNX1300 has two JTAG data registers and one JTAG
control register (see Figure 18-3) in MMIO space and a
number a JTAG instructions to manipulate those regis-
ters. Table 18-2 lists the MMIO addresses of the JTAG
data and control registers. The addresses are offsets
from MMIO_BASE. All references to instruction and data
registers below are JTAG instructions and data registers
and not TriMedia instruction or data registers.

• Two 32-bit data registers, JTAG_DATA_IN and
JTAG_DATA_OUT in MMIO space. Both registers

can be connected in between TDI and TDO like the
standard Bypass and Boundary Scan registers of
JTAG (not shown in Figure 18-3).
The JTAG_DATA_IN register can be read or written to
via the JTAG port. The JTAG_DATA_OUT register is
read-only via the JTAG port, so that scanning out
JTAG_DATA_OUT is non-destructive.
The JTAG_DATA_IN and JTAG_DATA_OUT are read-
able/writable from the TriMedia processor via the
usual load/store operations.

• An 8-bit control register JTAG_CTRL in MMIO
space. The JTAG_CTRL register is used for hand-
shake between a debug monitor running on a TriMe-
dia and a debugger front-end running on a host.
JTAG_CTRL.ofull = ‘1’ means that JTAG_DATA_OUT
has valid data to be scanned out. On power-on reset
of the TriMedia processor, JTAG_CTRL.ofull = ‘0’.
JTAG_CTRL.ofull is both readable and writable via
JTAG tap. Writing 0 to JTAG_CTRL.ofull via JTAG is a
‘remember’ operation, i.e., JTAG_CTRL.ofull retains
its previous state. Writing a ‘1’ to JTAG_CTRL.ofull
via JTAG is a ‘clear’ operation, i.e., JTAG_CTRL.ofull
becomes ‘0’.
JTAG_CTRL.ifull = ‘0’ means that the JTAG_DATA_IN
register is empty. JTAG_CTRL.ifull = 1 means that
JTAG_DATA_IN has valid data and the debug monitor
has not yet copied it to its private area. On power-on
reset of the TriMedia processor, JTAG_CTRL.ifull = 0.
JTAG_CTRL.ifull is readable and writable via JTAG.
Writing a ‘0’ to JTAG_CTRL.ifull via JTAG is a
remember operation, i.e., JTAG_CTRL.ifull retains it
previous state. Writing a ‘1’ to JTAG_CTRL.ifull posts
an interrupt on hardware line 18.
The peripheral blocks on a TriMedia processor may
enter a ‘power down’ state to reduce power con-
sumption. The JTAG_CTRL.sleepless bit determines
if the JTAG block participates in a power down state.
In the power-on RESET state, JTAG_CTRL.sleepless
bit is ‘1’ meaning the JTAG block does not power
down. It can be read and written to by the TriMedia
processor via load/store operations and by the
debugger front-end running on a host by scan in/out.

• Two virtual registers, JTAG_IFULL_IN and
JTAG_OFULL_OUT. The first virtual register
JTAG_IFULL_IN connects the registers

Table 18-2. MMIO Register Assignments

MMIO Offset JTAG Register

0x 10 3800 JTAG_DATA_IN

0x 10 3804 JTAG_DATA_OUT

0x 10 3808 JTAG_CTRL

To

TDO

JTAG_DATA_IN

JTAG_DATA_OUT

JTAG_CTRL

from

TDI

01

ifull ofullunused bits

7

031

31 0

Figure 18-3. Additional JTAG data registers and control register

2
sleepless
bit

3

18-4 PRELIMINARY SPECIFICATION

Philips Semiconductors JTAG Functional Specification
JTAG_CTRL.ifull and JTAG_DATA_IN in series. Like-
wise, the virtual register JTAG_OFULL_OUT con-
nects JTAG_CTRL.ofull and JTAG_DATA_OUT in
series.
The reason for the virtual registers is to shorten the
time for scanning the JTAG_DATA_IN and
JTAG_DATA_OUT registers. Without virtual registers,
we must scan in an instruction to select
JTAG_DATA_IN, scan in data, scan an instruction to
select JTAG_CTRL register and finally scan in the
control register. With virtual register, we can scan in
an instruction to select JTAG_IFULL_IN and then
scan in both control and data bits. Similar savings
can be achieved for scan out using virtual registers.

• Five JTAG instructions
• 5 instructions, SEL_DATA_IN, SEL_DATA_OUT,

SEL_IFULL_IN, SEL_OFULL_OUT, and
SEL_JTAG_CTRL, for selecting the registers to be
connected between TDI and TDO for serial input/
output.

• An instruction RESET for resetting the TriMedia
processor to power on state.

• In the capture-IR state of the TAP controller, the least
2 significant bits (bits 0 and 1) of the shift register
stage must be loaded with the ‘01’ as required in the
standard. The standard allows the remaining bits of
the IR shift stage to be loaded with design specific
data. The bits 2, 3 and 4 of the IR shift stage are
loaded with bits 0, 1 and 2 of the JTAG_CTRL regis-
ter. This means that shifting in any instruction allows
the 3 least significant bits of the JTAG_CTRL register
to be inspected. This reduces the polling overhead
for data transfer.

Race Conditions

Since the JTAG data registers live in MMIO space and
are accessible by both the TriMedia processor and the
JTAG controller at the same time, race conditions must
not exist either in hardware or in software. The following
communication protocol uses a handshake mechanism
to avoid software race conditions.

18.3.2 JTAG Communication Protocol

The following describes the handshake mechanism for
transferring data via JTAG.

• Transfer from debug front-end to debug monitor
The debugger front-end running on a host transfers
data to a debug monitor via JTAG_DATA_IN register.
It must poll JTAG_CTRL.ifull bit to check if
JTAG_DATA_IN register can be written to. If the
JTAG_CTRL.ifull bit is clear, the front-end may scan
data into JTAG_DATA_IFULL_IN register. Note that
data and control bits may be shifted in with
SEL_IFULL_IN instruction and the bit shifted into

JTAG_CTRL.ifull register must be ‘1’. This action trig-
gers an interrupt. The debug monitor must copy the
data from JTAG_DATA_IN register into its private
area when servicing the interrupt and then clear
JTAG_CTRL.ifull bit thus allowing JTAG interface
module to write to JTAG_DATA_IN register the next
piece of data.

• Transfer from monitor to front-end
The monitor running on TriMedia must check if
JTAG_CTRL.ofull is clear and if so, it can write data
to JTAG_DATA_OUT. After that, the monitor must set
the JTAG_CTRL.ofull bit. The debugger front-end
polls the JTAG_CTRL.ofull bit. When that bit is set, it
can scan out JTAG_DATA_OUT register and clear
JTAG_CTRL.ofull bit. Since JTAG_DATA_OUT is
read-only via JTAG, the update action at the end of
scan out has no effect on JTAG_DATA_OUT. The
JTAG_CTRL.ofull bit, however, must be cleared by
shifting in the value ‘1’.

• Controller States
In the power-on reset state, JTAG_CTRL.ifull and
JTAG_CTRL.ofull must be cleared by the JTAG con-
troller.

18.3.3 Example Data Transfer Via JTAG

Scanning in a 5-bit instruction will take 12 TCK cycles
from the Run-Test/Idle state: 4 cycles to reach Shift-IR
state, 5 cycles for actual shifting in, 1 cycle to exit1-IR
state, 1 cycle to Update-IR state, and 1 cycle back to
Run-Test/Idle state. Likewise, scanning in a 32 bit data
register will take 38 TCK cycles and transferring an 8-bit
JTAG_CTRL data register will take 14 TCK cycles from
Idle state. However, if a data transfer follows instruction
transfer, then the transition to DR scan stage can be
done without going through Idle state, saving 1 cycle.

18.3.3.1 Transferring data to TriMedia via
JTAG

Poll control register to check if input buffer is empty. Scan
in data when it is empty and set the ifull control bit to ‘1’
triggering an interrupt. Note that scanning in any instruc-
tion automatically scans out the 3 least significant bits
(including ifull and ofull bits) of the JTAG_CTRL register.

Table 18-3. Transfer of Data in via JTAG

Action Number of
TCK cycles

IR shift in SEL_IFULL_IN instruction 12

While JTAG_CTRL.ifull = 1, scan in
SEL_IFULL_IN instruction

11+

DR scan 33 bits of register JTAG_IFULL_IN 38

TOTAL 61+ cycles
PRELIMINARY SPECIFICATION 18-5

PNX1300/01/02/11 Data Book Philips Semiconductors
18.3.3.2 Transferring data from TriMedia via
JTAG

Poll control register to check if output buffer is full . Scan
out data when it is full and clear the ofull control bit. Note
that scanning in any instruction automatically scans out
the 3 least significant bits (including ifull and ofull bits) of
JTAG_CTRL register.

Note that the above timings do not include the over-
heads of the JTAG software driver for JTAG interface
module plugged into a PC.

18.3.4 JTAG Interface Module

It is expected that the interface module will be a program-
mable JTAG interface module. One end of the module
should be connected to a JTAG tap and the other end to
a host computer via a serial or parallel line or plugged
into a PC. It is up to the JTAG driver software on a host
computer to program the JTAG interface module via the
serial/parallel interface for transferring data to/from the
target. The transfer rates will depend on the interface
module.

Table 18-4. Transfer of Data out via JTAG

Action Number of
TCK cycles

IR shift in SEL_OFULL_OUT instruction 12

While JTAG_CTRL.ofull = 0, scan in
SEL_OFULL_OUT instruction

11+

DR scan 33 bits of register JTAG_OFULL_OUT 38

TOTAL 61+ cycles
18-6 PRELIMINARY SPECIFICATION

On-Chip Semaphore Assist Device Chapter 19

19.1 OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 has a simple MP semaphore-assist device. It
is a 32-bit register, accessible through MMIO by either
the local PNX1300 CPU or by any other CPU on PCI
through the aperture made available on PCI. The sema-
phore, SEM, is located at MMIO offset 0x10 0500.

SEM operation is as follows: each master in the system
constructs a personal nonzero 12 bit ID (see below). To
obtain the global semaphore, a master does the follow-
ing action:

write ID to SEM (use 32 bit store, with ID in 12 LSB)
retrieve SEM (use 32 bit load, it returns 0x00000nnn)
if (SEM = ID) {

“performs a short critical section action”
write 0 to SEM

}
else “try again later, or loop back to write”

19.2 SEM DEVICE SPECIFICATION

SEM is a 32-bit MMIO location. The 12 LSB consist of
storage flip-flops with surrounding logic, the 20 MSBs al-
ways return a ‘0’ when read.

SEM is RESET to ‘0’ by power up reset.

When SEM is written to, the storage flip-flops behave as
follows:

if (cur_content == 0) new_content = write_value;
else if (write_value == 0) new_content = 0;
/* ELSE NO ACTION ! */

19.3 CONSTRUCTING A 12-BIT ID

A PNX1300 processor can construct a personal, nonzero
12-bit ID in a variety of ways. Below are some sugges-
tions.

PCI configspace PERSONALITY entry. Each PNX1300
receives a 16-bit PERSONALITY value from the EE-
PROM during boot. This PERSONALITY register is lo-

cated at offset 0x40 in configuration space. In a MP sys-
tem, some of the bits of PERSONALITY can be
individualized for each CPU involved, giving it a unique
2/3/4-bit ID, as needed given the maximum number of
CPUs in the design.

In the case of a host-assisted PNX1300 boot, the PCI
BIOS assigns a unique MMIO_BASE and DRAM_BASE
to every PNX1300. In particular, the 11 MSBs of each
MMIO_base are unique, since each MMIO aperture is 2
MB in size. These bits can be used as a personality ID.
Set bit 11 (MSB) to '1' to guarantee a nonzero ID#.

19.4 WHICH SEM TO USE

Each PNX1300 in the system adds a SEM device to the
mix. The intended use is to treat one of these SEM de-
vices as THE master semaphore in the system. Many
methods can be used to determine which SEM is master
SEM. Some examples below:

Each DSPCPU can use PCI configuration space access-
es to determine which other PNX1300s are present in
the system. Then, the PNX1300 with the lowest PER-
SONALITY number, or the lowest MMIO_base is chosen
as the PNX1300 containing the master semaphore.

19.5 USAGE NOTES

To avoid contention on the master SEM device, it should
only be used for inter-processor semaphores. Processes
running on a single CPU can use regular memory to im-
plement synchronization primitives.

The critical section associated with SEM should be kept
as short as possible. Preferably, SEM should only be
used as the basis to make multiple memory-resident sim-
ple semaphores. In this case, the non-cacheable DRAM
area of each PNX1300 can be used to implement the
semaphore data structures efficiently.

As described here, SEM does not guarantee starvation-
free access to critical resources. Claiming of SEM is
purely stochastic. This should work fine as long as SEM
is not overloaded. Utmost care should be taken in SEM
access frequency and duration of the basic critical sec-
tions to keep the load conditions reasonable.

00000000000000000000

31 12 11 0

SEM0x10 0500
PRELIMINARY SPECIFICATION 19-1

PNX1300/01/02/11 Data Book Philips Semiconductors
19-2 PRELIMINARY SPECIFICATION

Arbiter Chapter 20

by Eino Jacobs, Luis Lucas, Chris Nelson, Allan Tzeng, Gert Slavenburg

20.1 ARBITER FEATURES

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 internal highway bus conveys all the
memory and MMIO traffic. The on-chip peripheral units
described in this databook are connected to this internal
highway bus. Accesses to the bus are controlled by a
central arbiter. Figure 2-1 on pag e2-2 shows the whole
system where the arbiter is embedded in the main mem-
ory interface (MMI) block. The traffic includes the memo-
ry requests issued by most of the on-chip units as well as
the MMIO transactions issued by the DSPCPU or PCI
block and responded to by the peripherals.

The arbiter was designed to make PNX1300 a true real-
time system by providing a highly programmable bus
bandwidth allocation scheme. The primary characteris-
tics are:

• round robin arbitration
• hierarchical organization
• programmable allocation of highway bandwidth
• dual priorities with priority raising mechanism

These features are explained in the next sections of this
chapter. The arbiter is programmed through two MMIO
registers:

• ARB_RAISE
• ARB_BW_CTL

The default values (after hardware RESET) stored in
these two MMIO registers are suitable for most of the ap-
plications. If these default settings introduce violations of
real-time constraints in units like Video In (VI), Video Out
(VO), Audio In (AI) and Audio Out (AO) (each of these
units has a Highway Bandwidth Error detection mecha-
nism), the ARB_BW_CTL register should be pro-
grammed to 0x090A9. This setting gives almost maxi-
mum priority to real-time units but may slow down the
CPU.

Fine tuning of the arbiter settings is described in the fol-
lowing sections.

20.2 DUAL PRIORITIES WITH PRIORITY
RAISING MECHANISM

The best CPU performance is obtained if cache misses
can take priority over peripheral requests on the high-
way. However, peripherals need to have a maximum

guaranteed latency low enough to satisfy the real-time
constraints of I/O units.

PNX1300 provides this feature with the following priority-
raising mechanism.

Peripheral unit requests can have 2 priorities: low and
high. Within each class there is fair, round-robin arbitra-
tion (Section 20.3). Requests with high priority take pre-
cedence over requests with low priority.

Units can indicate the priority of their requests to be low
or high.

A unit may initially post a request with low priority. If the
request is not serviced within a particular waiting time,
the unit can raise the priority of the request to high. This
can be done when the worst case latency at high priority
approaches the real-time constraint of the unit. Thus, the
unit uses only spare bandwidth without slowing down the
CPU unless real-time constraints require it to claim high
priority.

In PNX1300, only the ICP unit has its own priority raising
logic (i.e. it controls the low to high transition of the re-
quest). Refer to Chapter 14, “Image Coprocessor,” for
more information.

Priority raising for the VLD, PCI, VI and VO units is han-
dled by the arbiter central priority raising mechanism.
The central priority raising mechanism settings are con-
trolled from the DSPCPU with the ARB_RAISE MMIO
register (see Table 20-1). The delay is the amount of
time for which the arbiter handles the request at low pri-
ority.

The delay is defined by a 5-bit field (dedicated per unit)
and is counted in CPU clock cycles. The granularity of
the delay is 16 cycles, so the maximum time spent at low
priority for each request can be programmed from 0 to
496 cycles, inclusive, in increments of 16 cycles.

The default value for the entire ARB_RAISE register is
‘0’. This causes all requests from VLD, PCI, VI and VO to
be handled as high-priority requests until the

Table 20-1. ARB_RAISE register layout

Offset Name Bits Fields

0x10010C ARB_RAISE 19:15 VLD_delay[4:0]

14:10 PCI_delay[4:0]

9:5 VI_delay[4:0]

4:0 VO_delay[4:0]
PRELIMINARY SPECIFICATION 20-1

PNX1300/01/02/11 Data Book Philips Semiconductors
ARB_RAISE register contents has been changed for the
application requirements.

Corner-case note: There is some risk in setting the delay
high, then lowering it, as the last request submitted with
the high delay might violate the latency constraints of the
new real-time domain. However this should not happen
since this register should be set before the application
starts.

The other units (AI, AO and BTI (boot block)) and the
CPU will always have their requests considered as high
priority. High priority for the CPU will give maximum pos-
sible performance.

AO and AI requests are happening at very low rate.
Hence, the probability that they take time away from the
CPU is negligible.

20.3 ROUND ROBIN ARBITRATION

In addition to the dual priority mechanism, a round-robin
arbitration is used to schedule the requests with same
priority. The purpose is to ensure, for every unit with a
high-priority request, a maximum latency for gaining ac-
cess to the highway and/or a minimum share of the avail-
able bandwidth.

Round-robin arbitration ensures that no starvation of re-
quests can occur and therefore requests with real-time
constraints can be handled in time.

The round robin arbitration algorithm is as follows.

Requests are granted according to a dynamic priority list.
Whenever a unit request is granted, it will be moved to
the last position in the priority list and another unit will be
moved to the first position in the priority list. Priorities are
rotated. A unit with a waiting request will eventually reach
the first place in the priority list.

As an example, Figure 20-1 shows a state diagram of an
arbitration state machine with 2 requesters. The nodes A
and B indicate states A and B. In state A, requester A has
ownership of the highway, in state B requester B has
ownership. The arc from state A to state B indicates that
if the current state is state A and a request from request-
er B is asserted, then a transition to state B occurs, i.e.
ownership of the highway passes from requester A to re-
quester B.

When, in a particular state, none of the arcs leaving from
that node has its condition fulfilled, the state machine re-
mains in the same state.

When both requester A and B have requests asserted,
then ownership of the highway switches between A and
B, creating fair allocation of ownership.

Figure 20-2 pictures a state diagram that allocates fair
arbitration with 3 requesters.

20.3.1 Weighted Round Robin Arbitration

Not all units need to have equal latency and bandwidth.
It is preferred to allocate bandwidth to units according to
their needs. This is achieved with weighted round-robin
and can be illustrated in the following examples.

Figure 20-3 pictures a state machine with two requesters
A and B with double weight given to requester A. There
are now 2 states A1 and A2 where requester A has own-
ership of the highway. When both A and B requests are
asserted, requester A will have ownership of the highway
twice as often as requester B.

A B

Figure 20-1. State diagram of round robin arbitra-
tor with 2 requesters.

B

A

A B

Figure 20-2. State diagram of round robin arbitra-
tor with 3 requesters.

A&~C

B

C

A
C

B&~AC&~B

A1 B

Figure 20-3. State diagram of round robin arbitra-
tor with 2 requesters; A has double weight.

B&~A

A

A2

A

B

20-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Arbiter
Figure 20-4 shows a state machine with 3 requesters in
which double weight is given to requester A.

Such state machines can become very complex and
cannot be implemented for a large system like PNX1300
with 9 requesters. Hierarchy or arbitration levels are
used to overcome this problem.

20.3.2 Arbitration Levels

The arbitration is split into multiple levels of hierarchy.
Each level of hierarchy has an independent arbitration
state machine. At the bottom of the hierarchy, the arbitra-
tion is performed between a group of units. Whichever of
these units ‘wins’ is passed to the next level of hierarchy,
where the selected unit competes with other units at that
level for highway access.This is continued until the high-
est level of arbitration.

By splitting arbitration into multiple levels it is easy to
support a large number of highway units while the com-
plexity of the arbitration state machines at each level of
hierarchy remains modest.

A1 B

Figure 20-4. State diagram of round robin arbitra-
tor with 3 requesters; A has double weight.

B

A2C

A

C

A

B&~A

C&~AA&~B

A&~C

B
&

~
C

&
~

A

C
&

~
B

&
~

A

L1 arbitration

L6 arbitration

L5 arbitration

L4 arbitration

L3 arbitration

L2 arbitration

Cache priority-based arbitration

vo_req

icp_reqh
icp_reql

vi_req

pci_req

vld_req ai_req ao_req

bti_mmio_req

bti_req

pci_mmio_req

ic_req

dc_req

dc_mmio_req

dc_req_pref

1/2/3 1/2/3

1/3/5 1/3/5/7

1/3/5/7 1/3/5

1/2 1/3/5

1/3/5 1/2

1 1 11 11 1 2

Figure 20-5. Arbitration architecture

dvdd_req

1

spdo_req

1

PRELIMINARY SPECIFICATION 20-3

PNX1300/01/02/11 Data Book Philips Semiconductors
Hierarchy also makes it easy and natural to allocate bus
bandwidth or latency to a group of units. Most bandwidth
or latency-demanding units are located at the top of the
hierarchy while the less demanding are at the bottom
and get a small amount of overall bandwidth.

20.4 ARBITER ARCHITECTURE

In addition to the dual priority mechanism described in
Section 20.2, PNX1300 supports an arbitration architec-
ture made of 6 fixed levels of hierarchy. This is combined
with a programmable weighted round robin algorithm per
level, as pictured in Figure 20-5.

The weights can be adjusted by software to allocate
bandwidth and latency depending on application require-
ments. Within a level of hierarchy the units can have
equal weights, giving them an equal share of bandwidth.
Alternatively, they can have different weights, giving
them an unequal share of the bandwidth for that level.

The arbitration weights at each level are described in
Table 20-3 and illustrated in Figure 20-5.

Table 20-2 presents the minimum bandwidth allocation
at Level 1 between the DSPCPU and the peripherals
(level 2) according to the different weight values that can
be programmed. Note that programming a weight of 3/3
or 2/2 instead of 1/1 is legal and results in the same allo-
cation.

Note: The different types of requests from the DSPCPU
caches are arbitrated locally before sending a single
CPU request to the arbiter. The PCI bus also performs lo-
cal arbitration before sending a system request to the ar-
biter.

The weight programming is done by setting the MMIO
register ARB_BW_CTL. Register offset as well as field
description and coding is provided in Table 20-4.

The hardware RESET value of ARB_BW_CTL is 0, re-
sulting in a weight of 1 for all requests .

Note that each media processor application needs to
carefully review its arbiter settings.

Table 20-2. Minimum bandwidth allocation between
CPU caches and peripheral units.

weight of
CPU and
caches

weight of
level 2

bandwidth
at level 1

bandwidth
at level 2

3 1 75% 25%

2 1 67% 33%

3 2 60% 40%

1 1 50% 50%

2 3 40% 60%

1 2 33% 67%

1 3 25% 75%

Table 20-3. Arbitration weights at each level

Level Arbitration Weights

level 1: CPU MMIO, Dcache, Lcache are arbitrated with
fixed priorities between each other and together
have a programmable weight of 1, 2 or 3.
Level 2 has a programmable weight of 1, 2 or 3.

level 2: VO unit has a programmable weight of 1, 3 or 5.
Level 3 has a programmable weight of 1, 3, 5 or 7.

level 3: The ICP unit has a programmable weight of 1,3,5 or
7. Level 4 has a programmable weight of 1,3 or 5.

level 4 The VI unit has a programmable weight of 1 or 2.
Level 5 has a programmable weight of 1,3 or 5.

level 5: The PCI unit has a programmable weight of 1 ,3 or 5.
Level 6 has a programmable weight of 1 or 2.

level 6: Level 6 contains several lower bandwidth and/or
latency-tolerant units. The VLD has a weight of 2. AI,
AO, DVDD and the boot block (only active during
booting) have a weight of 1.

Table 20-4. ARB_BW_CTL MMIO register

Offset level of
arbitration field bits allowed

values

0x100104 n/a RESERVED 25:18

level 1 CPU weight 17:16 00 = weight 1
01 = weight 2
10 = weight 3

level 1 L2 weight 15:14 00 = weight 1
01 = weight 2
10 = weight 3

level 2 VO weight 13:12 00 = weight 1
01 = weight 3
10 = weight 5

level 2 L3 weight 11:10 00 = weight 1
01 = weight 3
10 = weight 5
11 = weight 7

level 3 ICP weight 9:8 00 = weight 1
01 = weight 3
10 = weight 5
11 = weight 7

level 3 L4 weight 7:6 00 = weight 1
01 = weight 3
10 = weight 5

level 4 VI weight 5 0 = weight 1
1 = weight 2

level 4 L5 weight 4:3 00 = weight 1
01 = weight 3
10 = weight 5

level 5 PCI weight 2:1 00 = weight 1
01 = weight 3
10 = weight 5

level 5 L6 weight 0 0 = weight 1
1 = weight 2
20-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Arbiter
20.5 ARBITER PROGRAMMING

The PNX1300 arbiter accepts programmable bandwidth
weights to directly control the percentage of bandwidth
allocated to each unit. In the worst case all bandwidth is
used. If not all of the bandwidth is used, then all units
eventually get their desired bandwidth (as the bus be-
comes free) regardless of the weights. However, the
weights still indirectly guarantee each unit a worst-case
latency, which is important for the real-time behavior.

There are two basic types of PNX1300 coprocessor and
peripheral units. The first type is units which have hard
real-time constraints, i.e. VO, VI, AO and AI. To ensure
multimedia functionality, these units must be able to ac-
quire the bus within a fixed amount of time in order to fill
or empty a buffer before it over- or underflows.

The second type, the CPU, PCI, ICP, VLD and DVDD
units, can absorb long latencies but performance is en-
hanced (there are fewer stall cycles or waiting cycles) if
latency is short. The bandwidth requirement is usually
known and depends on the application. It is especially
well known that ICP and VLD or DVDD have a fixed
bandwidth requirements in multimedia applications.

For the PNX1300 DSPCPU, latency is of prime impor-
tance. CPU performance reduces as average latency in-
creases. The design of the arbiter guarantees that the
DSPCPU gets all unused bus bandwidth with lowest pos-
sible latency. Optimal operation is achieved if the arbiter
is set in such a way that the DSPCPU has the best pos-
sible latency given the required latency and bandwidth of
units active in the application.

To pick programmable weights and priority raising de-
lays, the following procedure is recommended:

1. Try to keep CPU weight as high as possible through
the remaining steps.

2. Pick weights sufficient to guarantee latency to hard
real-time peripherals (see Section 20.5.1).

3. Pick weights for remaining peripherals in order to give
enough bandwidth to each (see Section 20.5.2). Step
2 above has priority, because bandwidth can be ac-
quired as the bus becomes free and because the hard
real-time units use a known amount of bandwidth.

4. If latency and bandwidth slack remains, increase pri-
ority raise delays in order to improve average CPU la-
tency.

20.5.1 Latency Analysis

In the following, ceil(X) is the least integral value greater
than or equal to X.

Latency is defined in each real-time unit chapter through
this databook. Refer to the related sections to find out the
latency requirement according to the mode and clock
speed at which the unit is operating.

This latency value has to be larger than the maximum la-
tency Lx (in nanoseconds) guaranteed by the arbiter.

For a unit x the arbiter guarantees a latency of:

Lx = Lx,sc * (SDRAM cycle time in ns)

where

Lx,sc = (Dx * T) + E + ceil(Dx * T / Kd) * K + ceil(16*Rx/C)

is the latency in SDRAM clock cycles.

Latency in CPU clock cycles is defined by:

Lx,cc = ceil(Lx,sc * C)

The symbols are defined as follows:

T = 20 cycles (transaction length, assuming worst case
pattern alternating reads and writes).

E = 10 cycles (extra delay in case the first transaction
made by the CPU requires a different bank order to sat-
isfy the critical word first.

K = 19 cycles (refresh transaction length).

Kd is the programmed refresh interval (see Section 12.11
on page12-6).

C is the CPU/SDRAM ratio (i.e. 5/4, 4/3, 3/2, 2/1 or 1 as
explained in Section 12.6.2 on page12-4).

Rx is the priority raise delay of unit x as stored in MMIO
register ARB_RAISE (see Section 20.2).

Rx = 0 for units other than VO, VI, PCI or VLD.

Dx is the worst case number of requests that the arbiter
allows before the request from unit x goes through.

Dx includes the transaction from unit x (the unit which
needs the data) as well as the internal implementation
delays that occur in the transaction.

Dx is derived from the arbiter settings as follows:

DCPU ceil
CPUweight L2weight+

CPUweight
--

 =

DVO ceil
VOweight L3weight+

VOweight
--

 D2× 1+=

DICP ceil
ICPweight L4weight+

ICPweight
--

 D3× 1+=

DVI ceil
VIweight L5weight+

VIweight
--

 D4× 1+=

DPCI ceil
PCIweight L6weight+

PCIweight
--

 D5× 1+=

DVLD ceil 2 1 1 0 1 1+ + + + +
2

 D6× 1+=

DAI ceil 2 1 1 0 1 1+ + + + +
1

 D6× 1+=

DAO ceil 2 1 1 0 1 1+ + + + +
1

 D6× 1+=

DDVDD ceil 2 1 1 0 1 1+ + + + +
1

 D6× 1+=

DSPDO ceil 2 1 1 0 1 1+ + + + +
1

 D6× 1+=
PRELIMINARY SPECIFICATION 20-5

PNX1300/01/02/11 Data Book Philips Semiconductors
Where

As an example, if CPUweight is 3, L2weight is 2, VOweight
is 3 and L3weight is 7, then

• D2 is ceil[(3 + 2) / 2] = 3,
• DVO is ceil[(3 + 7) / 3] * 3 +1 = 13.

If CPU/SDRAM ratio is 5/4 (for example memory fre-
quency is 80 MHz and CPU frequency is 100 MHz), re-
fresh interval Kd is 1220 cycles, and Rx is 2, then the
maximum latency for VO is:

• LVO,sc = 13 * 20 + 10 + ceil[13 * 20 / 1220] * 19 +
ceil(16 * 2 / (5 / 4)] = 315 SDRAM cycles

• LVO = LVO,sc * 12.5 = 3937.5 ns

Note: Average latency is normally much lower than worst
case latency because on rare occasions many units will
issue requests at exactly the same time (this is assumed
when evaluating the maximum latency).

Note: All real-time units have a special exception notifi-
cation flag that is raised if an overflow or underflow oc-
curs while operating.

Note: To compute the latency Lx when a unit is not en-
abled, its weight has to be set to ‘0’ in the D{2,3,4,5,6}
equations and in D{AI,AO,VLD} for AI, AO or VLD.

These equations are not accurate for all the weights, but
give an upper bound of the worst case (which is usually
too pessimistic).

A much more accurate number could be found by simu-
lating the arbiter, e.g. if the settings are: CPUweight=1,
L2weight=2, VOweight=1 and L3weight=1, then

DVO = ceil[(1 + 1) / 1] * ceil[(1 + 2) / 2]

giving 4 requests. But actually the worst case grant re-
quests order is: CPU, L3, VO - resulting in 3 requests
only.

20.5.2 Bandwidth Analysis

In the following, ceil(x) means the least integral value
greater than or equal to x.

Minimum allocated bandwidth, Bx for a unit x, by the ar-
biter is defined as follows:

Bx = (Mcycles - Kk) * S / [T * Ex + (16 * Rx / C)]

Where:

Mcycles is the total amount of SDRAM cycles available in
a period P in which the bandwidth is computed. For ex-
ample, if the period is 1 second and SDRAM runs at 80
MHz then Mcycles is 80,000,000.

Kk is the amount of SDRAM cycles used by the refresh
during the same period P.

If P is in seconds it could be expressed as:

Kk = ceil(4096 * P / .064) * K

For example, if P is 1 second then Kk is

ceil(4096 * 1 / .064) * 19 = 1216000 SDRAM cycles.

S is the size of the transaction on the bus.

For PNX1300, S is equal to 64 (bytes).

Ex is the ratio of requests available for a unit x according
to the arbiter settings.

It means the unit x will get 1 / Ex out of the total requests.
Ex is derived from the arbiter settings as follows:

Where:

D2 ceil
CPUweight L2weight+

L2weight
--

 =

D3 ceil
VOweight L3weight+

L3weight
--

 D2×=

D4 ceil
ICPweight L4weight+

L4weight
--

 D3×=

D5 ceil
VIweight L5weight+

L5weight
--

 D4×=

D6 ceil
PCIweight L6weight+

L6weight
--

 D5×=

ECPU

CPUweight L2weight+

CPUweight
--=

EVO

VOweight L3weight+

VOweight
-- E2×=

EICP

ICPweight L4weight+

ICPweight
-- E3×=

EVI

VIweight L5weight+

VIweight
-- E4×=

EPCI

PCIweight L6weight+

PCIweight
-- E5×=

EVLD
2 1 1 0 1 1+ + + + +

2
--- E6×=

EAI
2 1 1 0 1 1+ + + + +

1
--- E6×=

EAO
2 1 1 0 1 1+ + + + +

1
--- E6×=

EDVDD
2 1 1 0 1 1+ + + + +

1
--- E6×=

ESPDO
2 1 1 0 1 1+ + + + +

1
--- E6×=

E2

CPUweight L2weight+

L2weight
--=

E3

VOweight L3weight+

L3weight
-- E2×=

E4

ICPweight L4weight+

L4weight
-- E3×=
20-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Arbiter
For example, with the same settings as in the example of
Section 20.5.1, then

• E2 is (3 + 2) / 2 = 2.5
• EVO is (3 + 7) / 3 * 2.5 = 8.33,

which gives

• BVO = (80 - 1.216) * 64 / [20*8.33 + 16*2 / (5/4)]

resulting in 26.23 million B/sec corresponding to 25.01
MB/sec.

Note: In order to compute the latency Bx when a unit is
not enabled, its weight has to be considered as ‘0’ in the
E{2,3,4,5,6} equations and in E{AI,AO,VLD} for AI, AO or
VLD.

The maximum amount of requests, Ax, for unit x allowed
during Mcycles period is:

Ax = floor(Bx / S)

Where floor(X) is the greatest integral value less than or
equal to X.

Note: This number does not take into account the worst
case pattern for request acknowledgment. Thus if the pe-
riod is too small Ax is not accurate.

20.6 EXTENDED BEHAVIOR ANALYSIS

The following sections describes a more accurate behav-
ior of the PNX1300 arbitration system.

20.6.1 Extended Bandwidth Analysis

The minimum bandwidth allocation derived from the ar-
biter settings is accurate if one of the two following con-
ditions are true:

• The units emit requests all the time (i.e. do back-to-
back requests)

• After a request has been acknowledged, the unit
emits a new request before the new arbitration point.
The arbitration is decided around every 16 cycles.
This time depends on the direction of the transac-
tions (read/write).

In PNX1300, the only unit almost able to sustain back-to-
back requests is the data cache. The other units will post
a request and wait for the data before the next request is
posted. This behavior makes the bandwidth computa-
tion:

• almost accurate if the unit is down in the arbiter hier-
archy (true if the units placed above are enabled).

• rather inaccurate if large weights are used for a unit.

Since no back-to-back requests are implemented, the
worst case is that a unit can only get one request out of

three if all the others are asking. This limits the use of
large weights for other units than data cache.

However some units might be able to catch one request
out of two. This depends on the way requests interleave,
since the arbitration point is dependent on the type of the
request (read or write) as well as on the CPU ratio.

This makes it almost impossible to describe the behavior
precisely.

The exact bandwidth necessary for units like VO, VI, AO
or AI are well known (see dedicated sections in each cor-
responding chapter). If the arbiter settings allocate more
bandwidth for these units than they can use, the extra
bandwidth can be used by units that are located below
these units (VO, VI) or at the same level as (AO and AI)
in the arbiter hierarchy.

As an example, with the default settings, VO gets 25% of
the available bandwidth and the CPU gets 50%. If the
SDRAM clock speed is 100 MHz, then 100 MB/sec are
allocated to VO. If VO runs at 27 MHz (NTSC or PAL
mode), then VO will not use all this allocated bandwidth.
Thus any of the units that are below VO in the arbiter hi-
erarchy can potentially use the remaining allocated
bandwidth.

In other words - even if only 10% are allocated to one unit
like the CPU, PCI or the ICP, it may use more.

20.6.2 Extended Latency Analysis

Some units (VO and VI) have a latency/bandwidth re-
quirement and their behavior needs to be simulated in or-
der to find out the correct settings. For example the re-
quirement for VO (in image mode 4:2:2 or 4:2:0 without
up scaling, overlay disabled) is:

• During 128 VO clock cycles, VO block needs to
have 2 requests acked ([2 Ys, one U and one V]/2).

The default value ‘0’ for ARB_BW_CTL leads to a bus al-
location of 50% for CPU, 25% for VO and 25% for L3
blocks.

The worst case arbitration for VO is then: CPU L3 CPU
VO, CPU L3 CPU VO to which the refresh (K), internal
delays (T) and E for the first CPU request need to be
added.

The first VO request will require 129 SDRAM cycles (DVO
= 5 or from the worst case pattern 19 + 10 + 20 + 4 * 20).

The arbitration pattern shows that the following request
will require (in the worst case) an extra 4 * 20 SDRAM cy-
cles. Thus VO clock speed cannot be greater than
61.24% (128 / [129 + 80]) of the SDRAM clock speed.

By changing the settings to 33% for the CPU, 33% for VO
and 33% for L3 blocks (i.e. CPUweight = ‘1’, L2weight = ‘2’,
VOweight = ‘1’, L3weight = 1), the new SDRAM/VO clock
percentage becomes 75.74% (128 / [109 + 60]) corre-
sponding to a worst case arbitration pattern of CPU L3
VO, CPU L3 VO.

Before changing the settings the minimum SDRAM
speed required to run VO at 74.25 MHz (high definition
speed) was 122 MHz. After the new allocation 100 MHz
is fine. Note that here DVO remains equal to ‘5’.

E5

VIweight L5weight+

L5weight
-- E4×=

E6

PCIweight L6weight+

L6weight
-- E5×=
PRELIMINARY SPECIFICATION 20-7

PNX1300/01/02/11 Data Book Philips Semiconductors
When VO is running in image mode 4:2:2 or 4:2:0 without
upscaling and overlay enabled, the requirements be-
come:

• During the first 64 VO clock cycles at least one
request must be acked (the OL (overlay) data).

• During 128 VO clock cycles, VO block requires that
4 requests be acked ([4 OLs, two Ys one V and one
U]/2).

If the settings are 33% for the CPU, 33% for VO and 33%
for L3 blocks then the worst case arbitration pattern is
CPU L3 VO, CPU L3 VO, etc.

The first requirement limits the VO/SDRAM ratio to

(64 / [19 + 10 + 20 + 3 * 20]) = 58.7%.

The second requirement gives a VO/SDRAM ratio of
44.29% (128 / [19 + 10 + 20 + 3 * 20 + 3 * 20 * 3]).

Thus if VO clock speed is supposed to be 54 MHz (pro-
gressive scan) the SDRAM must run at least at 122 MHz.

By setting the arbiter to 25% for the CPU, 37.5% for VO
and 37.5% for VI (CPUweight = 1, L2weight = 3, VOweight =
1, L3weight = 1, assuming only VO and VI are enabled)
the arbitration pattern becomes CPU VI VO VI CPU VO
VI VO CPU VI VO.

Now both VI and VO are able to catch one request out of
two, thanks to the read / write overlap. This leads to a
VO/SDRAM ratio of 47.5% or a 113 MHz SDRAM.

20.6.3 Raising Priority

If VO is running at 27 MHz (NTSC or PAL) without over-
lay and CPUweight is set to ‘3’ while all the other weights
are set to ‘1’, then the worst case latency derived from
20.5.1 for VO is:

LVO,sc = (ceil[(1 + 1) / 1] + ceil[(3 + 1) / 1] + 1) * 20 + 10
+ 19 = 169 SDRAM cycles (assumes RVO = ‘0’).

The latency for VO is 1 request in 64 VO clock cycles. If
SDRAM is running at 80 MHz, then the maximum latency
tolerated by VO is floor(64 / (27 / 80)) = 189 SDRAM cy-
cles.

This means that VO requests can remain at low priority
for 189 - 169 = 20 SDRAM cycles.

If the CPU clock speed is 100 MHz (ratio is 5 / 4) then the
ARB_RAISE register can be programmed to:

floor(20 * (5 / 4) / 16) = 1.

VO requests will stay at low priority for 16 cycles allowing
slightly better average CPU performance.

20.6.4 Conclusion

There is no obvious way to set the best weights for laten-
cy or bandwidth allocation since the behavior of each
block cannot be easily described with equations. Practi-
cal results obtained by running applications showed that
once the arbiter is weighted to meet latencies the re-
maining weight settings do not allow much improvement.

The best way to tune the weights is by experiment, run-
ning the application.

The only accurate computation is the maximum worst
case latency, which ensures that the hard real-time units
work properly. This computation gives an upper bound
and can be too pessimistic - but it still gives the right or-
der of magnitude. Refer to Table 20-5 for the recom-
mended allocation method.

Table 20-5. Recommended Allocation Method

Video In allocate required latency

Video Out allocate required latency

Audio In allocate required latency

Audio Out allocate required latency

SPDIF Out allocate required latency

ICP allocate bandwidth

PCI allocate bandwidth

VLD allocate bandwidth/latency

DVDD allocate bandwidth/latency
20-8 PRELIMINARY SPECIFICATION

Power Management Chapter 21

by Eino Jacobs and Hani Salloum

21.1 OVERVIEW

n this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 supports power management in two ways:

• In global power-down mode, most clocks on the chip
are shut down and the SDRAM main memory is
brought into low-power self-refresh mode. The power
of all on-chip peripheral blocks except for BTI (boot
and I2C blocks), Dcache, Icache, PCI, timers and VIC
blocks is shut off. Some peripherals can be selec-
tively prevented from participating in the global power
down.

• A block power down mechanism allows power down
of select peripheral blocks

21.2 ENTERING AND EXITING GLOBAL
POWER DOWN MODE

Power management is software controlled and is initiat-
ed by writing to the MMIO register POWER_DOWN. Dur-
ing execution of this MMIO operation, the system is pow-
ered down without completing the MMIO operation.
When the system wakes up from power down mode, the
MMIO operation is completed.

This means that during program execution on the
DSPCPU the moment of power down is defined exactly:
any instruction before the instruction that contains the
MMIO operation is completed before entering power
down mode. The instruction containing the MMIO opera-
tion and all subsequent instructions are completed after
wake up from power down mode.

Wake-up from power down mode is effected by receiving
an interrupt (any interrupt) that passes the acceptance
criteria of the interrupt controller.

There is also wake-up from power down if a peripheral
unit asserts a memory request signal on the highway.

During power down mode the whole chip is powered
down, except the PLLs, the interrupt logic, the timers, the
wake-up logic in the MMI, and any logic in the peripheral
units and PCI bus interface that is not participating in the
power down.

Note: Writing to the global POWER_DOWN register (at
offset 0x100108) has no effect on the contents of the
BLOCK_POWER_DOWN register (at offset 0x103428),
and vice versa.

21.3 EFFECT OF GLOBAL POWER DOWN
ON PERIPHERALS

The on-chip peripheral units participate in global power
down. This can be a programmable option for selected
peripherals. These selected peripherals have a program-
mable MMIO control bit, the SLEEPLESS bit, that can be
used to prevent it from participating in the global power
down mode. By default every peripheral unit must partic-
ipate in power down.

The following peripheral units have the SLEEPLESS bit:
Video In, Video Out, Audio In, Audio Out, SPDO, SSI,
and JTAG.

The following peripherals do not have the SLEEPLESS
bit and always participate in power down: VLD, boot/I2C
and ICP.

The following peripherals do not participate in global
power down, although they must power themselves
down when they are inactive: VIC, PCI.

When a peripheral does not participate in global power
down, it can still do regular main memory traffic. Every
time a peripheral unit asserts the highway request signal,
the MMI will initiate a wake-up sequence. The CPU must
execute software that initiates a new power down of the
system. This software can be the wait-loop of the RTOS.

Programmer’s note: Since the system is awakened each
time there is a transaction on the highway, it may be in-
teresting to make a software loop that does the activation
of the POWER_DOWN mode. Then the activation is con-
ditional and most of the time done using a global vari-
able, usually set by a handler. It then becomes mandato-
ry to be sure that there are no interruptible jumps
between the time the value of the global variable is
fetched and compared by the DSPCU and the time the
conditional write to the MMIO is performed (it is the clas-
sical semaphore or test and set issue). Thus it is recom-
mended that a separate function be used with the ad-
dress of the variable as a parameter. This function needs
then to be compiled specifically without interruptible
jumps.

The wake-up from power down mode takes approxi-
mately 20 SDRAM clock cycles. This amount of time is
added to the worst case latency for memory requests
compared to the situation when the system is not in pow-
er down mode.
PRELIMINARY SPECIFICATION 21-1

PNX1300/01/02/11 Data Book Philips Semiconductors
21.4 DETAILED SEQUENCE OF EVENTS
FOR GLOBAL POWER DOWN

The sequence of events to power down PNX1300 is as
follows:

• Issue a MMIO write to the POWER_DOWN register
• The main memory interface (MMI) waits till the com-

pletion of the current SDRAM transfer, if there is one
still busy.

• The MMI brings SDRAM into the self refresh state,
goes into a wait state, and asserts the global signal
global_power_down.

• All units that participate in the power down, respond
to the global_power_down signal by disabling their
clocks.

• Only the PLL, interrupt controller, timers, wake-up
logic, the PCI bus interface, and any peripherals that
have their SLEEPLESS bit control bit set continue to
be clocked. The SDRAM clock continues.

• An interrupt is detected by the interrupt controller or a
unit that didn’t participate in the power down requests
a memory transfer.

• The MMI de-asserts the global_power_down signal,
activating all blocks on the chip.

• The MMI recovers SDRAM from self-refresh.
• The MMI causes completion of the MMIO operation

that initiated the power down sequence.
• When software takes an interruptible branch opera-

tion, the interrupt that caused the wake-up will be
serviced (if the wake-up was initiated by an interrupt).

21.5 MMIO REGISTER POWER_DOWN

The register POWER_DOWN has an offset 0x100108 in
the MMIO aperture and has no content. Writing to this

register has the side-effect of powering down the chip.
Reading from this register returns an undefined value
and has no side-effect.

21.6 BLOCK POWER DOWN

This feature is new in PNX1300. It selectively shuts off a
particular block or a set of blocks based on software pro-
gramming.

This type of power down can be used in applications
where certain blocks will never participate in the opera-
tion of the chip. The objective of having this type of power
down is saving on power consumption.

Each peripheral unit which can participate in the global
power down can be selectively powered down.

This is done by setting a control bit in MMIO register
BLOCK_POWER_DOWN specifically for the block. The
BLOCK_POWER_DOWN register is located at MMIO
offset 0x103428. See Figure 21-1 below.

Setting a particular bit to ’1’ in this register has the effect
of shutting off the corresponding block. Writing ’0’ to this
bit, enables the power for the block again.

A block should not be powered down if it is active. Enable
bit should be set to ‘0’ before deciding to power down the
block.

Note: The unassigned bits of this register have to be writ-
ten to ‘0’ and read as ‘0’.

Note: Writing to the global POWER_DOWN register (at
offset 0x100108) has no effect on the contents of the
BLOCK_POWER_DOWN register (at offset 0x103428),
and vice versa.

Figure 21-1. Power down register BLOCK_POWER_DOWN

SPDO

DVDD

AO
AI
EVO

VI

31 03192327

SSI
VLD

1115

 BLOCK_POWER_DOWN (r/w)

MMIO_base
offset:

0x10 3428

ICP
21-2 PRELIMINARY SPECIFICATION

PCI-XIO External I/O Bus Chapter 22

By David Wyland

22.1 SUMMARY FUNCTIONALITY

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

The PNX1300 PCI-XIO bus allows glueless connection
to PCI peripherals, 8-bit microprocessor peripherals and
8-bit memory devices. All these device types can be in-
termixed in a single PNX1300 system.

The PCI-XIO bus provides the following features:

• All PCI 2.1 features (32-bit, 33 MHz)
• Simple, non-multiplexed, 8-bit data, 24-bit address

XIO bus with control signals for 68K and x86 style
devices

• Glueless connection to ROM, EPROM, flash
EEPROM, UARTs, SRAM, etc.

• Programmable internal or external bus clock source
• 0-7 programmable wait states for XIO devices
• Support for single byte read, single byte write, DMA

read or DMA write
• The 16 MB of XIO device space is visible as 16

MWords (64 MBytes) in the DSPCPU memory map

22.1.1 Description

The XIO logic that implements the protocol for 8-bit de-
vices appears as a on-chip PCI target device to the rest
of the PNX1300. It only responds when it is addressed by
the PNX1300 as initiator and never responds to external
PCI masters. When it is addressed by the PNX1300 as
an initiator, it responds to the PNX1300 PCI BIU as a nor-
mal slave device, activating PCI_DEVSEL#.

The XIO logic serves as a bridge between the PCI bus
and XIO devices such as ROMs, flash EPROMs and I/O
device chips. The PNX1300 addresses XIO devices on
the PCI-XIO bus in the same way as registers or memory
in any other PCI slave device. The XIO logic supplies the
PCI_TRDY# signals to the PCI bus and also supplies the
chip-select, read, write and data-strobe signals to XIO
devices attached to the PCI-XIO Bus. A conceptual only
block diagram of the PCI-XIO Bus is shown in
Figure 22-2. The real hardware uses the PCI_AD[0:30]
signals and PCI_C/BE#[0:3] signals for both PCI and
XIO devices, as shown in Figure 22-3.

The XIO logic is activated when the Enable bit in the
XIO_CTL register is asserted and whenever the
PNX1300 (as initiator) addresses the PCI-XIO bus ad-
dress range, as defined by a 6-bit address field in the XIO

Bus Control Register. This 6-bit field defines the 6 most
significant bits of the XIO Bus address space. When the
PNX1300 sends out an address as an initiator, the upper
6 bits of the address are compared with this field. If they
match, the PCI-XIO bus logic is activated. The
PCI_INTB# output is asserted to indicate that the PCI-
XIO Bus is active. It becomes active at PCI data phase
time. When XIO is enabled, the PCI_INTB# signal be-
comes dedicated as XIO bus chip-select, and turns from
an open-drain output into a normal logic output.
PCI_INTB# serves as a global chip select for all XIO Bus
chips. When XIO is disabled, PCI_INTB# is available for
PCI-specific use or as a general purpose software I/O pin
with open-drain behavior as in TM-1000.

The Address field bits in the XIO Bus Control register
serve as a base address register in PCI terms. The XIO
Bus Control register is not a PCI configuration register. It
does not need to be a PCI configuration register because
the PCI-XIO Bus can only be addressed by the
PNX1300. It will not respond to requests by any other ex-
ternal PCI device.

When the XIO-PCI Bus controller logic is activated, it
generates PCI_DEVSEL# as a response to the PCI bus.
When PCI_IRDY# has been received from the BIU, it as-
serts an external PCI_INTB# signal as the global chip se-
lect. It also reconfigures the PCI address/data pins for 8-
bit byte transfers. When the PCI-XIO Bus is active, the
lower 24 bits of the external 32-bit PCI bus are used to
output a 24-bit address for all transfers, read or write.
The upper 8 bits of the external PCI bus are unchanged
and transfer data normally. This is shown in Figure 22-3.

The 24-bit address on the XIO Bus pins is the word ad-
dress for the PCI transfer, which is the lower 26 bits of
the PCI transfer address with the two least significant bits
ignored. One word is transferred to or from the PCI bus
for each byte read or written on the XIO bus. In writes to
the XIO bus, a 32-bit word is transferred from the PCI
BIU to the XIO Bus controller, but the lower 24 bits and
the PCI byte enables are ignored. In reads from the PCI
bus, a 32-bit word is transferred from the XIO Bus con-
troller to the PCI BIU with the data in the upper 8 bits and
the 24-bit address in the lower 24 bits. Note that the 24-
bit address returned in a read is the lower 26 bits of the
PCI transfer address with the two least significant bits
truncated. For example, a PCI transfer address of 44
hexadecimal would return a value of 11 hexadecimal as
the lower 24 bits of the 32-bit data in a read. The 24-bit
XIO Bus address is generated by an address counter in
the XIO Bus controller. This counter is loaded with the
PCI word address at PCI frame time at the start of the
PRELIMINARY SPECIFICATION 22-1

PNX1300/01/02/11 Data Book Philips Semiconductors
PCI transfer and is incremented for each PCI word trans-
ferred.

The XIO Bus does not generate parity during XIO Bus
write transfers or check parity during XIO Bus read trans-
fers. This allows the XIO Bus to interface to standard 8-
bit devices without having to add parity-generation and
check logic. While the XIO Bus is active, the XIO Bus log-
ic inhibits parity checking and drives the PCI Parity and
Parity Error pins so that they do not float.

Word transfer is used to transfer the bytes to and from
the PCI bus for hardware simplicity. The primary intend-
ed use of the PCI-XIO Bus is for slow devices, ROMs,
flash EPROMs and I/O. Because the PCI-XIO bus is so

much slower than the PNX1300, there is time available
for the PNX1300 to pack and unpack the words. In the
case of ROMs and flash EPROMs, the data is typically
compressed, requiring the PNX1300 CPU to both un-
pack and decompress the data.

The PCI-XIO Bus Controller logic reconfigures the byte
enables as control signals for the attached XIO Bus chips
during XIO Bus transfers. It also drives the PCI_TRDY#
signal to the PCI Bus for each transfer. The PCI Bus byte
enables are reconfigured to generate XIO Bus timing sig-
nals: Read (IORD), Write (IOWR) and Data Strobe (DS).
These signals allow ROM, flash EPROM, 68K and x86
devices to be gluelessly interfaced to the XIO Bus. For a
single device, the PCI_INTB# line is used as the global

Audio In

Audio Out

DSPCPU

400 MIPS

2.5 GOPS

I$

D$

I2C Interface

Image
Co Processor

PNX1300
MMI

PCI and External I/O (PCI-XIO) Bus Interface

VLD Assist

Video Out

Digital

DMSD
or Raw
Video

Serial
Digital
Audio

JTAG

XIO Bus
PCI - XIO Bus AD[31:0]

SDRAM: 32-bit data

SDRAM
Highway

Synchronous

Video In

Glueless
Flash
EPROM I/F

XIO
I/O Device

PCI
I/O Device

Clock

Camera

I2C Bus

CCIR 601
Digital
Video Out

V.34 Modem

Controls
PCI Bus
Controls

Serial I/F

Figure 22-1. Partial PNX1300 chip block diagram
22-2 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI-XIO External I/O Bus
chip enable. If more than one device is to be added, an
external decoder, such as a 74FCT138, can be used to
decode the upper bits of the 24-bit transfer address, with
the PCI_INTB# line used as a global chip enable to the
decoder.

The PCI-XIO Bus controller has a wait state generator to
provide timing for slow devices. The wait state generator
allows the addition of up to 7 wait states for slow chip ac-
cess and write times. The wait state generator logic gen-
erates the PCI_TRDY# signal to the PCI bus.

The XIO Bus controller contains a clock generator for
standalone systems. The PCI-XIO Bus uses the PCI
clock. This clock is normally supplied by a PCI Bus cen-
tral resource outside the PNX1300 chip. In standalone or
low-cost systems, the internal clock generator can be
used. The internal clock generator divides the PNX1300
highway clock by a 5-bit number in a prescaler. This al-
lows setting bus clocks from 4 MHz to 66 MHz in a 133
MHz system. The internal clock generator programming
is described in Section 22.5, “XIO_CTL MMIO Register.”

22.2 BLOCK DIAGRAM

Figure 22-2 shows a conceptual block diagram of the
PCI-XIO Bus as a slave device on the PCI Bus. The XIO
Bus Controller generates an XIO Bus, which is an 8-bit
bus with a 24-bit address. Devices attached to the XIO
Bus appear as memory locations in the 16 MB address
space of the XIO Bus.

Figure 22-3 shows an implementation block diagram of
the PCI_XIO Bus. To conserve pins, the XIO Bus Con-
troller uses the PCI I/O pins as XIO Bus pins during XIO
Bus data transfers. It reconfigures the 32 PCI address/
data pins as 8 XIO Bus data pins and 24 XIO Bus ad-
dress pins, and it reconfigures the byte enable pins as
XIO Bus timing signals. By changing the functions of the
pins during the transfer, 36 pins are saved which would
otherwise be required to drive the XIO Bus devices. By
reconfiguring the PCI pins only during the data phase of
the XIO Bus transfers, the PCI-XIO bus retains its PCI
Bus compatibility.

Figure 22-4 shows a more detailed block diagram of the
PCI-XIO Bus controller.

P
N

X
13

00
 S

D
R

A
M

 D
at

a
H

ig
h

w
ay

PCI
Bus

 Interface
Unit (BIU)

PCI Bus

XIO Bus
Controller
PCI Device

PCI
Device

PCI
Device

PCI
Host

ROMx86
Device

PNX1300

8-bit data + 24-bit addressesXIO Bus

Figure 22-2. PCI-XIO bus device CONCEPTUAL block diagram

for address & data, these use the same pins/wires
PRELIMINARY SPECIFICATION 22-3

PNX1300/01/02/11 Data Book Philips Semiconductors
P
N

X
13

00
 S

D
R

A
M

 D
at

a
H

ig
h

w
ay

PCI
Bus
 Interface
Unit (BIU)

PCI Bus

XIO Bus
Controller
PCI Device

PCI
Device

PCI
Device

PCI
Host

ROM x86
Device
etc.

PNX1300

M
ux

PCI_INTB#

PCI_INTB# = XIO Bus Active As Target

PCI_AD[23:0]

PCI_AD[31:24] PCI_AD[31:24]

PCI_AD[31:0] PCI_AD[31:0] PCI_AD[31:0]

XIO Bus

Figure 22-3. PCI-XIO Bus device implementation block diagram

P
N

X
13

00
 S

D
R

A
M

 D
at

a
H

ig
h

w
ay

XIO Config Reg Clock

Bus Timing

PCI
Bus
 Interface

PCI_AD[31:24]

PCI_C/BE0#: IORD#

PCI_CLK

PCI-XIO Bus Controller

Unit (BIU)

=

M
ux

Data Out [31:24]

Data In [31:0]

Data Out [23:0]

Address [23:0]

PCI_AD[23:00]

Address [31:24]

PCI_INTA#, INTC#, INTD#

PCI_C/BE1#: IOWR#C/BE

TRDY

XIO Controls
+ Wait States

PCI_INTB# = Chip Enable

PCI Controls: Frame, etc.

PCI_TRDY#

PCI_DEVSEL#

O
R

O
R

DEVSEL

PCI_REQ#
PCI_GNT#

Tie REQ to GNT for stand alone (no host) case

PNX1300 Initiator

PCI_C/BE2#: DS#
PCI_C/BE3#

Figure 22-4. PCI-XIO Bus interface controller block diagram

PCI-XIO Bus
22-4 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI-XIO External I/O Bus
22.3 DATA FORMATS

The data transfer formats for the PCI-XIO bus are shown
in Figure 22-5. The 8-bit data field is the data transferred
to or from the PCI-XIO Bus. The read address is the 24-

bit address on the PCI-XIO Bus address lines when the
read transfer takes place.

22.4 INTERFACE

22.4.1 PCI-XIO Bus Interface Design

The PCI-XIO Bus can accommodate a variety of different
devices and bus protocols. The following are examples
of devices interfaced to the PCI-XIO Bus.

Data Read Address

UnusedData

Read: XIO Bus to PCI

Write: PCI to XIO Bus

31 24 23 0

31 24 23 0

Figure 22-5. PCI-XIO Bus data formats

Table 22-1. PCI-XIO Bus signal definitions

PNX1300 PCI Signal Pins I/O PCI Function XIO Function

PCI_INTB# 1 O PCI-XIO Bus Enable = XIO Bus Active As Target Device

PCI_AD[23:0] 24 I/O PCI Address/Data Address bus: 16 MB

PCI_AD[31:24] 8 I/O Data bus: 8 bits

PCI_PAR 1 O Even Parity for AD & C/BE

PCI_C/BE0# 1 Command/Byte Enables
On XIO read, BE[3:0] = 0110b’4
On XIO write, BE[3:0] = 0111b’4

IORD# = Read Enable

PCI_C/BE1# 1 IOWR# = Write Enable

PCI_C/BE2# 1 DS# = Data Strobe

PCI_C/BE3# 1 unused

PCI_CLK 1 I/O 33 MHz PCI Clock: can optionally be generated by PNX1300 on board osc

PCI_FRAME# 1 I/O PCI Address/Command Strobe + Transfer In Progress

PCI_DEVSEL# 1 I/O Device Select Valid Asserted by PNX1300 = XIO Active

PCI_IRDY# 1 I/O Initiator Ready = Transfer In Progress

PCI_TRDY# 1 I/O Target Ready Asserted by PNX1300 = XIO Transfer Timing

PCI_STOP# 1 I/O Target Requests Stop of Transaction

PCI_IDSEL# 1 I Chip Select for PCI Config Writes

PCI_REQ# 1 O PNX1300 Requesting PCI Bus

PCI_GNT# 1 I PNX1300 Is Granted PCI Bus

PCI_PERR# 1 I Parity Error to PNX1300

PCI_SERR 1 O System Error from PNX1300

PCI_INTA# 1 I/O General Purpose I/O

PCI_INTB# 1 I/O General Purpose I/O XIO Bus Active = Global Chip Select

PCI_INTC# 1 I/O General Purpose I/O

PCI_INTD# 1 I/O General Purpose I/O
PRELIMINARY SPECIFICATION 22-5

PNX1300/01/02/11 Data Book Philips Semiconductors
22.4.1.1 Flash EEPROM

Figure 22-6 shows an 8-bit flash EEPROM interfaced to
the PCI-XIO Bus. Examples of these devices are the Mi-
cron MT28F200C1 and the AMD 29LV400.

22.4.1.2 68K Bus I/O device

Figure 22-7 shows a 68K bus I/O device interfaced to the
PCI-XIO Bus. Example devices are the Motorola
MC68HC681 DUART and the MC68HC901 Multi-Func-
tion Peripheral.

22.4.1.3 x86/ISA Bus I/O device

Figure 22-8 shows an x86 or ISA bus I/O device inter-
faced to the PCI-XIO Bus. An example device is the Intel
82091 Advanced Integrated Peripheral (AIP).

22.4.1.4 Multiple Flash EEPROM

Figure 22-9 shows two 8-bit flash EEPROMs interfaced
to the PCI-XIO Bus. A 74FCT138 logic chip decodes up-
per bits PCI_AD[19-17] of the XIO bus address to gener-
ate the chip selects for the two EEPROMs. These bits
decode the address space into blocks of 128 KB. The ad-
dress range of each enable is shown on the enable lines.
Six spare chip selects are available for attaching up to six
more EEPROMs or to attach other devices. The
74FCT138 provides both decode of the address bits and
the AND function for the PCI_INTB# global chip enable

AddressPCI_AD[16:0]

Write EnablePCI_C/BE1#: IOWR#

Output EnablePCI_C/BE0#: IORD#

Chip SelectPCI_INTB#

Data PCI_AD[31:24]

128Kx8 EEPROM

Figure 22-6. 8-bit Flash EEPROM Interface

AddressPCI_AD[23:0]

R/W#PCI_C/BE1#: IOWR#

DS#PCI_C/BE2: DS#

Chip SelectPCI_INTB#

Data PCI_AD[31:24]

68K Bus Device

CLKPCI_CLK

Figure 22-7. 8-bit 68K Bus Device Interface

AddressPCI_AD[23:0]

I/O Read EnablePCI_C/BE0#: IORD#

I/O Write EnablePCI_C/BE1#: IOWR#

Chip SelectPCI_INTB#

Data PCI_AD[31:24]

x86 or ISA Bus Device

BALEPCI_CLK

Figure 22-8. 8-bit x86 / ISA Bus Device interface
22-6 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI-XIO External I/O Bus
signal so that only one EEPROM chip enable signal is
active at global chip enable time.

22.5 XIO_CTL MMIO REGISTER

The PCI-XIO Bus Controller has one programmer visible
MMIO register: XIO_CTL. Its format is shown in
Table 22-2. To ensure compatibility with future devices,
any undefined MMIO bits should be ignored when read,
and written as ‘0’s.

22.5.1 PCI_CLK Bus Clock Frequency

PCI_CLK, the clock for the PCI and PCI-XIO bus can be
supplied externally or internally. This is determined at

boot time, by the ‘enable internal PCI_CLK generator’ bit,
bit 6 of byte 9 in the boot EEPROM. Refer to Section 13.2
on page 13-2. If this bit = ‘0’, PCI_CLK acts compatible
with TM-1000 and normal PCI operation, i.e. PCI_CLK is
an input pin that takes the PCI clock from the external
world. If this bit = ‘1’, an on-chip clock divider in the XIO
logic becomes the source of PCI_CLK, and the PCI_CLK
pin is configured as an output. In the latter case, the
PCI_CLK frequency can be programmed to a divider of
the PNX1300 highway clock by setting the XIO_CTL reg-
ister ‘Clock Frequency’ divider value.

Table 22-2. XIO_CTL Register Fields: MMIO Address
0x10 3060

Field Bits Function Reset Value

Address 31:26 XIO address space undefined

25:11 unused 0

Wait States 10:8 Wait states 0

Enable 7 Enable XIO Bus opera-
tion

0 = disabled

6:5 unused

Clock Fre-
quency

4:0 Clock divider 0x1f

AddressPCI_AD[16:0]

Write EnablePCI_C/BE1#: IOWR#

Output EnablePCI_C/BE0#: IORD#

Chip Select

PCI_INTB#

Data

PCI_AD[31:24]

128Kx8 EEPROM

Address

Write Enable

Output Enable

Chip Select

Data

74FCT138

A[2-0] O0

O1

O2

O3

O4

O5

O6

O7
E0

E1

E2+3

PCI_AD[19-17] 0-128K

128-256K

256-384K

384-512K

512-640K

640-768K

768-896K

896-1024K

128Kx8 EEPROM

Figure 22-9. Multiple 8-bit Flash EEPROM Interface

Table 22-3. PCI_CLK frequencies for 133.0 MHz
PNX1300 highway clock

Clock
Frequency
(use odd
values)

PNX1300
Clocks

PCI-XIO Clock
Period, ns

Frequency,
MHz

0 illegal illegal illegal

1 2 15 66.5

2 3 22.5 44.33

3 4 30 33.25

...

30 31 233 4.29

31 32 241 4.16
PRELIMINARY SPECIFICATION 22-7

PNX1300/01/02/11 Data Book Philips Semiconductors
A table of PCI-XIO Bus Clock frequencies versus Clock
field values is shown in Table 22-3. Note that the
PCI_CLK operating frequency should be set to observe
the frequency limits given in the AC/DC timing character-
ization data for PNX1300. Odd values of ‘Clock Frequen-
cy’ are recommended, resulting in an even divider, which
generates a 50% duty cycle PCI_CLK.

22.5.2 Wait State Generator

The XIO Bus controller has an automatic wait state gen-
erator to allow for read and write cycle times of devices
on the XIO bus.

22.6 PCI-XIO BUS TIMING

The timing for the PCI-XIO bus is shown below: Note that
the ‘fat’ lines indicate active drive by PNX1300. Thin lines
indicate areas where the PNX1300 is not actively driving.
(In these areas, pull-up resistors retain the signal high for
control signals, PCI_AD lines are left floating.)
Figure 22-10 shows the timing for a single byte read
transfer. Figure 22-11 shows the timing for a single byte
read transfer with wait states. Figure 22-14 shows the
timing for a DMA burst read transfer of 2 bytes, and
Figure 22-16 shows the timing for a DMA burst write
transfer of 2 bytes. The DMA burst transfers are shown
at maximum rate, with zero wait states. DMA burst trans-
fers with wait states insert wait states between the trans-
fers. In the read case, the IORD# enable and DS# are ex-
tended by the wait states. In the write case, the IOWR#
enable and DS# are delayed by the wait states.

Table 22-4. Wait state generator codes

Code Wait States

0 0

1 1

2 2

... ...

7 7

PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Frame Time
Bus Turnaround

XIO Transfer

Figure 22-10. PCI-XIO Bus timing: single byte read, 0 wait states

& Address Setup

PCI_AD[23:0]: ADDR XIO AddrsPCI Address

PCI_AD[31:24]: DATA Read DataPCI Address

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Command

PCI_C/BE1#/IOWR# PCI Command

PCI_C/BE0#/IORD# PCI Command

Read Sample Point

Bus Idle
22-8 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI-XIO External I/O Bus
PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Frame Time
Bus Turnaround

Wait (k times)

Figure 22-11. PCI-XIO Bus timing: single byte read, 1 or more wait states

& Address Setup

PCI_AD[23:0]: ADDR XIO AddrsPCI Address

PCI_AD[31:24]: DATA Read DataPCI Address

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Command

PCI_C/BE1#/IOWR# PCI Command

PCI_C/BE0#/IORD# PCI Command

Read Sample Point

XIO transfer

PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Frame Time Write Cycle Data hold time

Figure 22-12. PCI-XIO Bus timing: single byte write, 0 wait states

PCI_AD[23:0]: ADDR XIO AddrsPCI Address

PCI_AD[31:24]: DATA PCI Address

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Command

PCI_C/BE1#/IOWR# PCI Command

PCI_C/BE0#/IORD# PCI Command

Bus Idle

XIO Data
PRELIMINARY SPECIFICATION 22-9

PNX1300/01/02/11 Data Book Philips Semiconductors
PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Frame Time

Figure 22-13. PCI-XIO Bus timing: single byte write, 1 or more wait states

Write cycle

PCI_AD[23:0]: ADDR XIO AddrsPCI Address

PCI_AD[31:24]: DATA PCI Address

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Command

PCI_C/BE1#/IOWR# PCI Command

PCI_C/BE0#/IORD# PCI Command

Data Hold time

XIO Data

Wait (k) Bus Idle

PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Frame Time
Bus Turnaround

XIO Data 1

Figure 22-14. PCI-XIO Bus timing: DMA burst read, 2 bytes, 0 wait states

& Address Setup

PCI_AD[23:0]: ADDR XIO Addrs 1PCI Address

PCI_AD[31:24]: DATA Read Data 2PCI Address

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Command

PCI_C/BE1#/IOWR# PCI Command

PCI_C/BE0#/IORD# PCI Command

Read Sample Points

XIO Data 2 Bus Idle

XIO Addrs 2

Read Data 1
22-10 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI-XIO External I/O Bus
PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Figure 22-15. PCI-XIO Bus timing: DMA burst read, 2 bytes, 1 or more wait states

PCI_AD[23:0]: ADDR XIO Addrs 1PCI Addr

PCI_AD[31:24]: DATA PCI Addr

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Com

PCI_C/BE1#/IOWR# PCI Com

PCI_C/BE0#/IORD# PCI Com

Read Sample Points

Read Data 1

wait(k) data 1 wait(k) data 2

XIO Addrs 2

Read Data 2

Frame Turn

PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Figure 22-16. PCI-XIO Bus timing: DMA burst write, 2 bytes, 1 or more wait states

PCI_AD[23:0]: ADDR PCI Addr

PCI_AD[31:24]: DATA PCI Addr

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Com

PCI_C/BE1#/IOWR# PCI Com

PCI_C/BE0#/IORD# PCI Com

wait(k) hold data2 wait(k)

XIO Addrs 1

Frame data1

XIO Addrs 2

hold idle

XIO Data1 XIO Data 2
PRELIMINARY SPECIFICATION 22-11

PNX1300/01/02/11 Data Book Philips Semiconductors
22.7 PCI-XIO BUS CONTROLLER
OPERATION AND PROGRAMMING

The PCI-XIO Bus is a PCI target device. All valid PCI
transfers with PNX1300 as the initiator are allowed, in-
cluding single word and DMA transfers. When data is
read from the PCI-XIO Bus, it reads as a 32-bit word with
the 8 bits of data as the most significant byte and the 24-
bit XIO Bus transfer address as the least significant
bytes. When data is written to the PCI-XIO Bus, it is writ-
ten as a word, but only the most significant byte of the
data is transferred to the bus. The lower 24 bits are ig-
nored as they are replaced by the lower 24 bits of the
transfer address before being placed on the bus.

Before the PCI-XIO Bus can be used, the PCI-XIO Bus
Control Register must be set up. This register must be
loaded with the base address for the PCI-XIO bus and
the control fields for clock frequency, wait states per
transfer and PCI-XIO Bus enable.

To read a single byte to a PCI-XIO Bus device, first de-
fine the 24-bit address for the device. This might be the
address in an EPROM for the desired byte. Multiply this
device address by four to convert it to a word address
and add the XIO Bus base address. The combined ad-
dress is the PCI transfer address. Use this address as
the transfer address for a single word DSPCPU load.
Table 22-5 shows examples of this address conversion.
At the completion of the load, the data received will con-
sist of 8 bits of data and the 24-bit device address. To
write a byte, use the same transfer address and write a
word to this address with the desired data as the most
significant byte of the word written.

To transfer data between the XIO-PCI bus and the
SDRAM using the PCI DMA capability, set the

SRC_ADR or the DEST_ADR register to the PCI-XIO
Bus transfer address, depending on the direction of the
transfer. The PCI-XIO Bus transfer address is four times
the starting address as seen on the PCI-XIO Bus ad-
dress pins plus the PCI-XIO Bus controller base address.
This is the starting address for the PCI-XIO Bus transfer.
Set the other address, destination or source, to the de-
sired starting address in SDRAM. Set the
PCI_DMA_CTL register for the desired direction and set
the transfer count to the four times number of PCI-XIO
Bus bytes to be transferred. The transfer count is four
times the PCI-XIO Bus bytes to be transferred because
the PCI-XIO Bus transfers one word to or from the PCI
bus for each byte transferred to or from devices on the
PCI-XIO Bus.

Word transfer is used to transfer the bytes to and from
the PCI bus for hardware simplicity. Additional hardware
could be added to pack and unpack bytes, but this is an
unnecessary complication given the speed of the PCI-
XIO Bus relative to the speed of the PNX1300 bus and
CPU. The primary intended use of the PCI-XIO Bus is for
ROMs, flash EPROMs and I/O devices. Because the
PCI-XIO bus is so much slower than the PNX1300, there

PCI_CLK

PCI_FRAME#

PCI_IRDY#

PCI_TRDY#

PCI_DEVSEL#

Figure 22-17. PCI-XIO Bus timing: DMA burst write, 2 bytes, 0 wait states

PCI_AD[23:0]: ADDR PCI Addr

PCI_AD[31:24]: DATA PCI Addr

PCI_INTB#/CE#

PCI_C/BE2#/DS# PCI Com

PCI_C/BE1#/IOWR# PCI Com

PCI_C/BE0#/IORD# PCI Com

hold data 2 hold bus idle

XIO Addrs 1

Frame data1

XIO Addrs 2

XIO Data 1 XIO Data 2

Table 22-5. PCI to XIO Bus address conversion
examples

XIO Bus
Address
in Hex

PCI Word
Address
in Hex

XIO-PCI
Base

Address
in Hex

PCI Transfer
Address
in Hex

11 44 5800 0000 5800 0044

0123 048C 5800 0000 5800 048C

11 0012 44 0048 5800 0000 5844 0048
22-12 PRELIMINARY SPECIFICATION

Philips Semiconductors PCI-XIO External I/O Bus
is time available for the PNX1300 to pack and unpack the
words. At three PCI-XIO bus wait states, at least 120
nanoseconds are required for each byte transferred. This
corresponds to 12 CPU instructions at 100 MHz. The

CPU may need to process each byte of data anyway. In
the case of ROMs and flash EPROMs, the data is typical-
ly compressed, requiring the PNX1300 CPU to both un-
pack and decompress the data.
PRELIMINARY SPECIFICATION 22-13

PNX1300/01/02/11 Data Book Philips Semiconductors
22-14 PRELIMINARY SPECIFICATION

PNX1300/01/02/11 DSPCPU Operations Appendix A

by Gert Slavenburg, Marcel Janssens

A.1 ALPHABETIC OPERATION LIST

The following table lists the complete operation set of PNX1300’s DSPCPU. Note that this is not an instruction list; a
DSPCPU instruction contains from one to five of these operations.
A alloc4

allocd5
allocr...........................6
allocx7
asl...............................8
asli9
asr10
asri11

B bitand........................12
bitandinv13
bitinv14
bitor15
bitxor.........................16
borrow17

C carry18
curcycles19
cycles20

D dcb............................21
dinvalid22
dspiabs.....................23
dspiadd.....................24
dspidualabs25
dspidualadd..............26
dspidualmul27
dspidualsub28
dspimul29
dspisub30
dspuadd....................31
dspumul....................32
dspuquadaddui.........33
dspusub....................34
dualasr......................35
dualiclipi....................36
dualuclipi37

F fabsval38
fabsvalflags...............39
fadd40
faddflags...................41
fdiv............................42
fdivflags43
feql............................44
feqlflags45
fgeq46
fgeqflags...................47
fgtr48
fgtrflags.....................49
fleq............................50
fleqflags51
fles............................52
flesflags53
fmul...........................54
fmulflags55

fneq56
fneqflags...................57
fsign..........................58
fsignflags59
fsqrt60
fsqrtflags...................61
fsub...........................62
fsubflags...................63
funshift1....................64
funshift2....................65
funshift3....................66

H h_dspiabs67
h_dspidualabs68
h_iabs.......................69
h_st16d.....................70
h_st32d.....................71
h_st8d.......................72
hicycles.....................73

I iabs...........................74
iadd...........................75
iaddi..........................76
iavgonep...................77
ibytesel78
iclipi79
iclr.............................80
ident..........................81
ieql............................82
ieqli83
ifir16..........................84
ifir8ii85
ifir8ui.........................86
ifixieee87
ifixieeeflags...............88
ifixrz89
ifixrzflags90
iflip91
ifloat..........................92
ifloatflags93
ifloatrz.......................94
ifloatrzflags95
igeq...........................96
igeqi..........................97
igtr98
igtri99
iimm........................100
ijmpf........................101
ijmpi102
ijmpt........................103
ild16........................104
ild16d......................105
ild16r.......................106
ild16x107

ild8..........................108
ild8d........................109
ild8r.........................110
ileq..........................111
ileqi112
iles113
ilesi114
imax........................115
imin.........................116
imul.........................117
imulm......................118
ineg.........................119
ineq.........................120
ineqi........................121
inonzero..................122
isub.........................123
isubi124
izero........................125

J jmpf.........................126
jmpi.........................127
jmpt.........................128

L ld32.........................129
ld32d.......................130
ld32r131
ld32x.......................132
lsl133
lsli134
lsr............................135
lsri...........................136

M mergedual16lsb......137
mergelsb.................138
mergemsb139

N nop140
P pack16lsb141

pack16msb142
packbytes143
pref144
pref16x145
pref32x146
prefd147
prefr148

Q quadavg..................149
quadumax...............150
quadumin................151
quadumulmsb.........152

R rdstatus...................153
rdtag154
readdpc155
readpcsw156
readspc...................157
rol158
roli...........................159

S sex16......................160
sex8........................161
st16.........................162
st16d.......................163
st32.........................164
st32d.......................165
st8...........................166
st8d.........................167

U ubytesel168
uclipi169
uclipu170
ueql.........................171
ueqli........................172
ufir16173
ufir8uu174
ufixieee...................175
ufixieeeflags176
ufixrz.......................177
ufixrzflags178
ufloat.......................179
ufloatflags...............180
ufloatrz....................181
ufloatrzflags............182
ugeq183
ugeqi.......................184
ugtr185
ugtri186
uimm.......................187
uld16.......................188
uld16d.....................189
uld16r190
uld16x.....................191
uld8.........................192
uld8d.......................193
uld8r194
uleq.........................195
uleqi........................196
ules.........................197
ulesi198
ume8ii.....................199
ume8uu200
umin........................201
umul........................202
umulm.....................203
uneq204
uneqi.......................205

W writedpc..................206
writepcsw................207
writespc208

Z zex16......................209
zex8........................210
PRELIMINARY SPECIFICATION A-1

PNX1300/01/02/11 Data Book Philips Semiconductors
A.2 OPERATION LIST BY FUNCTION

Load/Store Operations
alloc4
allocd5
allocr...........................6
allocx7
h_st16d.....................70
h_st32d.....................71
h_st8d.......................72
ild16........................104
ild16d......................105
ild16r.......................106
ild16x......................107
ild8..........................108
ild8d........................109
ild8r.........................110
ld32.........................129
ld32d.......................130
ld32r131
ld32x.......................132
pref144
pref16x145
pref32x146
prefd147
prefr148
st16.........................162
st16d.......................163
st32.........................164
st32d.......................165
st8...........................166
st8d.........................167
uld16.......................188
uld16d.....................189
uld16r190
uld16x.....................191
uld8.........................192
uld8d.......................193
uld8r194

Shift Operations
asl...............................8
asli9
asr10
asri11
funshift1....................64
funshift2....................65
funshift3....................66
lsl133
lsli134
lsr............................135
lsri...........................136
rol158
roli...........................159

Logical Operations
bitand........................12
bitandinv13
bitinv14
bitor15
bitxor.........................16

DSP Operations
dspiabs23
dspiadd.....................24
dspidualabs25
dspidualadd26
dspidualmul27
dspidualsub28
dspimul29
dspisub30
dspuadd....................31
dspumul....................32
dspuquadaddui.........33
dspusub....................34
dualasr......................35
dualiclipi....................36
dualuclipi37
h_dspiabs67
h_dspidualabs68
iclipi79
ifir16..........................84
ifir8ii85
ifir8ui.........................86
iflip91
imax........................115
imin.........................116
quadavg..................149
quadumax...............150
quadumin................151
quadumulmsb.........152
uclipi169
uclipu170
ufir16173
ufir8uu174
ume8ii.....................199
ume8uu200
umin........................201

Floating-Point Arithmetic
fabsval38
fabsvalflags...............39
fadd40
faddflags...................41
fdiv............................42
fdivflags43
fmul...........................54
fmulflags55
fsign..........................58
fsignflags59
fsqrt60
fsqrtflags...................61
fsub...........................62
fsubflags...................63

Floating-Point Conversion
ifixieee87
ifixieeeflags...............88
ifixrz89
ifixrzflags90
ifloat..........................92
ifloatflags93

ifloatrz.......................94
ifloatrzflags95
ufixieee175
ufixieeeflags176
ufixrz.......................177
ufixrzflags178
ufloat.......................179
ufloatflags180
ufloatrz....................181
ufloatrzflags182

Floating-Point Relationals
feql............................44
feqlflags45
fgeq46
fgeqflags...................47
fgtr48
fgtrflags.....................49
fleq............................50
fleqflags51
fles............................52
flesflags53
fneq56
fneqflags...................57

Integer Arithmetic
borrow17
carry18
h_iabs.......................69
iabs...........................74
iadd...........................75
iaddi..........................76
iavgonep...................77
ident..........................81
imul.........................117
imulm......................118
ineg.........................119
inonzero..................122
isub.........................123
isubi124
izero........................125
umul........................202
umulm.....................203

Immediate Operations
iimm........................100
uimm.......................187

Sign/Zero Extend Ops
sex16......................160
sex8........................161
zex16......................209
zex8........................210

Integer Relationals
ieql82
ieqli83
igeq...........................96
igeqi..........................97
igtr98

igtri99
ileq..........................111
ileqi112
iles..........................113
ilesi114
ineq.........................120
ineqi........................121
ueql.........................171
ueqli........................172
ugeq183
ugeqi.......................184
ugtr185
ugtri186
uleq.........................195
uleqi........................196
ules.........................197
ulesi198
uneq204
uneqi.......................205

Control-Flow Operations
ijmpf........................101
ijmpi102
ijmpt........................103
jmpf.........................126
jmpi.........................127
jmpt.........................128

Special-Register Ops
cycles20
curcycles19
hicycles.....................73
nop140
readdpc155
readpcsw156
readspc...................157
writedpc..................206
writepcsw................207
writespc208

Cache Operations
dcb............................21
dinvalid22
iclr.............................80
rdstatus...................153
rdtag154

Pack/Merge/Select Ops
ibytesel78
mergedual16lsb......137
mergelsb.................138
mergemsb139
pack16lsb141
pack16msb.............142
packbytes143
ubytesel168
A-2 PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors
A-3 PRELIMINARY SPECIFICATION

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-4

Allocate a cache block
pseudo-op for allocd(0)

SYNTAX
[IF rguard] alloc(d) rsrc1

FUNCTION
if rguard then {

cache_block_mask = ~(cache_block_size -1)]
allocate adata cache block with [(rsrc1 + 0) & cache_block_mask] address

}

ATTRIBUTES
Function unit dmemspec
Operation code 213
Number of operands 1
Modifier -
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The alloc operation is a pseudo operation transformed by the scheduler into an allocd(0) with the same arguments.

(Note: pseudo operations cannot be used in assembly files.)
The alloc operation allocate a cache block with the address computed from [(rsrc1 + 0) & cache_block_mask] and sets

the status of this cache block as valid. No data is fetched from main memory for this operation. The allocated cache
block data is undefined after this operation. It is the responsibility of the programmer to update the allocated cache
block by store operations.

Refer to the ‘cache architecture’ section for details on the cache block size.
The alloc operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the execution

of the alloc operation. If the LSB of rguard is 1, alloc operation is executed; otherwise, it is not executed.

EXAMPLES

Initial Values Operation Result

r10 = 0xabcd,
cache_block_size = 0x40

alloc r10 Allocates a cache block for the address space from
0xabc0 to 0x0xabff without fetching the data from
main memory; The data in this address space is
undefined.

r10 = 0xabcd, r11 = 0,
cache_block_size = 0x40

IF r11 alloc r10 since guard is false, alloc operation is not executed

r10 = 0xac0f, r11 = 1,
cache_block_size = 0x40

IF r11 alloc r10 Allocates a cache block for the address space from
0xac00 to 0xac3f without fetching the data from main
memory; the data in this address space is undefined.

SEE ALSO
allocd allocr allocx

alloc

PNX1300/01/02/11 Data Book Philips Semiconductors

A-5 PRELIMINARY SPECIFICATION

allocd Allocate a cache block with displacement

SYNTAX
[IF rguard] allocd(d) rsrc1

FUNCTION
if rguard then {

 cache_block_mask = ~(cache_block_size -1)]
 allocate adata cache block with [(rsrc1 + d) & cache_block_mask] address

}

ATTRIBUTES
Function unit dmemspec
Operation code 213
Number of operands 1
Modifier 7 bits
Modifier range -255..252 by 4
Latency -
Issue slots 5

DESCRIPTION
The allocd operation allocate a cache block with the address computed from [(rsrc1 + d) & cache_block_mask] and

sets the status of this cache block as valid. No data is fetched from main memory for this operation. The allocated
cache block data is undefined after this operation. It is the responsibility of the programmer to update the allocated
cache block by store operations.

Refer to the ‘cache architecture’ section for details on the cache block size.
The allocd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

execution of the allocd operation. If the LSB of rguard is 1, allocd operation is executed; otherwise, it is not executed.

EXAMPLES

Initial Values Operation Result

r10 = 0xabcd,
cache_block_size = 0x40

allocd(0x32) r10 Allocates a cache block for the address space from
0xabc0 to 0x0xabff without fetching the data from
main memory; The data in this address space is
undefined.

r10 = 0xabcd, r11 = 0,
cache_block_size = 0x40

IF r11 allocd(0x32) r10 since guard is false, allocd operation is not executed

r10 = 0xabff, r11 = 1,
cache_block_size = 0x40

IF r11 allocd(0x4) r10 Allocates a cache block for the address space from
0xac00 to 0xac3f without fetching the data from main
memory; the data in this address space is undefined.

SEE ALSO
allocr allocx

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-6

Allocate a cache block with index

SYNTAX
[IF rguard] allocr rsrc1 rsrc2

FUNCTION
if rguard then {

 cache_block_mask = ~(cache_block_size -1)]
 allocate adata cache block with [(rsrc1 + rsrc2) & cache_block_mask] address

}

ATTRIBUTES
Function unit dmemspec
Operation code 214
Number of operands 2
Modifier No
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The allocr operation allocate a cache block with the address computed from [(rsrc1 + rscr2) & cache_block_mask] and

sets the status of this cache block as valid. No data is fetched from main memory for this operation. The allocated
cache block data is undefined after this operation. It is the responsibility of the programmer to update the allocated
cache block by store operations.

Refer to the ‘cache architecture’ section for details on the cache block size.
The allocr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

execution of the allocr operation. If the LSB of rguard is 1, allocr operation is executed; otherwise, it is not executed.

EXAMPLES

Initial Values Operation Result

r10 = 0xabcd, r12 = 0x32
cache_block_size = 0x40

allocr r10 r12 Allocates a cache block for the address space from
0xabc0 to 0xabff without fetching the data from main
memory; The data in this address space is undefined.

r10 = 0xabcd, r11 = 0, r12=0x32,
cache_block_size = 0x40

IF r11 allocr r10 r12 since guard is false, allocr operation is not executed

r10 = 0xabff, r11 = 1, r12 =0x4,
cache_block_size = 0x40

IF r11 allocr r10 r12 Allocates a cache block for the address space from
0xac00 to 0xac3f without fetching the data from main
memory; the data in this address space is undefined.

SEE ALSO
allocd allocx

allocr

PNX1300/01/02/11 Data Book Philips Semiconductors

A-7 PRELIMINARY SPECIFICATION

allocx Allocate a cache block with scaled index

SYNTAX
[IF rguard] allocx rsrc1 rsrc2

FUNCTION
if rguard then {

 cache_block_mask = ~(cache_block_size -1)]
 allocate adata cache blockwith [(rsrc1 + 4 x rsrc2) & cache_block_mask] address

}

ATTRIBUTES
Function unit dmemspec
Operation code 215
Number of operands 2
Modifier No
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The allocx operation allocate a cache block with the address computed from [(rsrc1 + 4 x rscr2) & cache_block_mask]

and sets the status of this cache block as valid. No data is fetched from main memory for this operation. The allocated
cache block data is undefined after this operation. It is the responsibility of the programmer to update the allocated
cache block by store operations.

Refer to the ‘cache architecture’ section for details on the cache block size.
The allocx operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

execution of the allocx operation. If the LSB of rguard is 1, allocx operation is executed; otherwise, it is not executed.

EXAMPLES

Initial Values Operation Result

r10 = 0xabcd, r12 = 0xc
cache_block_size = 0x40

allocx r10 r12 Allocates a cache block for the address space from
0xabc0 to 0x0xabff without fetching the data from
main memory; The data in this address space is
undefined.

r10 = 0xabcd, r11 = 0, r12=0xc,
cache_block_size = 0x40

IF r11 allocx r10 r12 since guard is false, allocx operation is not executed

r10 = 0xabff, r11 = 1, r12 =0x4,
cache_block_size = 0x40

IF r11 allocx r10 r12 Allocates a cache block for the address space from
0xac00 to 0xac3f without fetching the data from main
memory; the data in this address space is undefined.

SEE ALSO
allocd allocr

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-8

Arithmetic shift left

SYNTAX
[IF rguard] asl rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

n ← rsrc2<4:0>
rdest<31:n> ← rsrc1<31–n:0>
rdest<n–1:0> ← 0
if rsrc2<31:5> != 0 {

rdest <- 0
}

}

ATTRIBUTES
Function unit shifter
Operation code 19
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the asl operation takes two arguments, rsrc1 and rsrc2. Rsrc2 specify an unsigned shift amount,

and rdest is set to rsrc1 arithmetically shifted left by this amount. If the rsrc2<31:5> value is not zero, then take this as
a shift by 32 or more bits. Zeros are shifted into the LSBs of rdest while the MSBs shifted out of rsrc1 are lost.

The asl operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r60 = 0x20, r30 = 3 asl r60 r30 → r90 r90 ← 0x100

r10 = 0, r60 = 0x20, r30 = 3 IF r10 asl r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x20, r30 = 3 IF r20 asl r60 r30 → r110 r110 ← 0x100

r70 = 0xfffffffc, r40 = 2 asl r70 r40 → r120 r120 ← 0xfffffff0

r80 = 0xe, r50 = 0xfffffffe asl r80 r50 → r125 r125 ← 0x00000000 (shift by more than 32)

r30 = 0x7008000f, r60 = 0x20 asl r30 r60 → r111 r111 ← 0x00000000

r30 = 0x8008000f, r45 = 0x80000000 asl r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x23 asl r30 r45 → r100 r100 ← 0x00000000

031

rsrc1
31

rsrc2

000

Left shifter

32 bits from rsrc1

031

rdest
3

000

Intermediate result
(example: n = 3)

rsrc2

0

SEE ALSO
asli asr asri lsl lsli lsr

lsri rol roli

asl

PNX1300/01/02/11 Data Book Philips Semiconductors

A-9 PRELIMINARY SPECIFICATION

asli Arithmetic shift left immediate

SYNTAX
[IF rguard] asli(n) rsrc1 → rdest

FUNCTION
if rguard then {

rdest<31:n> ← rsrc1<31–n:0>
rdest<n–1:0> ← 0

}

ATTRIBUTES
Function unit shifter
Operation code 11
Number of operands 1
Modifier 7 bits
Modifier range 0..31
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the asli operation takes a single argument in rsrc1 and an immediate modifier n and produces a

result in rdest equal to rsrc1 arithmetically shifted left by n bits. The value of n must be between 0 and 31, inclusive.
Zeros are shifted into the LSBs of rdest while the MSBs shifted out of rsrc1 are lost.

The asli operations optionally take a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r60 = 0x20 asli(3) r60 → r90 r90 ← 0x100

r10 = 0, r60 = 0x20 IF r10 asli(3) r60 → r100 no change, since guard is false

r20 = 1, r60 = 0x20 IF r20 asli(3) r60 → r110 r110 ← 0x100

r70 = 0xfffffffc asli(2) r70 → r120 r120 ← 0xfffffff0

r80 = 0xe asli(30) r80 → r125 r125 ← 0x80000000

031

rsrc1

000

Left shifter

32 bits from rsrc1

031

rdest
3

000

Intermediate result
(example: n = 3)

Shift amount n
from operation modifier

SEE ALSO
asl asr asri lsl lsli lsr

lsri rol roli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-10

Arithmetic shift right

SYNTAX
[IF rguard] asr rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

n ← rsrc2<4:0>
rdest<31:31–n> ← rsrc1<31>
rdest<30–n:0> ← rsrc1<30:n>
if rsrc2<31:5> != 0 {

rdest <- rsrc1<31>
}

}

ATTRIBUTES
Function unit shifter
Operation code 18
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the asr operation takes two arguments, rsrc1 and rsrc2. Rsrc2 specifies an unsigned shift

amount, and rsrc1 is arithmetically shifted right by this amount. If the rsrc2<31:5> value is not zero, then take this as a
shift by 32 or more bits. The MSB (sign bit) of rsrc1 is replicated as needed to fill vacated bits from the left.

The asr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x7008000f, r20 = 1 asr r30 r20 → r50 r50 ← 0x38040007

r30 = 0x7008000f, r42 = 2 asr r30 r42 → r60 r60 ← 0x1c020003

r10 = 0, r30 = 0x7008000f, r44 = 4 IF r10 asr r30 r44 → r70 no change, since guard is false

r20 = 1, r30 = 0x7008000f, r44 = 4 IF r20 asr r30 r44 → r80 r80 ← 0x07008000

r40 = 0x80030007, r44 = 4 asr r40 r44 → r90 r90 ← 0xf8003000

r30 = 0x7008000f, r45 = 0x1f asr r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x1f asr r30 r45 → r100 r100 ← 0xffffffff

r30 = 0x7008000f, r45 = 0x20 asr r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x20 asr r30 r45 → r100 r100 ← 0xffffffff

r30 = 0x8008000f, r45 = 0x23 asr r30 r45 → r100 r100 ← 0xffffffff

031

rsrc1
0

rsrc2

SSS

Right shifter

32 bits from rsrc1

031

rdest
28

SSS

Intermediate result
(example: n = 3)

 rsrc2

S

S

S

31

SEE ALSO
asl asli asri lsl lsli lsr

lsri rol roli

asr

PNX1300/01/02/11 Data Book Philips Semiconductors

A-11 PRELIMINARY SPECIFICATION

asri Arithmetic shift right by immediate amount

SYNTAX
[IF rguard] asri(n) rsrc1 → rdest

FUNCTION
if rguard then {

rdest<31:31–n> ← rsrc1<31>
rdest<30–n:0> ← rsrc1<31:n>

}

ATTRIBUTES
Function unit shifter
Operation code 10
Number of operands 1
Modifier 7 bits
Modifier range 0..31
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the asri operation takes a single argument in rsrc1 and an immediate modifier n and produces a

result in rdest that is equal to rsrc1 arithmetically shifted right by n bits. The value of n must be between 0 and 31,
inclusive. The MSB (sign bit) of rsrc1 is replicated as needed to fill vacated bits from the left.

The asri operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x7008000f asri(1) r30 → r50 r50 ← 0x38040007

r30 = 0x7008000f asri(2) r30 → r60 r60 ← 0x1c020003

r10 = 0, r30 = 0x7008000f IF r10 asri(4) r30 → r70 no change, since guard is false

r20 = 1, r30 = 0x7008000f IF r20 asri(4) r30 → r80 r80 ← 0x07008000

r40 = 0x80030007 asri(4) r40 → r90 r90 ← 0xf8003000

r30 = 0x7008000f asri(31) r30 → r100 r100 ← 0x00000000

r40 = 0x80030007 asri(31) r40 → r110 r110 ← 0xffffffff

SSS

Right shifter

32 bits from rsrc1

031

rdest
28

SSS

Intermediate result
(example: n = 3) S

S

031

rsrc1

Shift amount n
from operation modifier

S

SEE ALSO
asl asli asr lsl lsli lsr

lsri rol roli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-12

Bitwise logical AND

SYNTAX
[IF rguard] bitand rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 & rsrc2

ATTRIBUTES
Function unit alu
Operation code 16
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The bitand operation computes the bitwise, logical AND of the first and second arguments, rsrc1 and rsrc2. The

result is stored in the destination register, rdest.
The bitand operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xf310ffff, r40 = 0xffff0000 bitand r30 r40 → r90 r90 ← 0xf3100000

r10 = 0, r50 = 0x88888888 IF r10 bitand r30 r50 → r80 no change, since guard is false

r20 = 1, r30 = 0xf310ffff,
r50 = 0x88888888

IF r20 bitand r30 r50 → r100 r100 ← 0x80008888

r60 = 0x11119999, r50 = 0x88888888 bitand r60 r50 → r110 r110 ← 0x00008888

r70 = 0x55555555, r30 = 0xf310ffff bitand r70 r30 → r120 r120 ← 0x51105555

SEE ALSO
bitor bitxor bitandinv

bitand

PNX1300/01/02/11 Data Book Philips Semiconductors

A-13 PRELIMINARY SPECIFICATION

bitandinv Bitwise logical AND NOT

SYNTAX
[IF rguard] bitandinv rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 & ~rsrc2

ATTRIBUTES
Function unit alu
Operation code 49
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The bitandinv operation computes the bitwise, logical AND of the first argument, rsrc1, with the 1’s complement

of the second argument, rsrc2. The result is stored in the destination register, rdest.
The bitandinv operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xf310ffff, r40 = 0xffff0000 bitandinv r30 r40 → r90 r90 ← 0x0000ffff

r10 = 0, r50 = 0x88888888 IF r10 bitandinv r30 r50 → r80 no change, since guard is false

r20 = 1, r30 = 0xf310ffff,
r50 = 0x88888888

IF r20 bitandinv r30 r50 → r100 r100 ← 0x73107777

r60 = 0x11119999, r50 = 0x88888888 bitandinv r60 r50 → r110 r110 ← 0x11111111

r70 = 0x55555555, r30 = 0xf310ffff bitandinv r70 r30 → r120 r120 ← 0x04450000

SEE ALSO
bitand bitor bitxor

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-14

Bitwise logical NOT

SYNTAX
[IF rguard] bitinv rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ~rsrc1

ATTRIBUTES
Function unit alu
Operation code 50
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The bitinv operation computes the bitwise, logical NOT of the argument rsrc1 and writes the result into rdest.
The bitinv operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xf310ffff bitinv r30 → r60 r60 ← 0x0cef0000

r10 = 0, r40 = 0xffff0000 IF r10 bitinv r40 → r70 no change, since guard is false

r20 = 1, r40 = 0xffff0000 IF r20 bitinv r40 → r100 r100 ← 0x0000ffff

r50 = 0x88888888 bitinv r50 → r110 r110 ← 0x77777777

SEE ALSO
bitand bitandinv bitor

bitxor

bitinv

PNX1300/01/02/11 Data Book Philips Semiconductors

A-15 PRELIMINARY SPECIFICATION

bitor Bitwise logical OR

SYNTAX
[IF rguard] bitor rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 | rsrc2

ATTRIBUTES
Function unit alu
Operation code 17
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The bitor operation computes the bitwise, logical OR of the first and second arguments, rsrc1 and rsrc2. The

result is stored in the destination register, rdest.
The bitor operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xf310ffff, r40 = 0xffff0000 bitor r30 r40 → r90 r90 ← 0xffffffff

r10 = 0, r50 = 0x88888888 IF r10 bitor r30 r50 → r80 no change, since guard is false

r20 = 1, r30 = 0xf310ffff,
r50 = 0x88888888

IF r20 bitor r30 r50 → r100 r100 ← 0xfb98ffff

r60 = 0x11119999, r50 = 0x88888888 bitor r60 r50 → r110 r110 ← 0x99999999

r70 = 0x55555555, r30 = 0xf310ffff bitor r70 r30 → r120 r120 ← 0xf755ffff

SEE ALSO
bitand bitandinv bitinv

bitxor

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-16

Bitwise logical exclusive-OR

SYNTAX
[IF rguard] bitxor rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 ⊕ rsrc2

ATTRIBUTES
Function unit alu
Operation code 48
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The bitxor operation computes the bitwise, logical exclusive-OR of the first and second arguments, rsrc1 and

rsrc2. The result is stored in the destination register, rdest.
The bitxor operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xf310ffff, r40 = 0xffff0000 bitxor r30 r40 → r90 r90 ← 0x0cefffff

r10 = 0, r50 = 0x88888888 IF r10 bitxor r30 r50 → r80 no change, since guard is false

r20 = 1, r30 = 0xf310ffff,
r50 = 0x88888888

IF r20 bitxor r30 r50 → r100 r100 ← 0x7b987777

r60 = 0x11119999, r50 = 0x88888888 bitxor r60 r50 → r110 r110 ← 0x99991111

r70 = 0x55555555, r30 = 0xf310ffff bitxor r70 r30 → r120 r120 ← 0xa645aaaa

SEE ALSO
bitand bitandinv bitinv

bitor

bitxor

PNX1300/01/02/11 Data Book Philips Semiconductors

A-17 PRELIMINARY SPECIFICATION

borrow Compute borrow bit from unsigned subtract
pseudo-op for ugtr

SYNTAX
[IF rguard] borrow rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 < rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 33
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The borrow operation is a pseudo operation transformed by the scheduler into an ugtr with reversed arguments.

(Note: pseudo operations cannot be used in assembly source files.)
The borrow operation computes the unsigned difference of the first and second arguments, rsrc1–rsrc2. If the

difference generates a borrow (if rsrc2 > rsrc1), 1 is stored in the destination register, rdest; otherwise, rdest is set to 0.
The borrow operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r70 = 2, r30 = 0xfffffffc borrow r70 r30 → r80 r80 ← 1

r10 = 0, r70 = 2, r30 = 0xfffffffc IF r10 borrow r70 r30 → r90 no change, since guard is false

r20 = 1, r70 = 2, r30 = 0xfffffffc IF r20 borrow r70 r30 → r100 r100 ← 1

r60 = 4, r30 = 0xfffffffc borrow r60 r30 → r110 r110 ← 1

r30 = 0xfffffffc borrow r30 r30 → r120 r120 ← 0

SEE ALSO
ugtr carry

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-18

Compute carry bit from unsigned add

SYNTAX
[IF rguard] carry rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (rsrc1+rsrc2) < 232 then
rdest ← 0

else
rdest ← 1

}

ATTRIBUTES
Function unit alu
Operation code 45
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The carry operation computes the unsigned sum of the first and second arguments, rsrc1+rsrc2. If the sum

generates a carry (if the sum is greater than 232-1), 1 is stored in the destination register, rdest; otherwise, rdest is set
to 0.

The carry operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r70 = 2, r30 = 0xfffffffc carry r70 r30 → r80 r80 ← 0

r10 = 0, r70 = 2, r30 = 0xfffffffc IF r10 carry r70 r30 → r90 no change, since guard is false

r20 = 1, r70 = 2, r30 = 0xfffffffc IF r20 carry r70 r30 → r100 r100 ← 0

r60 = 4, r30 = 0xfffffffc carry r60 r30 → r110 r110 ← 1

r30 = 0xfffffffc carry r30 r30 → r120 r120 ← 1

SEE ALSO
borrow

carry

PNX1300/01/02/11 Data Book Philips Semiconductors

A-19 PRELIMINARY SPECIFICATION

curcycles Read current clock cycle counter, least-
significant word

SYNTAX
[IF rguard] curcycles → rdest

FUNCTION
if rguard then

rdest ← CCCOUNT<31:0>

ATTRIBUTES
Function unit fcomp
Operation code 162
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
Refer to Section 3.1.5, “CCCOUNT—Clock Cycle Counter” for a description of the CCCOUNT operation. The

curcycles operation copies the current low 32 bits of the master Clock Cycle Counter (CCCOUNT) to the
destination register, rdest.. The master CCCOUNT increments on all cycles (processor-stall and non-stall) if
PCSW.CS = 1; otherwise, the counter increments only on non-stall cycles.

The curcycles operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

CCCOUNT_HR = 0xabcdefff12345678 curcycles → r60 r30 ← 0x12345678

r10 = 0, CCCOUNT_HR = 0xabcdefff12345678 IF r10 curcycles → r70 no change, since guard is false

r20 = 1, CCCOUNT_HR = 0xabcdefff12345678 IF r20 curcycles → r100 r100 ← 0x12345678

SEE ALSO
cycles hicycles writepcsw

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-20

Read clock cycle counter, least-significant word

SYNTAX
[IF rguard] cycles → rdest

FUNCTION
if rguard then

rdest ← CCCOUNT<31:0>

ATTRIBUTES
Function unit fcomp
Operation code 154
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
Refer to Section 3.1.5, “CCCOUNT—Clock Cycle Counter” for a description of the CCCOUNT operation. The

cycles operation copies the low 32 bits of the slave register of Clock Cycle Counter (CCCOUNT) to the destination
register, rdest. The contents of the master counter are transferred to the slave CCCOUNT register only on a
successful interruptible jump and on processor reset. Thus, if cycles and hicycles are executed without
intervening interruptible jumps, the operation pair is guaranteed to be a coherent sample of the master clock-cycle
counter. The master counter increments on all cycles (processor-stall and non-stall) if PCSW.CS = 1; otherwise, the
counter increments only on non-stall cycles.

The cycles operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

CCCOUNT_HR = 0xabcdefff12345678 cycles → r60 r30 ← 0x12345678

r10 = 0, CCCOUNT_HR = 0xabcdefff12345678 IF r10 cycles → r70 no change, since guard is false

r20 = 1, CCCOUNT_HR = 0xabcdefff12345678 IF r20 cycles → r100 r100 ← 0x12345678

SEE ALSO
hicycles curcycles

writepcsw

cycles

PNX1300/01/02/11 Data Book Philips Semiconductors

A-21 PRELIMINARY SPECIFICATION

Data cache copy back

SYNTAX
[IF rguard] dcb(d) rsrc1

FUNCTION
if rguard then {

addr ← rsrc1 + d
if dcache_valid_addr(addr) && dcache_dirty_addr(addr) then {

dcache_copyback_addr(addr)
dcache_reset_dirty_addr(addr)

}
}

ATTRIBUTES
Function unit dmemspec
Operation code 205
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency 3
Issue slots 5

DESCRIPTION
The dcb operation causes a block in the data cache to be copied back to main memory if the block is marked dirty

and valid, and the block’s dirty bit is reset. The target block of dcb is the block in the data cache that contains the byte
addressed by rsrc1 + d. The d value is an opcode modifier, must be in the range –256 to 252 inclusive, and must be a
multiple of 4.

A valid copy of the target block remains in the cache. Stall cycles are taken as necessary to complete the copy-back
operation. If the target block is not dirty or if the block is not in the cache, dcb has no effect and no stall cycles are
taken.
dcb has no effect on blocks that are in the non-cacheable SDRAM aperture. dcb does not change the replacement

status of data-cache blocks.
dcb ensures coherency between caches and main memory by discarding all pending prefetch operations and by

causing all non-empty copyback buffers to be emptied to main memory.
The dcb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls if the

operation is carried out or not.If the LSB of rguard is 1, the operation is carried out; otherwise,it is not carried out.

EXAMPLES

Initial Values Operation Result

dcb(0) r30
r10 = 0 IF r10 dcb(4) r40 no change and no stall cycles, since

guard is false
r20 = 1 IF r20 dcb(8) r50

SEE ALSO
dinvalid

dcb

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-22

Invalidate data cache block

SYNTAX
[IF rguard] dinvalid(d) rsrc1

FUNCTION
if rguard then {

addr ← rsrc1 + d
if dcache_valid_addr(addr) then {

dcache_reset_valid_addr(addr)
dcache_reset_dirty_addr(addr)

}
}

ATTRIBUTES
Function unit dmemspec
Operation code 206
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency 3
Issue slots 5

DESCRIPTION
The dinvalid operation resets the valid and dirty bit of a block in the data cache. Regardless of the block’s dirty

bit, the block is not written back to main memory. The target block of dinvalid is the block in the data cache that
contains the byte addressed by rsrc1 + d. The d value is an opcode modifier, must be in the range –256 to 252
inclusive, and must be a multiple of 4.

Stall cycles are taken as necessary to complete the invalidate operation. If the target block is not in the cache,
dinvalid has no effect and no stall cycles are taken.
dinvalid has no effect on blocks that are in the non-cacheable SDRAM aperture. dinvalid does clear the

valid bits of locked blocks. dinvalid does not change the replacement status of data-cache blocks.
dinvalid ensures coherency between caches and main memory by discarding all pending prefetch operations

and by causing all non-empty copyback buffers to be emptied to main memory.
The dinvalid operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls if the

operation is carried out or not. If the LSB of rguard is 1, the operation is carried out; otherwise, it is not carried out.

EXAMPLES

Initial Values Operation Result

dinvalid(0) r30
r10 = 0 IF r10 dinvalid(4) r40 no change and no stall cycles, since

guard is false

r20 = 1 IF r20 dinvalid(8) r50

SEE ALSO
dcb

dinvalid

PNX1300/01/02/11 Data Book Philips Semiconductors

A-23 PRELIMINARY SPECIFICATION

Clipped signed absolute value
pseudo-op for h_dspiabs

SYNTAX
[IF rguard] dspiabs rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 >= 0 then
rdest ← rsrc1

else if rsrc1 = 0x80000000 then
rdest ← 0x7fffffff

else
rdest ← –rsrc1

}

ATTRIBUTES
Function unit dspalu
Operation code 65
Number of operands 1
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The dspiabs operation is a pseudo operation transformed by the scheduler into an h_dspiabs with a constant

first argument zero and second argument equal to the dspiabs argument. (Note: pseudo operations cannot be used
in assembly source files.)

The dspiabs operation computes the absolute value of rsrc1, clips the result into the range [231–1..0] (or
[0x7fffffff..0]), and stores the clipped value into rdest. All values are signed integers.

The dspiabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffffffff dspiabs r30 → r60 r60 ← 0x00000001

r10 = 0, r40 = 0x80000001 IF r10 dspiabs r40 → r70 no change, since guard is false

r20 = 1, r40 = 0x80000001 IF r20 dspiabs r40 → r100 r100 ← 0x7fffffff

r50 = 0x80000000 dspiabs r50 → r80 r80 ← 0x7fffffff

r90 = 0x7fffffff dspiabs r90 → r110 r110 ← 0x7fffffff

SEE ALSO
h_dspiabs h_dspidualabs
dspiadd dspimul dspisub
dspuadd dspumul dspusub

dspiabs

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-24

Clipped signed add

SYNTAX
[IF rguard] dspiadd rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← sign_ext32to64(rsrc1) + sign_ext32to64(rsrc2)
if temp < 0xffffffff80000000 then

rdest ← 0x80000000
else if temp > 0x000000007fffffff then

rdest ← 0x7fffffff
else

rdest ← temp
}

ATTRIBUTES
Function unit dspalu
Operation code 66
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspiadd operation computes the sum rsrc1+rsrc2, clips the result into the 32-bit signed

range [231–1..–231] (or [0x7fffffff..0x80000000]), and stores the clipped value into rdest. All values are signed integers.

The dspiadd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x1200, r40 = 0xff dspiadd r30 r40 → r60 r60 ← 0x12ff

r10 = 0, r30 = 0x1200, r40 = 0xff IF r10 dspiadd r30 r40 → r80 no change, since guard is false

r20 = 1, r30 = 0x1200, r40 = 0xff IF r20 dspiadd r30 r40 → r100 r100 ← 0x12ff

r50 = 0x7fffffff, r90 = 1 dspiadd r50 r90 → r110 r110 ← 0x7fffffff

r70 = 0x80000000, r80 = 0xffffffff dspiadd r70 r80 → r120 r120 ← 0x80000000

031

rsrc1
031

rsrc2

031

rdest

+

032

Clip to [231–1..–231]

signed signed

Full-precision
33-bit result signed

signed

SEE ALSO
dspiabs dspimul dspisub
dspuadd dspumul dspusub

dspiadd

PNX1300/01/02/11 Data Book Philips Semiconductors

A-25 PRELIMINARY SPECIFICATION

Dual clipped absolute value of signed 16-bit
halfwords

pseudo-op for h_dspidualabs

SYNTAX
[IF rguard] dspidualabs rsrc1 → rdest

FUNCTION
if rguard then {

temp1 ← sign_ext16to32(rsrc1<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>)
if temp1 = 0xffff8000 then temp1 ← 0x7fff
if temp2 = 0xffff8000 then temp2 ← 0x7fff
if temp1 < 0 then temp1 ← –temp1
if temp2 < 0 then temp2 ← –temp2
rdest<31:16> ← temp2<15:0>
rdest<15:0> ← temp1<15:0>

}

ATTRIBUTES
Function unit dspalu
Operation code 72
Number of operands 1
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The dspidualabs operation is a pseudo operation transformed by the scheduler into an h_dspidualabs with

a constant zero as first argument and the dspidualabs argument as second argument. (Note: pseudo operations
cannot be used in assembly source files.)

The dspidualabs operation performs two 16-bit clipped, signed absolute value computations separately on the
high and low 16-bit halfwords of rsrc1. Both absolute values are clipped into the range [0x0..0x7fff] and written into the
corresponding halfwords of rdest. All values are signed 16-bit integers.

The dspidualabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffff0032 dspidualabs r30 → r60 r60 ← 0x00010032

r10 = 0, r40 = 0x80008001 IF r10 dspidualabs r40 → r70 no change, since guard is false

r20 = 1, r40 = 0x80008001 IF r20 dspidualabs r40 → r100 r100 ← 0x7fff7fff

r50 = 0x0032ffff dspidualabs r50 → r80 r80 ← 0x00320001

r90 = 0x7fffffff dspidualabs r90 → r110 r110 ← 0x7fff0001

SEE ALSO
h_dspidualabs dspiabs

dspidualadd dspidualmul
dspidualsub

dspidualabs

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-26

Dual clipped add of signed 16-bit halfwords

SYNTAX
[IF rguard] dspidualadd rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp1 ← sign_ext16to32(rsrc1<15:0>) + sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>) + sign_ext16to32(rsrc2<31:16>)
if temp1 < 0xffff8000 then temp1 ← 0x8000
if temp2 < 0xffff8000 then temp2 ← 0x8000
if temp1 > 0x7fff then temp1 ← 0x7fff
if temp2 > 0x7fff then temp2 ← 0x7fff
rdest<31:16> ← temp2<15:0>
rdest<15:0> ← temp1<15:0>

}

ATTRIBUTES
Function unit dspalu
Operation code 70
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspidualadd operation computes two 16-bit clipped, signed sums separately on the two

pairs of high and low 16-bit halfwords of rsrc1 and rsrc2. Both sums are clipped into the range [215–1..–215] (or
[0x7fff..0x8000]) and written into the corresponding halfwords of rdest. All values are signed 16-bit integers.

The dspidualadd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x12340032, r40 = 0x00010002 dspidualadd r30 r40 → r60 r60 ← 0x12350034

r10 = 0, r30 = 0x12340032, r40 = 0x00010002 IF r10 dspidualadd r30 r40 → r70 no change, since guard is
false

r20 = 1, r30 = 0x12340032, r40 = 0x00010002 IF r20 dspidualadd r30 r40 → r100 r100 ← 0x12350034

r50 = 0x80000001, r80 = 0xffff7fff dspidualadd r50 r80 → r90 r90 ← 0x80007fff

r110 = 0x00017fff, r120 = 0x7fff7fff dspidualadd r110 r120 → r125 r125 ← 0x7fff7fff

01531

rsrc1
01531

rsrc2

031

rdest

+
+

15

017017
Two full-precision

17-bit signed sums

Clip to [215–1 .. –215] Clip to [215–1 .. –215]

signed signed signed

signed signed

signedsigned

signed

SEE ALSO
dspidualabs dspidualmul

dspidualsub dspiabs

dspidualadd

PNX1300/01/02/11 Data Book Philips Semiconductors

A-27 PRELIMINARY SPECIFICATION

Dual clipped multiply of signed 16-bit halfwords

SYNTAX
[IF rguard] dspidualmul rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp1 ← sign_ext16to32(rsrc1<15:0>) × sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>) × sign_ext16to32(rsrc2<31:16>)
if temp1 < 0xffff8000 then temp1 ← 0x8000
if temp2 < 0xffff8000 then temp2 ← 0x8000
if temp1 > 0x7fff then temp1 ← 0x7fff
if temp2 > 0x7fff then temp2 ← 0x7fff
rdest<31:16> ← temp2<15:0>
rdest<15:0> ← temp1<15:0>

}

ATTRIBUTES
Function unit dspmul
Operation code 95
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the dspidualmul operation computes two 16-bit clipped, signed products separately on the two

pairs of high and low 16-bit halfwords of rsrc1 and rsrc2. Both products are clipped into the range [215–1..–215] (or
[0x7fff..0x8000]) and written into the corresponding halfwords of rdest. All values are signed 16-bit integers.

The dspidualmul operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x0020010, r40 = 0x00030020 dspidualmul r30 r40 → r60 r60 ← 0x00060200

r10 = 0, r30 = 0x0020010, r40 = 0x00030020 IF r10 dspidualmul r30 r40 → r70 no change, since guard is false

r20 = 1, r30 = 0x0020010, r40 = 0x00030020 IF r20 dspidualmul r30 r40 → r100 r100 ← 0x00060200

r50 = 0x80000002, r80 = 0x00024000 dspidualmul r50 r80 → r90 r90 ← 0x80007fff

r110 = 0x08000003, r120 = 0x00108001 dspidualmul r110 r120 → r125 r125 ← 0x7fff8000

01531

rsrc1
01531

rsrc2

031

rdest

×
×

15

031031

Two full-precision
32-bit signed products

Clip to [215–1..–215] Clip to [215–1..–215]

signed signed signed

signed signed

signedsigned

signed

SEE ALSO
dspidualabs dspidualadd

dspidualsub dspiabs

dspidualmul

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-28

Dual clipped subtract of signed 16-bit halfwords

SYNTAX
[IF rguard] dspidualsub rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp1 ← sign_ext16to32(rsrc1<15:0>) – sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc1<31:16>) – sign_ext16to32(rsrc2<31:16>)
if temp1 < 0xffff8000 then temp1 ← 0x8000
if temp2 < 0xffff8000 then temp2 ← 0x8000
if temp1 > 0x7fff then temp1 ← 0x7fff
if temp2 > 0x7fff then temp2 ← 0x7fff
rdest<31:16> ← temp2<15:0>
rdest<15:0> ← temp1<15:0>

}

ATTRIBUTES
Function unit dspalu
Operation code 71
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspidualsub operation computes two 16-bit clipped, signed differences separately on the

two pairs of high and low 16-bit halfwords of rsrc1 and rsrc2. Both differences are clipped into the range [215–1..–215]
(or [0x7fff..0x8000]) and written into the corresponding halfwords of rdest. All values are signed 16-bit integers.

The dspidualsub operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x12340032, r40 = 0x00010002 dspidualsub r30 r40 → r60 r60 ← 0x12330030

r10 = 0, r30 = 0x12340032, r40 = 0x00010002 IF r10 dspidualsub r30 r40 → r70 no change, since guard is
false

r20 = 1, r30 = 0x12340032, r40 = 0x00010002 IF r20 dspidualsub r30 r40 → r100 r100 ← 0x12330030

r50 = 0x80000001, r80 = 0x00018001 dspidualsub r50 r80 → r90 r90 ← 0x80007fff

r110 = 0x00018001, r120 = 0x80010002 dspidualsub r110 r120 → r125 r125 ← 0x7fff8000

01531

rsrc1
01531

rsrc2

031

rdest

−
−

15

017017
Two full-precision

17-bit signed differences

Clip to [215–1..–215] Clip to [215–1..–215]

signed signed signed

signed signed

signedsigned

signed

SEE ALSO
dspidualabs dspidualadd

dspidualmul dspiabs

dspidualsub

PNX1300/01/02/11 Data Book Philips Semiconductors

A-29 PRELIMINARY SPECIFICATION

Clipped signed multiply

SYNTAX
[IF rguard] dspimul rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← sign_ext32to64(rsrc1) × sign_ext32to64(rsrc2)
if temp < 0xffffffff80000000 then

rdest ← 0x80000000
else if temp > 0x000000007fffffff then

rdest ← 0x7fffffff
else

rdest ← temp<31:0>
}

ATTRIBUTES
Function unit ifmul
Operation code 141
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the dspimul operation computes the product rsrc1×rsrc2, clips the result into the 32-bit range

[231–1..–231] (or [0x7fffffff..0x80000000]), and stores the clipped value into rdest. All values are signed integers.

The dspimul operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x10, r40 = 0x20 dspimul r30 r40 → r60 r60 ← 0x200

r10 = 0, r30 = 0x10, r40 = 0x20 IF r10 dspimul r30 r40 → r80 no change, since guard is false

r20 = 1, r30 = 0x10, r40 = 0x20 IF r20 dspimul r30 r40 → r100 r100 ← 0x200

r50 = 0x40000000, r90 = 2 dspimul r50 r90 → r110 r110 ← 0x7fffffff

r80 = 0xffffffff dspimul r80 r80 → r120 r120 ← 0x1

r70 = 0x80000000, r90 = 2 dspimul r70 r90 → r120 r120 ← 0x80000000

031

rsrc1
031

rsrc2

031

rdest

×

063

Clip to [231–1..–231]

signed signed

Full-precision
64-bit result signed

signed

SEE ALSO
dspiabs dspiadd dspisub
dspuadd dspumul dspusub

dspimul

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-30

Clipped signed subtract

SYNTAX
[IF rguard] dspisub rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← sign_ext32to64(rsrc1) – sign_ext32to64(rsrc2)
if temp < 0xfffffffff80000000 then

rdest ← 0x80000000
else if temp > 0x000000007fffffff then

rdest ← 0x7fffffff
else

rdest ← temp<31:0>
}

ATTRIBUTES
Function unit dspalu
Operation code 68
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspisub operation computes the difference rsrc1–rsrc2, clips the result into the 32-bit range

[231–1..–231] (or [0x7fffffff..0x80000000]), and stores the clipped value into rdest. All values are signed integers.

The dspisub operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x1200, r40 = 0xff dspisub r30 r40 → r60 r60 ← 0x1101

r10 = 0, r30 = 0x1200, r40 = 0xff IF r10 dspisub r30 r40 → r80 no change, since guard is false

r20 = 1, r30 = 0x1200, r40 = 0xff IF r20 dspisub r30 r40 → r100 r100 ← 0x1101

r50 = 0x7fffffff, r90 = 0xffffffff dspisub r50 r90 → r110 r110 ← 0x7fffffff

r70 = 0x80000000, r80 = 1 dspisub r70 r80 → r120 r120 ← 0x80000000

031

rsrc1
031

rsrc2

031

rdest

−

032

Clip to [231–1..–231]

signed signed

Full-precision
33-bit result signed

signed

SEE ALSO
dspiabs dspiadd dspimul
dspuadd dspumul dspusub

dspisub

PNX1300/01/02/11 Data Book Philips Semiconductors

A-31 PRELIMINARY SPECIFICATION

Clipped unsigned add

SYNTAX
[IF rguard] dspuadd rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← zero_ext32to64(rsrc1) + zero_ext32to64(rsrc2)
if (unsigned)temp > 0x00000000ffffffff then

rdest ← 0xffffffff
else

rdest ← temp<31:0>
}

ATTRIBUTES
Function unit dspalu
Operation code 67
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspuadd operation computes unsigned sum rsrc1+rsrc2, clips the result into the unsigned

range [232–1..0] (or [0xffffffff..0]), and stores the clipped value into rdest.

The dspuadd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x1200, r40 = 0xff dspuadd r30 r40 → r60 r60 ← 0x12ff

r10 = 0, r30 = 0x1200, r40 = 0xff IF r10 dspuadd r30 r40 → r80 no change, since guard is false

r20 = 1, r30 = 0x1200, r40 = 0xff IF r20 dspuadd r30 r40 → r100 r100 ← 0x12ff

r50 = 0xffffffff, r90 = 1 dspuadd r50 r90 → r110 r110 ← 0xffffffff

r70 = 0x80000001, r80 = 0x7fffffff dspuadd r70 r80 → r120 r120 ← 0xffffffff

031

rsrc1
031

rsrc2

031

rdest

+

032

Clip to [232–1..0]

unsigned unsigned

Full-precision
33-bit result unsigned

unsigned

SEE ALSO
dspiabs dspiadd dspimul
dspisub dspumul dspusub

dspuadd

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-32

Clipped unsigned multiply

SYNTAX
[IF rguard] dspumul rsrc1 rsrc2 → rdest

OPERATION
if rguard then {

temp ← zero_ext32to64(rsrc1) × zero_ext32to64(rsrc2)
if (unsigned)temp > 0x00000000ffffffff then

rdest ← 0xffffffff
else

rdest ← temp<31:0>
}

ATTRIBUTES
Function unit ifmul
Operation code 142
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the dspumul operation computes unsigned product rsrc1×rsrc2, clips the result into the unsigned

range [232–1..0] (or [0xffffffff..0]), and stores the clipped value into rdest.

The dspumul operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x10, r40 = 0x20 dspumul r30 r40 → r60 r60 ← 0x200

r10 = 0, r30 = 0x10, r40 = 0x20 IF r10 dspumul r30 r40 → r80 no change, since guard is false

r20 = 1, r30 = 0x10, r40 = 0x20 IF r20 dspumul r30 r40 → r100 r100 ← 0x200

r50 = 0x40000000, r90 = 2 dspumul r50 r90 → r110 r110 ← 0x80000000

r80 = 0xffffffff dspumul r80 r80 → r120 r120 ← 0xffffffff

r70 = 0x80000000, r90 = 2 dspumul r70 r90 → r120 r120 ← 0xffffffff

031

rsrc1
031

rsrc2

031

rdest

×

063

Clip to [232–1..0]

unsigned unsigned

Full-precision
64-bit result unsigned

unsigned

SEE ALSO
dspiabs dspiadd dspisub
dspuadd dspumul dspusub

dspumul

PNX1300/01/02/11 Data Book Philips Semiconductors

A-33 PRELIMINARY SPECIFICATION

Quad clipped add of unsigned/signed bytes

SYNTAX
[IF rguard] dspuquadaddui rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

for (i ← 0, m ← 31, n ← 24; i < 4; i ← i + 1, m ← m – 8, n ← n – 8) {
temp ← zero_ext8to32(rsrc1<m:n>) + sign_ext8to32(rsrc2<m:n>)
if temp < 0 then

rdest<m:n> ← 0
else if temp > 0xff then

rdest<m:n> ← 0xff
else rdest<m:n> ← temp<7:0>

}
}

ATTRIBUTES
Function unit dspalu
Operation code 78
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspuquadaddui operation computes four separate sums of the four pairs of corresponding

8-bit bytes of rsrc1 and rsrc2. The bytes in rsrc1 are considered unsigned values; the bytes in rsrc2 are considered
signed. The four sums are clipped into the unsigned range [255..0] (or [0xff..0]); thus, the final byte sums are
unsigned. All computations are performed without loss of precision.

The dspuquadaddui operation optionally takes a guard, specified in rguard. If a guard is present, its LSB
controls the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not
changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x02010001, r40 = 0xffffff01 dspuquadaddui r30 r40 → r50 r50 ← 0x01000002

r10 = 0, r60 = 0x9c9c6464, r70 = 0x649c649c IF r10 dspuquadaddui r60 r70 → r80 no change, since guard is
false

r20 = 1, r60 = 0x9c9c6464, r70 = 0x649c649c IF r20 dspuquadaddui r60 r70 → r90 r90 ← 0xff38c800

01531

rsrc1
01531

rsrc2

031

rdest

+
+

+
+

23 7 23 7

71523

09 0909 09
Four full-precision

10-bit signed sums

Clip to [255..0]

unsigned unsigned unsigned unsigned signed signed signed signed

signed signed signed signed

unsigned unsigned unsigned unsigned

Clip to [255..0] Clip to [255..0] Clip to [255..0]

SEE ALSO
dspidualadd

dspuquadaddui

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-34

Clipped unsigned subtract

SYNTAX
[IF rguard] dspusub rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← zero_ext32to64(rsrc1) – zero_ext32to64(rsrc2)
if (signed)temp < 0 then

rdest ← 0
else

rdest ← temp<31:0>
}

ATTRIBUTES
Function unit dspalu
Operation code 69
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the dspusub operation computes unsigned difference rsrc1–rsrc2, clips the result into the

unsigned range [232–1..0] (or [0xffffffff..0]), and stores the clipped value into rdest.

The dspusub operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x1200, r40 = 0xff dspusub r30 r40 → r60 r60 ← 0x1101

r10 = 0, r30 = 0x1200, r40 = 0xff IF r10 dspusub r30 r40 → r80 no change, since guard is false

r20 = 1, r30 = 0x1200, r40 = 0xff IF r20 dspusub r30 r40 → r100 r100 ← 0x1101

r50 = 0, r90 = 1 dspusub r50 r90 → r110 r110 ← 0

r70 = 0x80000001, r80 = 0xffffffff dspusub r70 r80 → r120 r120 ← 0

031

rsrc1
031

rsrc2

031

rdest

−

032

Clip to [232–1..0]

unsigned unsigned

Full-precision
33-bit result signed

unsigned

SEE ALSO
dspiabs dspiadd dspimul
dspisub dspuadd dspumul

dspusub

PNX1300/01/02/11 Data Book Philips Semiconductors

A-35 PRELIMINARY SPECIFICATION

dualasr Dual-16 arithmetic shift right

SYNTAX
[IF rguard] dualasr rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

n <- rsrc2<3:0>
 rdest<31:31-n> <- rsrc1<31>

rdest<30-n:16> <- rsrc1<30:16+n>
 rdest<15:15-n> <- rsrc1<15>

rdest<14-n:0> <- rsrc1<14:n>
if rsrc2<31:4> != 0 {

rdest<31:16> <- rsrc1<31>
rdest<15:0> <- rsrc1<15>

}
}

ATTRIBUTES
Function unit shifter
Operation code 102
Number of operands 2
Modifier No
Modifier range -
Latency 1
Issue slots 1,2

DESCRIPTION
The argument rsrc1 contains two 16-bit signed integers, rsrc1<31:16> and rsrc1<15:0>. Rsrc2 specifies an

unsigned shift amount, and the two 16-bit integers shifted right by this amount. The sign bits rsrc1<31> and rsrc1<15>
are replicated as needed within each 16-bit value from the left. If the rsrc2<31:4> value is not zero, then take this as a
shift by 16 or more, i.e. extend the sign bit into either result.

The dualasr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x70087008, r40 = 0x1 dualasr r30 r40 -> r50 r50 <- 0x38043804

r30 = 0x70087008, r40 = 0x2 dualasr r30 r40 -> r50 r50 <- 0x1c021c02

r10 = 0, r30 = 0x70087008, r40 = 0x2 IF r10 dualasr r30 r40 -> r50 no change, since guard is false

r10 = 1, r30 = 0x70084008, r40 = 0x4 IF r10 dualasr r30 r40 -> r50 r50 <- 0x07000400

r10 = 1, r30 = 0x800c800c, r40 = 0x4 IF r10 dualasr r30 r40 -> r50 r50 <- 0xf800f800

r10 = 1, r30 = 0x700c700c, r40 = 0xf IF r10 dualasr r30 r40 -> r50 r50 <- 0x00000000

r10 = 1, r30 = 0x700c800c, r40 = 0xf IF r10 dualasr r30 r40 -> r50 r50 <- 0x0000ffff

r10 = 1, r30 = 0x800c700c, r40 = 0xf IF r10 dualasr r30 r40 -> r50 r50 <- 0xffff0000

r10 = 1, r30 = 0x800c700c, r40 = 0x10000000 IF r10 dualasr r30 r40 -> r50 r50 <- 0xffff0000

r10 = 1, r30 = 0x800c700c, r40 = 0x10 IF r10 dualasr r30 r40 -> r50 r50 <- 0xffff0000

031

rsrc1
031

rsrc2 n

Right shifter

031

rdest

28

SSS

Four LSBs of rsrc2

S

S S

15

Right shifter
Four LSBs of rsrc2

SSS Lower 13 bits Intermediate result
(example: n = 3) S SSS Lower 13 bits Intermediate result

(example: n = 3) S

15 12

SSS S

SEE ALSO
asl asli asri lsl lsli lsr

lsri rol roli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-36

Dual-16 clip signed to signed

SYNTAX
[IF rguard] dualiclipi rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<31:16> <- min(max(rscrc1<31:16>, -rsrc2<15:0>-1), rsrc2<15:0>)
 rdest<15:0> <- min(max(rscrc1<15:0>, -rsrc2<15:0>-1), rsrc2<15:0>)
}

ATTRIBUTES
Function unit dspalu
Operation code 82
Number of operands 2
Modifier No
Modifier range -
Latency 2
Issue slots 1,3

DESCRIPTION
The argument rsrc1 contains two signed16-bit integers, rsrc1<31:16> and rsrc1<15:0>. Each integer value is clipped

into the signed integer range (-rsrc2 -1) to rsrc2. The value in rsrc2 contains an unsigned integer and must have the
value between 0 and 0x7fff inclusive.

The dualiclipi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x00800080, r40 = 0x7f dualiclipi r30 r40 -> r50 r50 <- 0x007f007f

r30 = 0x7ffff7ffff, r40 = 0x7ffe dualiclipi r30 r40 -> r50 r50 <- 0x7ffe7ffe

r10 = 0, r30 = 0x7ffff7ffff, r40 = 0x7ffe IF r10 dualiclipi r30 r40 -> r50 no change, since guard is false

r10 = 1, r30 = 0x12345678, r40 = 0xabc IF r10 dualiclipi r30 r40 -> r50 r50 <- 0x0abc0abc

r10 = 1, r30 = 0x80008000, r40 = 0x03ff IF r10 dualiclipi r30 r40 -> r50 r50 <- 0xfc00fc00

r10 = 1, r30 = 0x800003fe, r40 = 0x03ff IF r10 dualiclipi r30 r40 -> r50 r50 <- 0xfc0003fe

r10 = 1, r30 = 0x000f03fe, r40 = 0x03ff IF r10 dualiclipi r30 r40 -> r50 r50 <- 0x000f03fe

SEE ALSO
iclipi uclipi dualuclipi

imin imax quadumax
quadumin

dualiclipi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-37 PRELIMINARY SPECIFICATION

dualuclipi Dual-16 clip signed to unsigned

SYNTAX
[IF rguard] dualuclipi rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<31:16> <- min(max(rscrc1<31:16>, 0), rsrc2<15:0>)
 rdest<15:0> <- min(max(rscrc1<15:0>, 0), rsrc2<15:0>)
}

ATTRIBUTES
Function unit dspalu
Operation code 83
Number of operands 2
Modifier No
Modifier range -
Latency 2
Issue slots 1,3

DESCRIPTION
The argument rsrc1 contains two 16-bit signed integers, rsrc1<31:16> and rsrc1<15:0>. Each integer value is

clipped into the unsigned integer range 0 to rsrc2. The value in rsrc2 contains an unsigned integer and must have the
value between 0 and 0xffff inclusive.

The dualuclipi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x00800080, r40 = 0x7f dualuclipi r30 r40 -> r50 r50 <- 0x007f007f

r30 = 0x7ffff7ffff, r40 = 0x7ffe dualuclipi r30 r40 -> r50 r50 <- 0x7ffe7ffe

r10 = 0, r30 = 0x7ffff7ffff, r40 = 0x7ffe IF r10 dualuclipi r30 r40 -> r50 no change, since guard is false

r10 = 1, r30 = 0x12345678, r40 = 0xabc IF r10 dualuclipi r30 r40 -> r50 r50 <- 0x0abc0abc

r10 = 1, r30 = 0x80008000, r40 = 0x03ff IF r10 dualuclipi r30 r40 -> r50 r50 <- 0x00000000

r10 = 1, r30 = 0x800003fe, r40 = 0x03ff IF r10 dualuclipi r30 r40 -> r50 r50 <- 0x000003fe

r10 = 1, r30 = 0x000f03fe, r40 = 0x03ff IF r10 dualuclipi r30 r40 -> r50 r50 <- 0x000f03fe

SEE ALSO
iclipi uclipi dualiclipi

imin imax quadumax
quadumin

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-38

Floating-point absolute value

SYNTAX
[IF rguard] fabsval rsrc1 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 < 0 then
rdest ← –(float)rsrc1

else
rdest ← (float)rsrc1

}

ATTRIBUTES
Function unit falu
Operation code 115
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The fabsval operation computes the absolute value of the argument rsrc1 and stores the result into rdest. All

values are in IEEE single-precision floating-point format. If an argument is denormalized, zero is substituted for the
argument before computing the absolute value, and the IFZ flag in the PCSW is set. If fabsval causes an IEEE
exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can
be set as a side-effect of any floating-point operation but can only be reset by an explicit writepcsw operation. The
update of the PCSW exception flags occurs at the same time as r dest is written. If any other floating-point compute
operations update the PCSW at the same time, the net result in each exception flag is the logical OR of all
simultaneous updates ORed with the existing PCSW value for that exception flag.

The fabsvalflags operation computes the exception flags that would result from an individual fabsval.
The fabsval operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) fabsval r30 → r90 r90 ← 0x40400000 (3.0)

r35 = 0xbf800000 (-1.0) fabsval r35 → r95 r95 ← 0x3f800000 (1.0)

r40 = 0x00400000 (5.877471754e-39) fabsval r40 → r100 r100 ← 0x0 (+0.0), IFZ set

r45 = 0xffffffff (QNaN) fabsval r45 → r105 r105 ← 0xffffffff (QNaN)

r50 = 0xffbfffff (SNaN) fabsval r50 → r110 r110 ← 0xffffffff (QNaN), INV set

r10 = 0,
r55 = 0xff7fffff (–3.402823466e+38)

IF r10 fabsval r55 → r115 no change, since guard is false

r20 = 1,
r55 = 0xff7fffff (–3.402823466e+38)

IF r20 fabsval r55 → r120 r120 ← 0x7f7fffff (3.402823466e+38)

SEE ALSO
iabs dspiabs dspidualabs
fabsvalflags readpcsw

writepcsw

fabsval

PNX1300/01/02/11 Data Book Philips Semiconductors

A-39 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point absolute
value

SYNTAX
[IF rguard] fabsvalflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags(abs_val((float)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 116
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The fabsvalflags operation computes the IEEE exceptions that would result from computing the absolute

value of rsrc1 and writes a bit vector representing the exception flags into rdest. The argument value is in IEEE single-
precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same format as
the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If rsrc1 is
denormalized, the IFZ bit in the result is set.

The fabsvalflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) fabsvalflags r30 → r90 r90 ← 0x0

r35 = 0xbf800000 (-1.0) fabsvalflags r35 → r95 r95 ← 0x0

r40 = 0x00400000 (5.877471754e-39) fabsvalflags r40 → r100 r100 ← 0x20 (IFZ)

r45 = 0xffffffff (QNaN) fabsvalflags r45 → r105 r105 ← 0x0

r50 = 0xffbfffff (SNaN) fabsvalflags r50 → r110 r110 ← 0x10 (INV)

r10 = 0,
r55 = 0xff7fffff (–3.402823466e+38)

IF r10 fabsvalflags r55 → r115 no change, since guard is false

r20 = 1,
r55 = 0xff7fffff (–3.402823466e+38)

IF r20 fabsvalflags r55 → r120 r120 ← 0x0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fabsval faddflags readpcsw

fabsvalflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-40

Floating-point add

SYNTAX
[IF rguard] fadd rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← (float)rsrc1 + (float)rsrc2

ATTRIBUTES
Function unit falu
Operation code 22
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The fadd operation computes the sum rsrc1+rsrc2 and stores the result into rdest. All values are in IEEE single-

precision floating-point format. Rounding is according to the IEEE rounding mode bits in PCSW. If an argument is
denormalized, zero is substituted for the argument before computing the sum, and the IFZ flag in the PCSW is set. If
the result is denormalized, the result is set to zero instead, and the OFZ flag in the PCSW is set. If fadd causes an
IEEE exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the
flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit writepcsw
operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any other floating-
point compute operations update the PCSW at the same time, the net result in each exception flag is the logical OR of
all simultaneous updates ORed with the existing PCSW value for that exception flag.

The faddflags operation computes the exception flags that would result from an individual fadd.
The fadd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0),
r30 = 0x3f800000 (1.0)

fadd r60 r30 → r90 r90 ← 0xc0000000 (–2.0)

r40 = 0x40400000 (3.0),
r60 = 0xc0400000 (–3.0)

fadd r40 r60 → r95 r95 ← 0x00000000 (0.0)

r10 = 0, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e-38)

IF r10 fadd r40 r80 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e-38)

IF r20 fadd r40 r80 → r110 r110 ← 0x40400000 (3.0), INX flag set

r40 = 0x40400000 (3.0),
r81 = 0x00400000 (5.877471754e–39)

fadd r40 r81 → r111 r111 ← 0x40400000 (3.0), IFZ flag set

r82 = 0x00c00000 (1.763241526e-38),
r83 = 0x80800000 (–1.175494351e-38)

fadd r82 r83 → r112 r112 ← 0x00000000 (0.0), OFZ, UNF, INX
flags set

r84 = 0x7f800000 (+INF),
r85 = 0xff800000 (–INF)

fadd r84 r85 → r113 r113 ← 0xffffffff (QNaN), INV flag set

r70 = 0x7f7fffff (3.402823466e+38) fadd r70 r70 → r120 r120 ← 0x7f800000 (+INF), OVF,
 INX flags set

r80 = 0x00800000 (1.763241526e–38) fadd r80 r80 → r125 r125 ← 0x01000000 (2.350988702e–38)

SEE ALSO
faddflags iadd dspiadd
dspidualadd readpcsw

writepcsw

fadd

PNX1300/01/02/11 Data Book Philips Semiconductors

A-41 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point add

SYNTAX
[IF rguard] faddflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 + (float)rsrc2)

ATTRIBUTES
Function unit falu
Operation code 112
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The faddflags operation computes the IEEE exceptions that would result from computing the sum rsrc1+rsrc2

and stores a bit vector representing the exception flags into r dest. The argument values are in IEEE single-precision
floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same format as the IEEE
exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is according
to the IEEE rounding mode bits in PCSW. If an argument is denormalized, zero is substituted before computing the
sum, and the IFZ bit in the result is set. If the sum would be denormalized, the OFZ bit in the result is set.

The faddflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r10 = 0x7f7fffff (3.402823466e+38),
r20 = 0x3f800000 (1.0)

faddflags r10 r20 → r60 r60 ← 0x2 (INX)

r30 = 0,
r10 = 0x7f7fffff (3.402823466e+38)

IF r30 faddflags r10 r10 → r50 no change, since guard is false

r40 = 1,
r10 = 0x7f7fffff (3.402823466e+38)

IF r40 faddflags r10 r10 → r70 r70 ← 0xa (OVF INX)

r80 = 0x00a00000 (1.469367939e–38),
r81 = 0x80800000 (–1.17549435e–38)

faddflags r80 r81 → r100 r100 ← 0x46 (OFZ UNF INX)

r95 = 0x7f800000 (+INF),
r96 = 0xff800000 (–INF)

faddflags r95 r96 → r105 r105 ← 0x10 (INV)

r98 = 0x40400000 (3.0),
r99 = 0x00400000 (5.877471754e–39)

faddflags r98 r99 → r111 r111 ← 0x20 (IFZ)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fadd fsubflags readpcsw

faddflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-42

Floating-point divide

SYNTAX
[IF rguard] fdiv rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← (float)rsrc1 / (float)rsrc2

ATTRIBUTES
Function unit ftough
Operation code 108
Number of operands 2
Modifier No
Modifier range —
Latency 17
Recovery 16
Issue slots 2

DESCRIPTION
The fdiv operation computes the quotient rsrc1÷rsrc2 and stores the result into rdest. All values are in IEEE

single-precision floating-point format. Rounding is according to the IEEE rounding mode bits in PCSW. If an argument
is denormalized, zero is substituted for the argument before computing the quotient, and the IFZ flag in the PCSW is
set. If the result is denormalized, the result is set to zero instead, and the OFZ flag in the PCSW is set. If fdiv causes
an IEEE exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the
flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit writepcsw
operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any other floating-
point compute operations update the PCSW at the same time, the net result in each exception flag is the logical OR of
all simultaneous updates ORed with the existing PCSW value for that exception flag.

The fdivflags operation computes the exception flags that would result from an individual fdiv.
The fdiv operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0),
r30 = 0x3f800000 (1.0)

fdiv r60 r30 → r90 r90 ← 0xc0400000 (–3.0)

r40 = 0x40400000 (3.0),
r60 = 0xc0400000 (–3.0)

fdiv r40 r60 → r95 r95 ← 0xbf800000 (–1.0)

r10 = 0, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e–38)

IF r10 fdiv r40 r80 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e–38)

IF r20 fdiv r40 r80 → r110 r110 ← 0x7f400000 (2.552117754e38)

r40 = 0x40400000 (3.0),
r81 = 0x00400000 (5.877471754e–39)

fdiv r40 r81 → r111 r111 ← 0x7f800000 (+INF), IFZ, DBZ flags set

r82 = 0x00c00000 (1.763241526e–38),
r83 = 0x80800000 (–1.175494351e–38)

fdiv r82 r83 → r112 r112 ← 0xbfc00000 (-1.5)

r84 = 0x7f800000 (+INF),
r85 = 0xff800000 (–INF)

fdiv r84 r85 → r113 r113 ← 0xffffffff (QNaN), INV flag set

r70 = 0x7f7fffff (3.402823466e+38) fdiv r70 r70 → r120 r120 ← 0x3f800000 (1.0)

r80 = 0x00800000 (1.763241526e–38) fdiv r80 r80 → r125 r125 ← 0x3f800000 (1.0)

r75 = 0x40400000 (3.0),
r76 = 0x0 (0.0)

fdiv r75 r76 → r126 r126 ← 0x7f800000 (+INF), DBZ flag set

SEE ALSO
fdivflags readpcsw

writepcsw

fdiv

PNX1300/01/02/11 Data Book Philips Semiconductors

A-43 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point divide

SYNTAX
[IF rguard] fdivflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 / (float)rsrc2)

ATTRIBUTES
Function unit ftough
Operation code 109
Number of operands 2
Modifier No
Modifier range —
Latency 17
Recovery 16
Issue slots 2

DESCRIPTION
The fdivflags operation computes the IEEE exceptions that would result from computing the quotient

rsrc1÷rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation.
Rounding is according to the IEEE rounding mode bits in PCSW. If an argument is denormalized, zero is substituted
before computing the quotient, and the IFZ bit in the result is set. If the quotient would be denormalized, the OFZ bit in
the result is set.

The fdivflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x7f7fffff (3.402823466e+38),
r40 = 0x3f800000 (1.0)

fdivflags r30 r40 → r100 r100 ← 0

r10 = 0,
r50 = 0x7f7fffff (3.402823466e+38)
r60 = 0x3e000000 (0.125)

IF r10 fdivflags r50 r60 → r110 no change, since guard is false

r20 = 1,
r50 = 0x7f7fffff (3.402823466e+38)
r60 = 0x3e000000 (0.125)

IF r20 fdivflags r50 r60 → r111 r111 ← 0xa (OVF INX)

r70 = 0x40400000 (3.0),
r80 = 0x00400000 (5.877471754e–39)

fdivflags r70 r80 → r112 r112 ← 0x21 (IFZ DBZ)

r85 = 0x7f800000 (+INF),
r86 = 0xff800000 (–INF)

fdivflags r85 r86 → r113 r113 ← 0x10 (INV)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fdiv faddflags readpcsw

fdivflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-44

Floating-point compare equal

SYNTAX
[IF rguard] feql rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 = (float)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit fcomp
Operation code 148
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The feql operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is equal to the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as IEEE single-precision floating-point values;
the result is an integer. If an argument is denormalized, zero is substituted for the argument before computing the
comparison, and the IFZ flag in the PCSW is set. If feql causes an IEEE exception, the corresponding exception
flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any floating-
point operation but can only be reset by an explicit writepcsw operation. The update of the PCSW exception flags
occurs at the same time as rdest is written. If any other floating-point compute operations update the PCSW at the
same time, the net result in each exception flag is the logical OR of all simultaneous updates ORed with the existing
PCSW value for that exception flag.

The feqlflags operation computes the exception flags that would result from an individual feql.
The feql operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) feql r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) feql r30 r30 → r90 r90 ← 1

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 feql r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 feql r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

feql r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

feql r30 r61 → r121 r121 ← 0

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

feql r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

feql r60 r65 → r126 r126 ← 0, IFZ flag set

r50 = 0x7f800000 (+INF) feql r50 r50 → r127 r127 ← 1

SEE ALSO
ieql feqlflags fneq
readpcsw writepcsw

feql

PNX1300/01/02/11 Data Book Philips Semiconductors

A-45 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point compare
equal

SYNTAX
[IF rguard] feqlflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 = (float)rsrc2)

ATTRIBUTES
Function unit fcomp
Operation code 149
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The feqlflags operation computes the IEEE exceptions that would result from computing the comparison

rsrc1=rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If
an argument is denormalized, zero is substituted before computing the comparison, and the IFZ bit in the result is set.

The feqlflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) feqlflags r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) feqlflags r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 feqlflags r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 feqlflags r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

feqlflags r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

feqlflags r30 r61 → r121 r121 ← 0

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

feqlflags r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

feqlflags r60 r65 → r126 r126 ← 0x20 (IFZ)

r50 = 0x7f800000 (+INF) feqlflags r50 r50 → r127 r127 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
feql ieql fgtrflags

readpcsw

feqlflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-46

Floating-point compare greater or equal

SYNTAX
[IF rguard] fgeq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 >= (float)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit fcomp
Operation code 146
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fgeq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than or equal to

the second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as IEEE single-precision floating-
point values; the result is an integer. If an argument is denormalized, zero is substituted for the argument before
computing the comparison, and the IFZ flag in the PCSW is set. If fgeq causes an IEEE exception, the
corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a
side-effect of any floating-point operation but can only be reset by an explicit writepcsw operation. The update of
the PCSW exception flags occurs at the same time as rdest is written. If any other floating-point compute operations
update the PCSW at the same time, the net result in each exception flag is the logical OR of all simultaneous updates
ORed with the existing PCSW value for that exception flag.

The fgeqflags operation computes the exception flags that would result from an individual fgeq.
The fgeq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fgeq r30 r40 → r80 r80 ← 1

r30 = 0x40400000 (3.0) fgeq r30 r30 → r90 r90 ← 1

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fgeq r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fgeq r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fgeq r30 r60 → r120 r120 ← 1

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fgeq r30 r61 → r121 r121 ← 0, INV flag set

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fgeq r50 r55 → r125 r125 ← 1

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fgeq r60 r65 → r126 r126 ← 1, IFZ flag set

r50 = 0x7f800000 (+INF) fgeq r50 r50 → r127 r127 ← 1

SEE ALSO
igeq fgeqflags fgtr
readpcsw writepcsw

fgeq

PNX1300/01/02/11 Data Book Philips Semiconductors

A-47 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point compare
greater or equal

SYNTAX
[IF rguard] fgeqflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 >= (float)rsrc2)

ATTRIBUTES
Function unit fcomp
Operation code 147
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fgeqflags operation computes the IEEE exceptions that would result from computing the comparison

rsrc1>=rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If
an argument is denormalized, zero is substituted before computing the comparison, and the IFZ bit in the result is set.

The fgeqflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fgeqflags r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) fgeqflags r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fgeqflags r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fgeqflags r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fgeqflags r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fgeqflags r30 r61 → r121 r121 ← 0x10 (INV)

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fgeqflags r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fgeqflags r60 r65 → r126 r126 ← 0x20 (IFZ)

r50 = 0x7f800000 (+INF) fgeqflags r50 r50 → r127 r127 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fgeq igeq fgtrflags

readpcsw

fgeqflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-48

Floating-point compare greater

SYNTAX
[IF rguard] fgtr rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 > (float)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit fcomp
Operation code 144
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fgtr operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as IEEE single-precision floating-point values;
the result is an integer. If an argument is denormalized, zero is substituted for the argument before computing the
comparison, and the IFZ flag in the PCSW is set. If fgtr causes an IEEE exception, the corresponding exception
flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any floating-
point operation but can only be reset by an explicit writepcsw operation. The update of the PCSW exception flags
occurs at the same time as rdest is written. If any other floating-point compute operations update the PCSW at the
same time, the net result in each exception flag is the logical OR of all simultaneous updates ORed with the existing
PCSW value for that exception flag.

The fgtrflags operation computes the exception flags that would result from an individual fgtr.
The fgtr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fgtr r30 r40 → r80 r80 ← 1

r30 = 0x40400000 (3.0) fgtr r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fgtr r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fgtr r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fgtr r30 r60 → r120 r120 ← 1

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fgtr r30 r61 → r121 r121 ← 0, INV flag set

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fgtr r50 r55 → r125 r125 ← 1

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fgtr r60 r65 → r126 r126 ← 1, IFZ flag set

r50 = 0x7f800000 (+INF) fgtr r50 r50 → r127 r127 ← 0

SEE ALSO
igtr fgtrflags fgeq
readpcsw writepcsw

fgtr

PNX1300/01/02/11 Data Book Philips Semiconductors

A-49 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point compare
greater

SYNTAX
[IF rguard] fgtrflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 > (float)rsrc2)

ATTRIBUTES
Function unit fcomp
Operation code 145
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fgtrflags operation computes the IEEE exceptions that would result from computing the comparison

rsrc1>rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If
an argument is denormalized, zero is substituted before computing the comparison, and the IFZ bit in the result is set.

The fgtrflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fgtrflags r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) fgtrflags r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fgtrflags r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fgtrflags r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fgtrflags r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fgtrflags r30 r61 → r121 r121 ← 0x10 (INV)

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fgtrflags r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fgtrflags r60 r65 → r126 r126 ← 0x20 (IFZ)

r50 = 0x7f800000 (+INF) fgtrflags r50 r50 → r127 r127 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fgtr igtr fgeqflags

readpcsw

fgtrflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-50

Floating-point compare less-than or equal
pseudo-op for fgeq

SYNTAX
[IF rguard] fleq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 <= (float)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit fcomp
Operation code 146
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fleq operation is a pseudo operation transformed by the scheduler into an fgeq with the arguments

exchanged (fleq’s rsrc1 is fgeq’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The fleq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than or equal to the
second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as IEEE single-precision floating-point
values; the result is an integer. If an argument is denormalized, zero is substituted for the argument before computing
the comparison, and the IFZ flag in the PCSW is set. If fleq causes an IEEE exception, the corresponding exception
flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any floating-
point operation but can only be reset by an explicit writepcsw operation. The update of the PCSW exception flags
occurs at the same time as rdest is written. If any other floating-point compute operations update the PCSW at the
same time, the net result in each exception flag is the logical OR of all simultaneous updates ORed with the existing
PCSW value for that exception flag.

The fleqflags operation computes the exception flags that would result from an individual fleq.
The fleq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fleq r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) fleq r30 r30 → r90 r90 ← 1

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fleq r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fleq r60 r30 → r110 r110 ← 1

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fleq r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fleq r30 r61 → r121 r121 ← 0, INV flag set

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fleq r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fleq r60 r65 → r126 r126 ← 0, IFZ flag set

r50 = 0x7f800000 (+INF) fleq r50 r50 → r127 r127 ← 1

SEE ALSO
ileq fgeq fleqflags
readpcsw writepcsw

fleq

PNX1300/01/02/11 Data Book Philips Semiconductors

A-51 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point compare
less-than or equal
pseudo-op for fgeqflags

SYNTAX
[IF rguard] fleqflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 <= (float)rsrc2)

ATTRIBUTES
Function unit fcomp
Operation code 147
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fleqflags operation is a pseudo operation transformed by the scheduler into an fgeqflags with the

arguments exchanged (fleqflags’s rsrc1 is fgeqflags’s rsrc2 and vice versa). (Note: pseudo operations
cannot be used in assembly source files.)

The fleqflags operation computes the IEEE exceptions that would result from computing the comparison
rsrc1<=rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If
an argument is denormalized, zero is substituted before computing the comparison, and the IFZ bit in the result is set.

The fleqflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fleqflags r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) fleqflags r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fleqflags r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fleqflags r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fleqflags r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fleqflags r30 r61 → r121 r121 ← 0x10 (INV)

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fleqflags r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fleqflags r60 r65 → r126 r126 ← 0x20 (IFZ)

r50 = 0x7f800000 (+INF) fleqflags r50 r50 → r127 r127 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fleq ileq fgeqflags

readpcsw

fleqflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-52

Floating-point compare less-than
pseudo-op for fgtr

SYNTAX
[IF rguard] fles rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 < (float)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit fcomp
Operation code 144
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fles operation is a pseudo operation transformed by the scheduler into an fgtr with the arguments

exchanged (fles’s rsrc1 is fgtr’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The fles operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than the second
argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as IEEE single-precision floating-point values;
the result is an integer. If an argument is denormalized, zero is substituted for the argument before computing the
comparison, and the IFZ flag in the PCSW is set. If fles causes an IEEE exception, the corresponding exception
flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any floating-
point operation but can only be reset by an explicit writepcsw operation. The update of the PCSW exception flags
occurs at the same time as rdest is written. If any other floating-point compute operations update the PCSW at the
same time, the net result in each exception flag is the logical OR of all simultaneous updates ORed with the existing
PCSW value for that exception flag.

The flesflags operation computes the exception flags that would result from an individual fles.
The fles operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fles r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) fles r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fles r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fles r60 r30 → r110 r110 ← 1

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fles r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fles r30 r61 → r121 r121 ← 0, INV flag set

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fles r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fles r60 r65 → r126 r126 ← 0, IFZ flag set

r50 = 0x7f800000 (+INF) fles r50 r50 → r127 r127 ← 0

SEE ALSO
iles fgtr flesflags
readpcsw writepcsw

fles

PNX1300/01/02/11 Data Book Philips Semiconductors

A-53 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point compare
less-than

pseudo-op for fgtrflags

SYNTAX
[IF rguard] flesflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 < (float)rsrc2)

ATTRIBUTES
Function unit fcomp
Operation code 145
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The flesflags operation is a pseudo operation transformed by the scheduler into an fgtrflags with the

arguments exchanged (flesflags’s rsrc1 is fgtrflags’s rsrc2 and vice versa). (Note: pseudo operations
cannot be used in assembly source files.)

The flesflags operation computes the IEEE exceptions that would result from computing the comparison
rsrc1<rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If
an argument is denormalized, zero is substituted before computing the comparison, and the IFZ bit in the result is set.

The flesflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) flesflags r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) flesflags r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 flesflags r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 flesflags r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

flesflags r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

flesflags r30 r61 → r121 r121 ← 0x10 (INV)

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

flesflags r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

flesflags r60 r65 → r126 r126 ← 0x20 (IFZ)

r50 = 0x7f800000 (+INF) flesflags r50 r50 → r127 r127 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fles iles fleqflags

readpcsw

flesflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-54

Floating-point multiply

SYNTAX
[IF rguard] fmul rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← (float)rsrc1 × (float)rsrc2

ATTRIBUTES
Function unit ifmul
Operation code 28
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
The fmul operation computes the product rsrc1×rsrc2 and stores the result into rdest. All values are in IEEE single-

precision floating-point format. Rounding is according to the IEEE rounding mode bits in PCSW. If an argument is
denormalized, zero is substituted for the argument before computing the product, and the IFZ flag in the PCSW is set.
If the result is denormalized, the result is set to zero instead, and the OFZ flag in the PCSW is set. If fmul causes an
IEEE exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the
flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit writepcsw
operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any other floating-
point compute operations update the PCSW at the same time, the net result in each exception flag is the logical OR of
all simultaneous updates ORed with the existing PCSW value for that exception flag.

The fmulflags operation computes the exception flags that would result from an individual fmul.
The fmul operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0),
r30 = 0x3f800000 (1.0)

fmul r60 r30 → r90 r90 ← 0xc0400000 (-3.0)

r40 = 0x40400000 (3.0),
r60 = 0xc0400000 (–3.0)

fmul r40 r60 → r95 r95 ← 0xc1100000 (-9.0)

r10 = 0, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e–38)

IF r10 fmul r40 r80 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e–38)

IF r20 fmul r40 r80 → r105 r105 ← 0x1400000 (3.52648305e-38)

r41 = 0x3f000000 (0.5),
r80 = 0x00800000 (1.17549435e–38)

fmul r41 r80 → r110 r110 ← 0x0, OFZ, UNF, INX flags set

r42 = 0x7f800000 (+INF),
r43 = 0x0 (0.0)

fmul r42 r43 → r106 r106 ← 0xffffffff (QNaN), INV flag set

r40 = 0x40400000 (3.0),
r81 = 0x00400000 (5.877471754e–39)

fmul r40 r81 → r111 r111 ← 0, IFZ flag set

r82 = 0x00c00000 (1.763241526e–38),
r83 = 0x8080000 (–1.175494351e–38)

fmul r82 r83 → r112 r112 ← 0, UNF, INX flag set

r84 = 0x7f800000 (+INF),
r85 = 0xff800000 (–INF)

fmul r84 r85 → r113 r113 ← 0xff800000 (-INF)

r70 = 0x7f7fffff (3.402823466e+38) fmul r70 r70 → r120 r120 ← 0x7f800000, OVF, INX flags set

r80 = 0x00800000 (1.763241526e–38) fmul r80 r80 → r125 r125 ← 0, UNF, INX flag set

SEE ALSO
imul umul dspimul

dspidualmul fmulflags
readpcsw writepcsw

fmul

PNX1300/01/02/11 Data Book Philips Semiconductors

A-55 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point multiply

SYNTAX
[IF rguard] fmulflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 × (float)rsrc2)

ATTRIBUTES
Function unit ifmul
Operation code 143
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
The fmulflags operation computes the IEEE exceptions that would result from computing the product

rsrc1×rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation.
Rounding is according to the IEEE rounding mode bits in PCSW. If an argument is denormalized, zero is substituted
before computing the product, and the IFZ bit in the result is set. If the product would be denormalized, the OFZ bit in
the result is set.

The fmulflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0),
r30 = 0x3f800000 (1.0)

fmulflags r60 r30 → r90 r90 ← 0

r40 = 0x40400000 (3.0),
r60 = 0xc0400000 (–3.0)

fmulflags r40 r60 → r95 r95 ← 0

r10 = 0, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e–38)

IF r10 fmulflags r40 r80 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e–38)

IF r20 fmulflags r40 r80 → r105 r105 ← 0

r41 = 0x3f000000 (0.5),
r80 = 0x00800000 (1.17549435e–38)

fmulflags r41 r80 → r110 r110 ← 0x46 (OFZ UNF INX)

r42 = 0x7f800000 (+INF),
r43 = 0x0 (0.0)

fmulflags r42 r43 → r106 r106 ← 0x10 (INV)

r40 = 0x40400000 (3.0),
r81 = 0x00400000 (5.877471754e–39)

fmulflags r40 r81 → r111 r111 ← 0x20 (IFZ)

r82 = 0x00c00000 (1.763241526e–38),
r83 = 0x8080000 (–1.175494351e–38)

fmulflags r82 r83 → r112 r112 ← 0x06 (UNF INX)

r84 = 0x7f800000 (+INF),
r85 = 0xff800000 (–INF)

fmulflags r84 r85 → r113 r113 ← 0

r70 = 0x7f7fffff (3.402823466e+38) fmulflags r70 r70 → r120 r120 ← 0x0a (OVF INX)

r80 = 0x00800000 (1.763241526e–38) fmulflags r80 r80 → r125 r125 ← 0x06 (UNF INX)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fmul faddflags readpcsw

fmulflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-56

Floating-point compare not equal

SYNTAX
[IF rguard] fneq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 != (float)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit fcomp
Operation code 150
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fneq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is not equal to the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as IEEE single-precision floating-point values;
the result is an integer. If an argument is denormalized, zero is substituted for the argument before computing the
comparison, and the IFZ flag in the PCSW is set. If fneq causes an IEEE exception, the corresponding exception
flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any floating-
point operation but can only be reset by an explicit writepcsw operation. The update of the PCSW exception flags
occurs at the same time as rdest is written. If any other floating-point compute operations update the PCSW at the
same time, the net result in each exception flag is the logical OR of all simultaneous updates ORed with the existing
PCSW value for that exception flag.

The fneqflags operation computes the exception flags that would result from an individual fneq.
The fneq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fneq r30 r40 → r80 r80 ← 1

r30 = 0x40400000 (3.0) fneq r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fneq r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fneq r60 r30 → r110 r110 ← 1

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fneq r30 r60 → r120 r120 ← 1

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fneq r30 r61 → r121 r121 ← 0

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fneq r50 r55 → r125 r125 ← 1

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fneq r60 r65 → r126 r126 ← 1, IFZ flag set

r50 = 0x7f800000 (+INF) fneq r50 r50 → r127 r127 ← 0

SEE ALSO
ineq feql fneqflags
readpcsw writepcsw

fneq

PNX1300/01/02/11 Data Book Philips Semiconductors

A-57 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point compare
not equal

SYNTAX
[IF rguard] fneqflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 != (float)rsrc2)

ATTRIBUTES
Function unit fcomp
Operation code 151
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fneqflags operation computes the IEEE exceptions that would result from computing the comparison

rsrc1!=rsrc2 and stores a bit vector representing the exception flags into rdest. The argument values are in IEEE
single-precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same
format as the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If
an argument is denormalized, zero is substituted before computing the comparison, and the IFZ bit in the result is set.

The fneqflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0), r40 = 0 (0.0) fneqflags r30 r40 → r80 r80 ← 0

r30 = 0x40400000 (3.0) fneqflags r30 r30 → r90 r90 ← 0

r10 = 0, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r10 fneqflags r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x3f800000 (1.0),
r30 = 0x40400000 (3.0)

IF r20 fneqflags r60 r30 → r110 r110 ← 0

r30 = 0x40400000 (3.0),
r60 = 0x3f800000 (1.0)

fneqflags r30 r60 → r120 r120 ← 0

r30 = 0x40400000 (3.0),
r61 = 0xffffffff (QNaN)

fneqflags r30 r61 → r121 r121 ← 0

r50 = 0x7f800000 (+INF)
r55 = 0xff800000 (-INF)

fneqflags r50 r55 → r125 r125 ← 0

r60 = 0x3f800000 (1.0),
r65 = 0x00400000 (5.877471754e-39)

fneqflags r60 r65 → r126 r126 ← 0x20 (IFZ)

r50 = 0x7f800000 (+INF) fneqflags r50 r50 → r127 r127 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fneq ineq fleqflags

readpcsw

fneqflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-58

Sign of floating-point value

SYNTAX
[IF rguard] fsign rsrc1 → rdest

FUNCTION
if rguard then {

if (float)rsrc1 = 0.0 then
rdest ← 0

else if (float)rsrc1 < 0.0 then
rdest ← 0xffffffff

else
rdest ← 1

}

ATTRIBUTES
Function unit fcomp
Operation code 152
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fsign operation sets the destination register, rdest, to either 0, 1, or –1 depending on the sign of the argument

in rsrc1. rdest is set to 0 if rsrc1 is equal to zero, to 1 if rsrc1 is positive, or to –1 if rsrc1 is negative. The argument is
treated as an IEEE single-precision floating-point value; the result is an integer. If the argument is denormalized, zero
is substituted before computing the comparison, and the IFZ flag in the PCSW is set; thus, the result of fsign for a
denormalized argument is 0. If fsign causes an IEEE exception, the corresponding exception flags in the PCSW are
set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any floating-point operation but can
only be reset by an explicit writepcsw operation. The update of the PCSW exception flags occurs at the same time
as rdest is written. If any other floating-point compute operations update the PCSW at the same time, the net result in
each exception flag is the logical OR of all simultaneous updates ORed with the existing PCSW value for that
exception flag.

The fsignflags operation computes the exception flags that would result from an individual fsign.
The fsign operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) fsign r30 → r100 r100 ← 1

r40 = 0xbf800000 (-1.0) fsign r40 → r105 r105 ← 0xffffffff (-1)

r50 = 0x80800000 (-1.175494351e-38) fsign r50 → r110 r110 ← 0xffffffff (-1)

r60 = 0x80400000 (-5.877471754e-39) fsign r60 → r115 r115 ← 0, IFZ flag set

r10 = 0, r70 = 0xffffffff (QNaN) IF r10 fsign r70 → r116 no change, since guard is false

r20 = 1, r70 = 0xffffffff (QNaN) IF r20 fsign r70 → r117 r117 ← 0, INV flag set

r80 = 0xff800000 (-INF) fsign r80 → r120 r120 ← 0xffffffff (-1)

SEE ALSO
fsignflags readpcsw

writepcsw

fsign

PNX1300/01/02/11 Data Book Philips Semiconductors

A-59 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point sign

SYNTAX
[IF rguard] fsignflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags(sign((float)rsrc1))

ATTRIBUTES
Function unit fcomp
Operation code 153
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The fsignflags operation computes the IEEE exceptions that would result from computing the sign of rsrc1 and

stores a bit vector representing the exception flags into rdest. The argument value is in IEEE single-precision floating-
point format; the result is an integer bit vector. The bit vector stored in rdest has the same format as the IEEE
exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. If the argument is
denormalized, zero is substituted before computing the sign, and the IFZ bit in the result is set.

The fsignflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) fsignflags r30 → r100 r100 ← 0

r40 = 0xbf800000 (-1.0) fsignflags r40 → r105 r105 ← 0

r50 = 0x80800000 (-1.175494351e-38) fsignflags r50 → r110 r110 ← 0

r60 = 0x80400000 (-5.877471754e-39) fsignflags r60 → r115 r115 ← 0x20 (IFZ)

r10 = 0, r70 = 0xffffffff (QNaN) IF r10 fsignflags r70 → r116 no change, since guard is false

r20 = 1, r70 = 0xffffffff (QNaN) IF r20 fsignflags r70 → r117 r117 ← 0x10 (INV)

r80 = 0xff800000 (-INF) fsignflags r80 → r120 r120 ← 0

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fsign readpcsw

fsignflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-60

Floating-point square root

SYNTAX
[IF rguard] fsqrt rsrc1 → rdest

FUNCTION
if rguard then

rdest ← square_root(rsrc1)

ATTRIBUTES
Function unit ftough
Operation code 110
Number of operands 1
Modifier No
Modifier range —
Latency 17
Recovery 16
Issue slots 2

DESCRIPTION
The fsqrt operation computes the squareroot of rsrc1 and stores the result into rdest. All values are in IEEE

single-precision floating-point format. Rounding is according to the IEEE rounding mode bits in PCSW. If an argument
is denormalized, zero is substituted for the argument before computing the squareroot, and the IFZ flag in the PCSW
is set. If the result is denormalized, the result is set to zero instead, and the OFZ flag in the PCSW is set. If fsqrt
causes an IEEE exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are
sticky: the flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit
writepcsw operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any
other floating-point compute operations update the PCSW at the same time, the net result in each exception flag is the
logical OR of all simultaneous updates ORed with the existing PCSW value for that exception flag.

The fsqrtflags operation computes the exception flags that would result from an individual fsqrt.
The fsqrt operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0) fsqrt r60 → r90 r90 ← 0xffffffff (QNaN), INV flag set

r40 = 0x40400000 (3.0) fsqrt r40 → r95 r95 ← 0x3fddb3d7 (1.732051), INX flag set

r10 = 0, r40 = 0x40400000 (3.0) IF r10 fsqrt r40 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0) IF r20 fsqrt r40 → r110 r110 ← 0x3fddb3d7 (1.732051), INX flag set

r82 = 0x00c00000 (1.763241526e–38) fsqrt r82 → r112 r112 ← 0x201cc471 (1.32787105e-19), INX flag set

r84 = 0x7f800000 (+INF) fsqrt r84 → r113 r113 ← 0x7f800000 (+INF)

r70 = 0x7f7fffff (3.402823466e+38) fsqrt r70 → r120 r120 ← 0x5f7fffff (1.8446743e19), INX flag set

r80 = 0x00400000 (5.877471754e-39) fsqrt r80 → r125 r125 ← 0, IFZ flag set

SEE ALSO
fsqrtflags readpcsw

writepcsw

fsqrt

PNX1300/01/02/11 Data Book Philips Semiconductors

A-61 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point square root

SYNTAX
[IF rguard] fsqrtflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags(square_root((float)rsrc1))

ATTRIBUTES
Function unit ftough
Operation code 111
Number of operands 1
Modifier No
Modifier range —
Latency 17
Recovery 16
Issue slots 2

DESCRIPTION
The fsqrtflags operation computes the IEEE exceptions that would result from computing the squareroot of

rsrc1 and stores a bit vector representing the exception flags into rdest. The argument value is in IEEE single-
precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same format as
the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is
according to the IEEE rounding mode bits in PCSW. If the argument is denormalized, zero is substituted before
computing the squareroot, and the IFZ bit in the result is set. If the result is denormalized, and the OFZ flag in the
PCSW is set.

The fsqrtflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0) fsqrtflags r60 → r90 r90 ← 0x10 (INV)

r40 = 0x40400000 (3.0) fsqrtflags r40 → r95 r95 ← 0x2 (INX)

r10 = 0, r40 = 0x40400000 (3.0) IF r10 fsqrtflags r40 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0) IF r20 fsqrtflags r40 → r110 r110 ← 0x2 (INX)

r82 = 0x00c00000 (1.763241526e–38) fsqrtflags r82 → r112 r112 ← 0x2 (INX)

r84 = 0x7f800000 (+INF) fsqrtflags r84 → r113 r113 ← 0

r70 = 0x7f7fffff (3.402823466e+38) fsqrtflags r70 → r120 r120 ← 0x2 (INX)

r80 = 0x00400000 (5.877471754e-39) fsqrtflags r80 → r125 r125 ← 0x20 (IFZ)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fsqrt readpcsw

fsqrtflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-62

Floating-point subtract

SYNTAX
[IF rguard] fsub rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← (float)rsrc1 – (float)rsrc2

ATTRIBUTES
Function unit falu
Operation code 113
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The fsub operation computes the difference rsrc1–rsrc2 and writes the result into rdest. All values are in IEEE

single-precision floating-point format. Rounding is according to the IEEE rounding mode bits in PCSW. If an argument
is denormalized, zero is substituted for the argument before computing the difference, and the IFZ flag in the PCSW is
set. If the result is denormalized, the result is set to zero instead, and the OFZ flag in the PCSW is set. If fsub causes
an IEEE exception, the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the
flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit writepcsw
operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any other floating-
point compute operations update the PCSW at the same time, the net result in each exception flag is the logical OR of
all simultaneous updates ORed with the existing PCSW value for that exception flag.

The fsubflags operation computes the exception flags that would result from an individual fsub.
The fsub operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0),
r30 = 0x3f800000 (1.0)

fsub r60 r30 → r90 r90 ← 0xc0800000 (-4.0)

r40 = 0x40400000 (3.0),
r60 = 0xc0400000 (–3.0)

fsub r40 r60 → r95 r95 ← 0x40c00000 (6.0)

r10 = 0, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e-38)

IF r10 fsub r40 r80 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e-38)

IF r20 fsub r40 r80 → r110 r110 ← 0x40400000 (3.0), INX flag set

r40 = 0x40400000 (3.0),
r81 = 0x00400000 (5.877471754e–39)

fsub r40 r81 → r111 r111 ← 0x40400000 (3.0), IFZ flag set

r82 = 0x00c00000 (1.763241526e-38),
r83 = 0x0080000 (1.175494351e-38)

fsub r82 r83 → r112 r112 ← 0x0, OFZ, UNF and INX flags set

r84 = 0x7f800000 (+INF),
r85 = 0x7f800000 (+INF)

fsub r84 r85 → r113 r113 ← 0xffffffff (QNaN), INV flag set

r70 = 0x7f7fffff (3.402823466e+38)
r86 = 0xff7fffff (-3.402823466e+38)

fsub r70 r86 → r120 r120 ← 0x7f800000 (+INF), OVF, INX flag
set

r87 = 0xffffffff (QNaN))
r30 = 0x3f800000 (1.0

fsub r87 r30 → r125 r125 ← 0xffffffff (QNaN)

r87 = 0xffbfffff (SNaN))
r30 = 0x3f800000 (1.0

fsub r87 r30 → r125 r125 ← 0xffffffff (QNaN), INV flag set

r83 = 0x0080001 (1.175494421e-38),
r89 = 0x0080000 (1.175494351e-38)

fsub r83 r89 → r126 r126 ← 0x0, OFZ, UNF and INX flags set

SEE ALSO
fsubflags isub dspisub
dspidualsub readpcsw

writepcsw

fsub

PNX1300/01/02/11 Data Book Philips Semiconductors

A-63 PRELIMINARY SPECIFICATION

IEEE status flags from floating-point subtract

SYNTAX
[IF rguard] fsubflags rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float)rsrc1 – (float)rsrc2)

ATTRIBUTES
Function unit falu
Operation code 114
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The fsubflags operation computes the IEEE exceptions that would result from computing the difference rsrc1–

rsrc2 and writes a bit vector representing the exception flags into rdest. The argument values are in IEEE single-
precision floating-point format; the result is an integer bit vector. The bit vector stored in rdest has the same format as
the IEEE exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is
according to the IEEE rounding mode bits in PCSW. If an argument is denormalized, zero is substituted before
computing the difference, and the IFZ bit in the result is set. If the difference would be denormalized, the OFZ bit in the
result is set.

The fsubflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0xc0400000 (–3.0),
r30 = 0x3f800000 (1.0)

fsubflags r60 r30 → r90 r90 ← 0

r40 = 0x40400000 (3.0),
r60 = 0xc0400000 (–3.0)

fsubflags r40 r60 → r95 r95 ← 0

r10 = 0, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e-38)

IF r10 fsubflags r40 r80 → r100 no change, since guard is false

r20 = 1, r40 = 0x40400000 (3.0),
r80 = 0x00800000 (1.17549435e-38)

IF r20 fsubflags r40 r80 → r110 r110 ← 0x2 (INX)

r40 = 0x40400000 (3.0),
r81 = 0x00400000 (5.877471754e–39)

fsubflags r40 r81 → r111 r111 ← 0x20 (IFZ)

r82 = 0x00c00000 (1.763241526e-38),
r83 = 0x0080000 (1.175494351e-38)

fsubflags r82 r83 → r112 r112 ← 0x40 (OFZ)

r84 = 0x7f800000 (+INF),
r85 = 0x7f800000 (+INF)

fsubflags r84 r85 → r113 r113 ← 0x10 (INV)

r70 = 0x7f7fffff (3.402823466e+38)
r86 = 0xff7fffff (-3.402823466e+38)

fsubflags r70 r86 → r120 r120 ← 0xA (OVF,INX)

r87 = 0xffffffff (QNaN))
r30 = 0x3f800000 (1.0

fsubflags r87 r30 → r125 r125 ← 0x0

r87 = 0xffbfffff (SNaN))
r30 = 0x3f800000 (1.0

fsubflags r87 r30 → r125 r125 ← 0x10 (INV)

r83 = 0x0080001 (1.175494421e-38),
r89 = 0x0080000 (1.175494351e-38)

fsubflags r83 r89 → r126 r126 ← 0x4 (UNF)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
fsub faddflags readpcsw

fsubflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-64

Funnel-shift 1byte

SYNTAX
[IF rguard] funshift1 rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest<31:8> ← rsrc1<23:0>
rdest<7:0> ← rsrc2<31:24>

ATTRIBUTES
Function unit shifter
Operation code 99
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the funshift1 operation effectively shifts left by one byte the 64-bit concatenation of rsrc1 and

rsrc2 and writes the most-significant 32 bits of the shifted result to rdest.

The funshift1 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xaabbccdd, r40 = 0x11223344 funshift1 r30 r40 → r50 r50 ← 0xbbccdd11

r10 = 0, r40 = 0x11223344,
r30 = 0xaabbccdd

IF r10 funshift1 r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0x11223344,
r30 = 0xaabbccdd

IF r20 funshift1 r40 r30 → r70 r70 ← 0x223344aa

07152331

rsrc1
07152331

rsrc2

07152331

rdest

SEE ALSO
funshift2 funshift3 rol

funshift1

PNX1300/01/02/11 Data Book Philips Semiconductors

A-65 PRELIMINARY SPECIFICATION

Funnel-shift 2 bytes

SYNTAX
[IF rguard] funshift2 rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest<31:16> ← rsrc1<15:0>
rdest<15:0> ← rsrc2<31:16>

ATTRIBUTES
Function unit shifter
Operation code 100
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the funshift2 operation effectively shifts left by two bytes the 64-bit concatenation of rsrc1 and

rsrc2 and writes the most-significant 32 bits of the shifted result to rdest.

The funshift2 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xaabbccdd, r40 = 0x11223344 funshift2 r30 r40 → r50 r50 ← 0xccdd1122

r10 = 0, r40 = 0x11223344,
r30 = 0xaabbccdd

IF r10 funshift2 r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0x11223344,
r30 = 0xaabbccdd

IF r20 funshift2 r40 r30 → r70 r70 ← 0x3344aabb

07152331

rsrc1
07152331

rsrc2

07152331

rdest

SEE ALSO
funshift1 funshift3 rol

funshift2

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-66

Funnel-shift 3 bytes

SYNTAX
[IF rguard] funshift3 rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest<31:24> ← rsrc1<7:0>
rdest<23:0> ← rsrc2<31:8>

ATTRIBUTES
Function unit shifter
Operation code 101
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the funshift3 operation effectively shifts left by three bytes the 64-bit concatenation of rsrc1

and rsrc2 and writes the most-significant 32 bits of the shifted result to rdest.

The funshift3 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xaabbccdd, r40 = 0x11223344 funshift3 r30 r40 → r50 r50 ← 0xdd112233

r10 = 0, r40 = 0x11223344,
r30 = 0xaabbccdd

IF r10 funshift3 r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0x11223344,
r30 = 0xaabbccdd

IF r20 funshift3 r40 r30 → r70 r70 ← 0x44aabbcc

07152331

rsrc1
07152331

rsrc2

07152331

rdest

SEE ALSO
funshift1 funshift2 rol

funshift3

PNX1300/01/02/11 Data Book Philips Semiconductors

A-67 PRELIMINARY SPECIFICATION

Clipped signed absolute value

SYNTAX
[IF rguard] h_dspiabs r0 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc2 >= 0 then
rdest ← rsrc2

else if rsrc2 = 0x80000000 then
rdest ← 0x7fffffff

else
rdest ← –rsrc2

}

ATTRIBUTES
Function unit dspalu
Operation code 65
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The h_dspiabs operation computes the absolute value of rsrc2, clips the result into the range [0x0..0x7fffffff], and

stores the clipped value into rdest. All values are signed integers. This operation requires a zero as first argument. The
programmer is advised to use the unary pseudo operation dspiabs instead.

The h_dspiabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffffffff h_dspiabs r0 r30 → r60 r60 ← 0x00000001

r10 = 0, r40 = 0x80000001 IF r10 h_dspiabs r0 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0x80000001 IF r20 h_dspiabs r0 r40 → r100 r100 ← 0x7fffffff

r50 = 0x80000000 h_dspiabs r0 r50 → r80 r80 ← 0x7fffffff

r90 = 0x7fffffff h_dspiabs r0 r90 → r110 r110 ← 0x7fffffff

SEE ALSO
h_dspiabs dspidualabs

dspiadd dspimul dspisub
dspuadd dspumul dspusub

h_dspiabs

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-68

Dual clipped absolute value of signed 16-bit
halfwords

SYNTAX
[IF rguard] h_dspidualabs r0 rsrc2 → rdest

FUNCTION
if rguard then {

temp1 ← sign_ext16to32(rsrc2<15:0>)
temp2 ← sign_ext16to32(rsrc2<31:16>)
if temp1 = 0xffff8000 then temp1 ← 0x7fff
if temp2 = 0xffff8000 then temp2 ← 0x7fff
if temp1 < 0 then temp1 ← –temp1
if temp2 < 0 then temp2 ← –temp2
rdest<31:16> ← temp2<15:0>
rdest<15:0> ← temp1<15:0>

}

ATTRIBUTES
Function unit dspalu
Operation code 72
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The h_dspidualabs operation performs two 16-bit clipped, signed absolute value computations separately on

the high and low 16-bit halfwords of rsrc2. Both absolute values are clipped into the range [0x0..0x7fff] and written into
the corresponding halfwords of rdest. All values are signed 16-bit integers. This operation requires a zero as first
argument. The programmer is advised to use the dspidualabs pseudo operation instead.

The h_dspidualabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffff0032 h_dspidualabs r0 r30 → r60 r60 ← 0x00010032

r10 = 0, r40 = 0x80008001 IF r10 h_dspidualabs r0 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0x80008001 IF r20 h_dspidualabs r0 r40 → r100 r100 ← 0x7fff7fff

r50 = 0x0032ffff h_dspidualabs r0 r50 → r80 r80 ← 0x00320001

r90 = 0x7fffffff h_dspidualabs r0 r90 → r110 r110 ← 0x7fff0001

SEE ALSO
dspidualabs dspiabs

dspidualadd dspidualmul
dspidualsub dspiabs

h_dspidualabs

PNX1300/01/02/11 Data Book Philips Semiconductors

A-69 PRELIMINARY SPECIFICATION

Hardware absolute value

SYNTAX
[IF rguard] h_iabs r0 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc2 < 0 then
rdest ← –rsrc2

else
rdest ← rsrc2

}

ATTRIBUTES
Function unit alu
Operation code 44
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The h_iabs operation computes the absolute value of rsrc2 and stores the result into rdest. The argument is a

signed integer; the result is an unsigned integer. This operation requires a zero as first argument. The programmer is
advised to use the iabs pseudo operation instead.

The h_iabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffffffff h_iabs r0 r30 → r60 r60 ← 0x00000001

r10 = 0, r40 = 0xfffffff4 IF r10 h_iabs r0 r40 → r80 no change, since guard is false

r20 = 1, r40 = 0xfffffff4 IF r20 h_iabs r0 r40 → r90 r90 ← 0xc

r50 = 0x80000001 h_iabs r0 r50 → r100 r100 ← 0x7fffffff

r60 = 0x80000000 h_iabs r0 r60 → r110 r110 ← 0x80000000

r20 = 1 h_iabs r0 r20 → r120 r120 ← 1

SEE ALSO
iabs fabsval

h_iabs

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-70

Hardware 16-bit store with displacement

SYNTAX
[IF rguard] h_st16d(d) rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

mem[rsrc2 + d + (1 ⊕ bs)] ← rsrc1<7:0>
mem[rsrc2 + d + (0 ⊕ bs)] ← rsrc1<15:8>

}

ATTRIBUTES
Function unit dmem
Operation code 30
Number of operands 2
Modifier 7 bits
Modifier range –128..126 by 2
Latency n/a
Issue slots 4, 5

DESCRIPTION
The h_st16d operation stores the least-significant 16-bit halfword of rsrc1 into the memory locations pointed to by

the address in rsrc2 + d. The d value is an opcode modifier, must be in the range –128 and 126 inclusive, and must be
a multiple of 2. This store operation is performed as little-endian or big-endian depending on the current setting of the
bytesex bit in the PCSW.

If h_st16d is misaligned (the memory address computed by rsrc2 + d is not a multiple of 2), the result of
h_st16d is undefined, and the MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if
the TRPMSE (TRaP on Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the
next interruptible jump.

The h_st16d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, h_st16d has no side effects whatever; in particular,
the LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xcfe, r80 = 0x44332211 h_st16d(2) r80 r10 [0xd00] ← 0x22, [0xd01] ← 0x11

r50 = 0, r20 = 0xd05,
r70 = 0xaabbccdd

IF r50 h_st16d(–4) r70 r20 no change, since guard is false

r60 = 1, r30 = 0xd06,
r70 = 0xaabbccdd

IF r60 h_st16d(–4) r70 r30 [0xd02] ← 0xcc, [0xd03] ← 0xdd

SEE ALSO
st16 st16d st8 st8d st32

st32d readpcsw ijmpf

h_st16d

PNX1300/01/02/11 Data Book Philips Semiconductors

A-71 PRELIMINARY SPECIFICATION

Hardware 32-bit store with displacement

SYNTAX
[IF rguard] h_st32d(d) rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

mem[rsrc2 + d + (3 ⊕ bs)] ← rsrc1<7:0>
mem[rsrc2 + d + (2 ⊕ bs)] ← rsrc1<15:8>

 mem[rsrc2 + d + (1 ⊕ bs)] ← rsrc1<24:16>
 mem[rsrc2 + d + (0 ⊕ bs)] ← rsrc1<31:24>
}

ATTRIBUTES
Function unit dmem
Operation code 31
Number of operands 2
Modifier 7 bits
Modifier range –256..252 by 4
Latency n/a
Issue slots 4, 5

DESCRIPTION
The h_st32d operation stores all 32 bits of rsrc1 into the memory locations pointed to by the address in rsrc2 + d.

The d value is an opcode modifier, must be in the range –256 and 252 inclusive, and must be a multiple of 4. This
store operation is performed as little-endian or big-endian depending on the current setting of the bytesex bit in the
PCSW.

If h_st32d is misaligned (the memory address computed by rsrc2 + d is not a multiple of 4), the result of
h_st32d is undefined, and the MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if
the TRPMSE (TRaP on Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the
next interruptible jump.

The h_st32d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, h_st32d has no side effects whatever; in
particular, the LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xcfc, r80 = 0x44332211 h_st32d(4) r80 r10 [0xd00] ← 0x44, [0xd01] ← 0x33,
[0xd02] ← 0x22, [0xd03] ← 0x11

r50 = 0, r20 = 0xd0b,
r70 = 0xaabbccdd

IF r50 h_st32d(–8) r70 r20 no change, since guard is false

r60 = 1, r30 = 0xd0c,
r70 = 0xaabbccdd

IF r60 h_st32d(–8) r70 r30 [0xd04] ← 0xaa, [0xd05] ← 0xbb,
[0xd06] ← 0xcc, [0xd07] ← 0xdd

SEE ALSO
st32 st32d st16 st16d st8

st8d readpcsw ijmpf

h_st32d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-72

Hardware 8-bit store with displacement

SYNTAX
[IF rguard] h_st8d(d) rsrc1 rsrc2

FUNCTION
if rguard then

mem[rsrc2 + d] ← rsrc1<7:0>

ATTRIBUTES
Function unit dmem
Operation code 29
Number of operands 2
Modifier 7 bits
Modifier range –64..63
Latency n/a
Issue slots 4, 5

DESCRIPTION
The h_st8d operation stores the least-significant 8-bit byte of rsrc1 into the memory location pointed to by the

address formed from the sum rsrc2 + d. The value of the opcode modifier d must be in the range -64 and 63 inclusive.
This operation does not depend on the bytesex bit in the PCSW since only a single byte is stored.

The h_st8d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory location (and the modification of cache if the location is cacheable). If the LSB
of rguard is 1, the store takes effect. If the LSB of rguard is 0, h_st8d has no side effects whatever; in particular, the
LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 h_st8d(3) r80 r10 [0xd03] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 h_st8d(-4) r70 r20 no change, since guard is false

r60 = 1, r30 = 0xd02,
r70 = 0xaabbccdd

IF r60 h_st8d(-4) r70 r30 [0xcfe] ← 0xdd

SEE ALSO
st8 st8d st16 st16d st32

st32d

h_st8d

PNX1300/01/02/11 Data Book Philips Semiconductors

A-73 PRELIMINARY SPECIFICATION

Read clock cycle counter, most-significant word

SYNTAX
[IF rguard] hicycles → rdest

FUNCTION
if rguard then

rdest ← CCCOUNT<63:32>

ATTRIBUTES
Function unit fcomp
Operation code 155
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
Refer to Section 3.1.5, “CCCOUNT—Clock Cycle Counter” for a description of the CCCOUNT operation. The

hicycles operation copies the high 32 bits of the slave register Clock Cycle Counter (CCCOUNT) to the destination
register, rdest. The contents of the master counter are transferred to the slave CCCOUNT register only on a
successful interruptible jump and on processor reset. Thus, if cycles and hicycles are executed without
intervening interruptible jumps, the operation pair is guaranteed to be a coherent sample of the master clock-cycle
counter. The master counter increments on all cycles (processor-stall and non-stall) if PCSW.CS = 1; otherwise, the
counter increments only on non-stall cycles.

The hicycles operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

CCCOUNT_HR = 0xabcdefff12345678 hicycles → r60 r60 ← 0xabcdefff

r10 = 0, CCCOUNT_HR = 0xabcdefff12345678 IF r10 hicycles → r70 no change, since guard is false

r20 = 1, CCCOUNT_HR = 0xabcdefff12345678 IF r20 hicycles → r100 r100 ← 0xabcdefff

SEE ALSO
cycles curcycles writepcsw

hicycles

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-74

Absolute value
pseudo-op for h_iabs

SYNTAX
[IF rguard] iabs rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 < 0 then
rdest ← –rsrc1

else
rdest ← rsrc1

}

ATTRIBUTES
Function unit alu
Operation code 44
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The iabs operation is a pseudo operation transformed by the scheduler into an h_iabs with zero as the first

argument and a second argument equal to the iabs argument. (Note: pseudo operations cannot be used in
assembly source files.)

The iabs operation computes the absolute value of rsrc1 and stores the result into rdest. The argument is a signed
integer; the result is an unsigned integer.

The iabs operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffffffff iabs r30 → r60 r60 ← 0x00000001

r10 = 0, r40 = 0xfffffff4 IF r10 iabs r40 → r80 no change, since guard is false

r20 = 1, r40 = 0xfffffff4 IF r20 iabs r40 → r90 r90 ← 0xc

r50 = 0x80000001 iabs r50 → r100 r100 ← 0x7fffffff

r60 = 0x80000000 iabs r60 → r110 r110 ← 0x80000000

r20 = 1 iabs r20 → r120 r120 ← 1

SEE ALSO
h_iabs dspiabs dspidualabs

fabsval

iabs

PNX1300/01/02/11 Data Book Philips Semiconductors

A-75 PRELIMINARY SPECIFICATION

Signed add

SYNTAX
[IF rguard] iadd rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 + rsrc2

ATTRIBUTES
Function unit alu
Operation code 12
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The iadd operation computes the sum rsrc1+rsrc2 and stores the result into rdest. The operands can be either

both signed or unsigned integers. No overflow or underflow detection is performed.
The iadd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0x100 iadd r60 r60 → r80 r80 ← 0x200

r10 = 0, r60 = 0x100, r30 = 0xf11 IF r10 iadd r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r30 = 0xf11 IF r20 iadd r60 r30 → r90 r90 ← 0x1011

r70 = 0xffffff00, r40 = 0xffffff9c iadd r70 r40 → r100 r100 ← 0xfffffe9c

SEE ALSO
iaddi carry dspiadd
dspidualadd fadd

iadd

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-76

Add with immediate

SYNTAX
[IF rguard] iaddi(n) rsrc1 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 + n

ATTRIBUTES
Function unit alu
Operation code 5
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The iaddi operation sums a single argument in rsrc1 and an immediate modifier n and stores the result in rdest.

The value of n must be between 0 and 127, inclusive.
The iaddi operations optionally take a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0xf11 iaddi(127) r30 → r70 r70 ← 0xf90

r10 = 0, r40 = 0xffffff9c IF r10 iaddi(1) r40 → r80 no change, since guard is false

r20 = 1, r40 = 0xffffff9c IF r20 iaddi(1) r40 → r90 r90 ← 0xffffff9d

r50 = 0x1000 iaddi(15) r50 → r120 r120 ← 0x100f

r60 = 0xfffffff0 iaddi(2) r60 → r110 r110 ← 0xfffffff2

r60 = 0xfffffff0 iaddi(17) r60 → r120 r120 ← 1

SEE ALSO
iadd carry

iaddi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-77 PRELIMINARY SPECIFICATION

Signed average

SYNTAX
[IF rguard] iavgonep rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← (sign_ext32to64(rsrc1) + sign_ext32to64(rsrc2) + 1) >> 1;

ATTRIBUTES
Function unit dspalu
Operation code 25
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the iavgonep operation returns the average of the two arguments. This operation computes the

sum rsrc1+rsrc2+1, shifts the sum right by 1 bit, and stores the result into rdest. The operands are signed integers.

The iavgonep operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0x10, r70 = 0x20 iavgonep r60 r70 → r80 r80 ← 0x18

r10 = 0, r60 = 0x10, r30 = 0x20 IF r10 iavgonep r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x9, r30 = 0x20 IF r20 iavgonep r60 r30 → r90 r90 ← 0x15

r70 = 0xfffffff7, r40 = 0x2 iavgonep r70 r40 → r100 r100 ← 0xfffffffd

r70 = 0xfffffff7, r40 = 0x3 iavgonep r70 r40 → r100 r100 ← 0xfffffffd

031

rsrc1
031

rsrc2

031

rdest

+

032
Full precision

33-bit result S

S

shift down one bit

1

signedsigned

signed

signed

SEE ALSO
quadavg iadd

iavgonep

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-78

Signed select byte

SYNTAX
[IF rguard] ibytesel rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc2 = 0 then
rdest ← sign_ext8to32(rsrc1<7:0>)

else if rsrc2 = 1 then
rdest ← sign_ext8to32(rsrc1<15:8>)

else if rsrc2 = 2 then
rdest ← sign_ext8to32(rsrc1<23:16>)

else if rsrc2 = 3 then
rdest ← sign_ext8to32(rsrc1<31:24>)

}

ATTRIBUTES
Function unit alu
Operation code 56
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the ibytesel operation selects one byte from the argument, rsrc1, sign-extends the byte to 32

bits, and stores the result in rdest. The value of rsrc2 determines which byte is selected, with rsrc2=0 selecting the
LSB of rsrc1 and rsrc2=3 selecting the MSB of rsrc1. If rsrc2 is not between 0 and 3 inclusive, the result of
ibytesel is undefined.

The ibytesel operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x44332211, r40 = 1 ibytesel r30 r40 → r50 r50 ← 0x00000022

r10 = 0, r60 = 0xddccbbaa, r70 = 2 IF r10 ibytesel r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0xddccbbaa, r70 = 2 IF r20 ibytesel r60 r70 → r90 r90 ← 0xffffffcc

r100 = 0xffffff7f, r110 = 0 ibytesel r100 r110 → r120 r120 ← 0x0000007f

01531

rsrc1
031

rsrc2
23 7 1

0

031

rdest
7

7

S

S

SSSSSSSSSSSSSSSSSSSSSSSS

3 2 1 0

signed signed signed signed

signed

signed

SEE ALSO
ubytesel sex8 packbytes

ibytesel

PNX1300/01/02/11 Data Book Philips Semiconductors

A-79 PRELIMINARY SPECIFICATION

Clip signed to signed

SYNTAX
[IF rguard] iclipi rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← min(max(rsrc1, –rsrc2–1), rsrc2)

ATTRIBUTES
Function unit dspalu
Operation code 74
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The iclipi operation returns the value of rsrc1 clipped into the unsigned integer range (–rsrc2–1) to rsrc2,

inclusive. The argument rsrc1 is considered a signed integer; rsrc2 is considered an unsigned integer and must have
a value between 0 and 0x7fffffff inclusive.

The iclipi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x80, r40 = 0x7f iclipi r30 r40 → r50 r50 ← 0x7f

r10 = 0, r60 = 0x12345678,
r70 = 0xabc

IF r10 iclipi r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x12345678,
r70 = 0xabc

IF r20 iclipi r60 r70 → r90 r90 ← 0xabc

r100 = 0x80000000, r110 = 0x3fffff iclipi r100 r110 → r120 r120 ← 0xffc00000

SEE ALSO
uclipi uclipu imin imax

iclipi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-80

Invalidate all instruction cache blocks

SYNTAX
[IF rguard] iclr

FUNCTION
if rguard then {

block ← 0
for all blocks in instruction cache {

icache_reset_valid_block(block)
block ← block + 1

}
}

ATTRIBUTES
Function unit branch
Operation code 184
Number of operands 0
Modifier No
Modifier range —
Latency n/a
Issue slots 2, 3, 4

DESCRIPTION
The iclr operation resets the valid bits of all blocks in the instruction cache.
iclr does clear the valid bits of locked blocks. iclr does not change the replacement status of instruction-cache

blocks.
iclr ensures coherency between caches and main memory by discarding all pending prefetch operations.
The side effect time behavior of iclr is such that if instruction i performs an iclr, instructions i, i+1, i+2 will be

included in the discard from the instruction cache, but i+3 will be retained.
The iclr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

iclr
r10 = 0 IF r10 iclr no change and no stall cycles, since

guard is false

r20 = 1 IF r20 iclr

SEE ALSO
dcb dinvalid

iclr

PNX1300/01/02/11 Data Book Philips Semiconductors

A-81 PRELIMINARY SPECIFICATION

Identity
pseudo-op for iadd

SYNTAX
[IF rguard] ident rsrc1 → rdest

FUNCTION
if rguard then

rdest ← rsrc1

ATTRIBUTES
Function unit alu
Operation code 12
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ident operation is a pseudo operation transformed by the scheduler into an iadd with r0 (always contains 0)

as the first argument and rsrc1 as the second. (Note: pseudo operations cannot be used in assembly source files.)
The ident operation copies the argument rsrc1 to rdest. It is used by the instruction scheduler to implement

register to register copying.
The ident operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x100 ident r30 → r40 r40 ← 0x100

r10 = 0, r50 = 0x12345678 IF r10 ident r50 → r60 no change, since guard is false

r20 = 1, r50 = 0x12345678 IF r20 ident r50 → r70 r70 ← 0x12345678

SEE ALSO
iadd

ident

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-82

Signed compare equal

SYNTAX
[IF rguard] ieql rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 = rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 37
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ieql operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is equal to the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The ieql operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ieql r30 r40 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ieql r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x1000 IF r20 ieql r50 r60 → r90 r90 ← 1

r70 = 0x80000000, r40 = 4 ieql r70 r40 → r100 r100 ← 0

r70 = 0x80000000 ieql r70 r70 → r110 r110 ← 1

SEE ALSO
igeq ueql ieqli ineq

ieql

PNX1300/01/02/11 Data Book Philips Semiconductors

A-83 PRELIMINARY SPECIFICATION

Signed compare equal with immediate

SYNTAX
[IF rguard] ieqli(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 = n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 4
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ieqli operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is equal to the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The ieqli operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ieqli(2) r30 → r80 r80 ← 0

r30 = 3 ieqli(3) r30 → r90 r90 ← 1

r30 = 3 ieqli(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 ieqli(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ieqli(63) r40 → r100 r100 ← 0

r60 = 0xffffffc0 ieqli(-64) r60 → r120 r120 ← 1

SEE ALSO
ieql igeqi ueqli ineqi

ieqli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-84

Sum of products of signed 16-bit halfwords

SYNTAX
[IF rguard] ifir16 rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← sign_ext16to32(rsrc1<31:16>) × sign_ext16to32(rsrc2<31:16>) +
sign_ext16to32(rsrc1<15:0>) × sign_ext16to32(rsrc2<15:0>)

ATTRIBUTES
Function unit dspmul
Operation code 93
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the ifir16 operation computes two separate products of the two pairs of corresponding 16-bit

halfwords of rsrc1 and rsrc2; the two products are summed, and the result is written to rdest. All values are considered
signed; thus, the intermediate products and the final sum of products are signed. All intermediate computations are
performed without loss of precision; the final sum of products is clipped into the range [0x80000000..0x7fffffff] before
being written into rdest.

The ifir16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x00020003, r40 = 0x00010002 ifir16 r30 r40 → r50 r50 ← 0x8

r10 = 0, r60 = 0xff9c0064, r70 = 0x0064ff9c IF r10 ifir16 r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0xff9c0064, r70 = 0x0064ff9c IF r20 ifir16 r60 r70 → r90 r90 ← 0xffffb1e0

r30 = 0x00020003, r70 = 0x0064ff9c ifir16 r30 r70 → r100 r100 ← 0xffffff9c

01531

rsrc1
01531

rsrc2

031

rdest

×
×

+

signed signed signed signed

signed

032

Clip to [231–1..–231]

Full-precision
33-bit result signed

SEE ALSO
ifir8ii ifir8ui ufir8uu

ifir16

ifir16

PNX1300/01/02/11 Data Book Philips Semiconductors

A-85 PRELIMINARY SPECIFICATION

Signed sum of products of signed bytes

SYNTAX
[IF rguard] ifir8ii rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← sign_ext8to32(rsrc1<31:24>) × sign_ext8to32(rsrc2<31:24>) +
sign_ext8to32(rsrc1<23:16>) × sign_ext8to32(rsrc2<23:16>) +
sign_ext8to32(rsrc1<15:8>) × sign_ext8to32(rsrc2<15:8>) +
sign_ext8to32(rsrc1<7:0>) × sign_ext8to32(rsrc2<7:0>)

ATTRIBUTES
Function unit dspmul
Operation code 92
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the ifir8ii operation computes four separate products of the four pairs of corresponding 8-bit

bytes of rsrc1 and rsrc2; the four products are summed, and the result is written to rdest. All values are considered
signed; thus, the intermediate products and the final sum of products are signed. All computations are performed
without loss of precision.

The ifir8ii operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r70 = 0x0afb14f6, r30 = 0x0a0a1414 ifir8ii r70 r30 → r90 r90 ← 0xfa

r10 = 0, r70 = 0x0afb14f6, r30 = 0x0a0a1414 IF r10 ifir8ii r70 r30 → r100 no change, since guard is false

r20 = 1, r80 = 0x649c649c, r40 = 0x9c649c64 IF r20 ifir8ii r80 r40 → r110 r110 ← 0xffff63c0

r50 = 0x80808080, r60 = 0xffffffff ifir8ii r50 r60 → r120 r120 ← 0x200

01531

rsrc1
01531

rsrc2

031

rdest

×
×

+

×
×

23 7 23 7

signed signed signed signed signed signed signed signed

signed

SEE ALSO
ifir8ui ufir8uu ifir16

ufir16

ifir8ii

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-86

Signed sum of products of unsigned/signed
bytes

SYNTAX
[IF rguard] ifir8ui rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← zero_ext8to32(rsrc1<31:24>) × sign_ext8to32(rsrc2<31:24>) +
zero_ext8to32(rsrc1<23:16>) × sign_ext8to32(rsrc2<23:16>) +
zero_ext8to32(rsrc1<15:8>) × sign_ext8to32(rsrc2<15:8>) +
zero_ext8to32(rsrc1<7:0>) × sign_ext8to32(rsrc2<7:0>)

ATTRIBUTES
Function unit dspmul
Operation code 91
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the ifir8ui operation computes four separate products of the four pairs of corresponding 8-bit

bytes of rsrc1 and rsrc2; the four products are summed, and the result is written to r dest. The bytes from rsrc1 are
considered unsigned, but the bytes from rsrc2 are considered signed; thus, the intermediate products and the final
sum of products are signed. All computations are performed without loss of precision.

The ifir8ui operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r70 = 0x0afb14f6, r30 = 0x0a0a1414 ifir8ui r30 r70 → r90 r90 ← 0xfa

r10 = 0, r70 = 0x0afb14f6, r30 = 0x0a0a1414 IF r10 ifir8ui r30 r70 → r100 no change, since guard is false

r20 = 1, r80 = 0x649c649c, r40 = 0x9c649c64 IF r20 ifir8ui r40 r80 → r110 r110 ← 0x2bc0

r50 = 0x80808080, r60 = 0xffffffff ifir8ui r60 r50 → r120 r120 ← 0xfffe0200

01531

rsrc1
01531

rsrc2

031

rdest

×
×

+

×
×

23 7 23 7

unsigned unsigned unsigned unsigned signed signed signed signed

signed

SEE ALSO
ifir8ii ufir8uu ifir16

ufir16

ifir8ui

PNX1300/01/02/11 Data Book Philips Semiconductors

A-87 PRELIMINARY SPECIFICATION

Convert floating-point to integer using PCSW
rounding mode

SYNTAX
[IF rguard] ifixieee rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (long) ((float)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 121
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifixieee operation converts the single-precision IEEE floating-point value in rsrc1 to a signed integer and

writes the result into rdest. Rounding is according to the IEEE rounding mode bits in PCSW. If r src1 is denormalized,
zero is substituted before conversion, and the IFZ flag in the PCSW is set. If ifixieee causes an IEEE exception,
such as overflow or underflow, the corresponding exception flags in the PCSW are set. The PCSW exception flags are
sticky: the flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit
writepcsw operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any
other floating-point compute operations update the PCSW at the same time, the net result in each exception flag is the
logical OR of all simultaneous updates ORed with the existing PCSW value for that exception flag.

The ifixieeeflags operation computes the exception flags that would result from an individual ifixieee.
The ifixieee operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ifixieee r30 → r100 r100 ← 3

r35 = 0x40247ae1 (2.57) ifixieee r35 → r102 r102 ← 3, INX flag set

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ifixieee r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ifixieee r40 → r110 r110 ← 0x80000000 (-231), INV flag set

r45 = 0x7f800000 (+INF)) ifixieee r45 → r112 r112 ← 0x7fffffff (231-1), INV flag set

r50 = 0xbfc147ae (-1.51) ifixieee r50 → r115 r115 ← -2, INX flag set

r60 = 0x00400000 (5.877471754e-39) ifixieee r60 → r117 r117 ← 0, IFZ set

r70 = 0xffffffff (QNaN) ifixieee r70 → r120 r120 ← 0, INV flag set

r80 = 0xffbfffff (SNaN) ifixieee r80 → r122 r122 ← 0, INV flag set

SEE ALSO
ufixieee ifixrz ufixrz

ifixieee

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-88

IEEE status flags from convert floating-point to
integer using PCSW rounding mode

SYNTAX
[IF rguard] ifixieeeflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((long) ((float)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 122
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifixieeeflags operation computes the IEEE exceptions that would result from converting the single-

precision IEEE floating-point value in rsrc1 to a signed integer, and an integer bit vector representing the computed
exception flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in
the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is according to the IEEE
rounding mode bits in PCSW. If rsrc1 is denormalized, zero is substituted before computing the conversion, and the
IFZ bit in the result is set.

The ifixieeeflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB
controls the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not
changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ifixieeeflags r30 → r100 r100 ← 0

r35 = 0x40247ae1 (2.57) ifixieeeflags r35 → r102 r102 ← 0x02 (INX)

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ifixieeeflags r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ifixieeeflags r40 → r110 r110 ← 0x10 (INV)

r45 = 0x7f800000 (+INF)) ifixieeeflags r45 → r112 r112 ← 0x10 (INV)

r50 = 0xbfc147ae (-1.51) ifixieeeflags r50 → r115 r115 ← 0x02 (INX)

r60 = 0x00400000 (5.877471754e-39) ifixieeeflags r60 → r117 r117 ← 0x20 (IFZ)

r70 = 0xffffffff (QNaN) ifixieeeflags r70 → r120 r120 ← 0x10 (INV)

r80 = 0xffbfffff (SNaN) ifixieeeflags r80 → r122 r122 ← 0x10 (INV)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ifixieee ufixieeeflags
ifixrzflags ufixrzflags

ifixieeeflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-89 PRELIMINARY SPECIFICATION

Convert floating-point to integer with round
toward zero

SYNTAX
[IF rguard] ifixrz rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (long) ((float)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 21
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifixrz operation converts the single-precision IEEE floating-point value in rsrc1 to a signed integer and

writes the result into rdest. Rounding toward zero is performed; the IEEE rounding mode bits in PCSW are ignored.
This is the preferred rounding for ANSI C. If rsrc1 is denormalized, zero is substituted before conversion, and the IFZ
flag in the PCSW is set. If ifixrz causes an IEEE exception, such as overflow or underflow, the corresponding
exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a side-effect of any
floating-point operation but can only be reset by an explicit writepcsw operation. The update of the PCSW
exception flags occurs at the same time as rdest is written. If any other floating-point compute operations update the
PCSW at the same time, the net result in each exception flag is the logical OR of all simultaneous updates ORed with
the existing PCSW value for that exception flag.

The ifixrzflags operation computes the exception flags that would result from an individual ifixrz.
The ifixrz operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ifixrz r30 → r100 r100 ← 3

r35 = 0x40247ae1 (2.57) ifixrz r35 → r102 r102 ← 2, INX flag set

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ifixrz r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ifixrz r40 → r110 r110 ← 0x80000000 (-231), INV flag
set

r45 = 0x7f800000 (+INF)) ifixrz r45 → r112 r112 ← 0x7fffffff (231-1), INV flag set

r50 = 0xbfc147ae (-1.51) ifixrz r50 → r115 r115 ← -1, INX flag set

r60 = 0x00400000 (5.877471754e-39) ifixrz r60 → r117 r117 ← 0, IFZ set

r70 = 0xffffffff (QNaN) ifixrz r70 → r120 r120 ← 0, INV flag set

r80 = 0xffbfffff (SNaN) ifixrz r80 → r122 r122 ← 0, INV flag set

SEE ALSO
ifixieee ufixieee ufixrz

ifixrz

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-90

IEEE status flags from convert floating-point to
integer with round toward zero

SYNTAX
[IF rguard] ifixrzflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((long) ((float)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 129
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifixrzflags operation computes the IEEE exceptions that would result from converting the single-precision

IEEE floating-point value in rsrc1 to a signed integer, and an integer bit vector representing the computed exception
flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in the PCSW.
The exception flags in PCSW are left unchanged by this operation. Rounding toward zero is performed; the IEEE
rounding mode bits in PCSW are ignored. If rsrc1 is denormalized, zero is substituted before computing the
conversion, and the IFZ bit in the result is set.

The ifixrzflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ifixrzflags r30 → r100 r100 ← 0

r35 = 0x40247ae1 (2.57) ifixrzflags r35 → r102 r102 ← 0x02 (INX)

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ifixrzflags r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ifixrzflags r40 → r110 r110 ← 0x10 (INV)

r45 = 0x7f800000 (+INF)) ifixrzflags r45 → r112 r112 ← 0x10 (INV)

r50 = 0xbfc147ae (-1.51) ifixrzflags r50 → r115 r115 ← 0x02 (INX)

r60 = 0x00400000 (5.877471754e-39) ifixrzflags r60 → r117 r117 ← 0x20 (IFZ)

r70 = 0xffffffff (QNaN) ifixrzflags r70 → r120 r120 ← 0x10 (INV)

r80 = 0xffbfffff (SNaN) ifixrzflags r80 → r122 r122 ← 0x10 (INV)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ifixrz ufixrzflags

ifixieeeflags
ufixieeeflags

ifixrzflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-91 PRELIMINARY SPECIFICATION

If non-zero negate

SYNTAX
[IF rguard] iflip rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 = 0 then
rdest ← rsrc2

else
rdest ← –rsrc2

}

ATTRIBUTES
Function unit dspalu
Operation code 77
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The iflip operation copies rsrc2 to rdest if rsrc1 = 0; otherwise (if rsrc1 != 0), rdest is set to the two’s-complement

of rsrc2. All values are signed integers.
The iflip operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0, r40 = 1 iflip r30 r40 → r50 r50 ← 0x1

r10 = 0, r60 = 0xffff0000, r70 = 0xabc IF r10 iflip r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0xffff0000, r70 = 0xabc IF r20 iflip r60 r70 → r90 r90 ← 0xfffff544

r30 = 0, r100 = 0xffffff9c iflip r30 r100 → r110 r110 ← 0xffffff9c

r40 = 1, r110 = 0xffffffff iflip r40 r110 → r120 r120 ← 0x1

SEE ALSO
inonzero izero

iflip

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-92

Convert signed integer to floating-point

SYNTAX
[IF rguard] ifloat rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (float) ((long)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 20
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifloat operation converts the signed integer value in rsrc1 to single-precision IEEE floating-point format and

writes the result into rdest. Rounding is according to the IEEE rounding mode bits in PCSW. If ifloat causes an
IEEE exception, such as inexact, the corresponding exception flags in the PCSW are set. The PCSW exception flags
are sticky: the flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit
writepcsw operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any
other floating-point compute operations update the PCSW at the same time, the net result in each exception flag is the
logical OR of all simultaneous updates ORed with the existing PCSW value for that exception flag.

The ifloatflags operation computes the exception flags that would result from an individual ifloat.
The ifloat operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 3 ifloat r30 → r100 r100 ← 0x40400000 (3.0)

r40 = 0xffffffff (-1) ifloat r40 → r105 r105 ← 0xbf800000 (-1.0)

r10 = 0, r50 = 0xfffffffd IF r10 ifloat r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ifloat r50 → r115 r115 ← 0xc0400000 (–3.0)

r60 = 0x7fffffff (2147483647) ifloat r60 → r117 r117 ← 0x4f000000 (2.147483648e+9), INX flag set

r70 = 0x80000000 (-2147483648) ifloat r70 → r120 r120 ← 0xcf000000 (-2.147483648e+9)

r80 = 0x7ffffff1 (2147483633) ifloat r80 → r122 r122 ← 0x4f000000 (2.147483648e+9), INX flag set

SEE ALSO
ufloat ifloatrz ufloatrz

ifixieee ifloatflags

ifloat

PNX1300/01/02/11 Data Book Philips Semiconductors

A-93 PRELIMINARY SPECIFICATION

IEEE status flags from convert signed integer to
floating-point

SYNTAX
[IF rguard] ifloatflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float) ((long)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 130
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifloatflags operation computes the IEEE exceptions that would result from converting the signed integer

in rsrc1 to a single-precision IEEE floating-point value, and an integer bit vector representing the computed exception
flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in the PCSW.
The exception flags in PCSW are left unchanged by this operation. Rounding is according to the IEEE rounding mode
bits in PCSW.

The ifloatflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ifloatflags r30 → r100 r100 ← 0

r40 = 0xffffffff (-1) ifloatflags r40 → r105 r105 ← 0

r10 = 0, r50 = 0xfffffffd IF r10 ifloatflags r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ifloatflags r50 → r115 r115 ← 0

r60 = 0x7fffffff (2147483647) ifloatflags r60 → r117 r117 ← 0x02 (INX)

r70 = 0x80000000 (-2147483648) ifloatflags r70 → r120 r120 ← 0

r80 = 0x7ffffff1 (2147483633) ifloatflags r80 → r122 r122 ← 0x02 (INX)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ifloat ifloatrzflags

ufloatflags ufloatrzflags

ifloatflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-94

Convert signed integer to floating-point with
rounding toward zero

SYNTAX
[IF rguard] ifloatrz rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (float) ((long)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 117
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifloatrz operation converts the signed integer value in rsrc1 to single-precision IEEE floating-point format

and writes the result into rdest. Rounding is performed toward zero; the IEEE rounding mode bits in PCSW are
ignored. This is the preferred rounding mode for ANSI C. If ifloatrz causes an IEEE exception, such as inexact,
the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as
a side-effect of any floating-point operation but can only be reset by an explicit writepcsw operation. The update of
the PCSW exception flags occurs at the same time as rdest is written. If any other floating-point compute operations
update the PCSW at the same time, the net result in each exception flag is the logical OR of all simultaneous updates
ORed with the existing PCSW value for that exception flag.

The ifloatrzflags operation computes the exception flags that would result from an individual ifloatrz.
The ifloatrz operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 3 ifloatrz r30 → r100 r100 ← 0x40400000 (3.0)

r40 = 0xffffffff (-1) ifloatrz r40 → r105 r105 ← 0xbf800000 (-1.0)

r10 = 0, r50 = 0xfffffffd IF r10 ifloatrz r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ifloatrz r50 → r115 r115 ← 0xc0400000 (–3.0)

r60 = 0x7fffffff (2147483647) ifloatrz r60 → r117 r117 ← 0x4effffff (2.147483520e+9), INX flag set

r70 = 0x80000000 (-2147483648) ifloatrz r70 → r120 r120 ← 0xcf000000 (-2.147483648e+9)

r80 = 0x7ffffff1 (2147483633) ifloatrz r80 → r122 r122 ← 0x4effffff (2.147483520e+9), INX flag set

SEE ALSO
ifloat ufloatrz ifixieee

ifloatflags

ifloatrz

PNX1300/01/02/11 Data Book Philips Semiconductors

A-95 PRELIMINARY SPECIFICATION

IEEE status flags from convert signed integer to
floating-point with rounding toward zero

SYNTAX
[IF rguard] ifloatrzflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float) ((long)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 118
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ifloatrzflags operation computes the IEEE exceptions that would result from converting the signed

integer in rsrc1 to a single-precision IEEE floating-point value, and an integer bit vector representing the computed
exception flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in
the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is performed toward zero;
the IEEE rounding mode bits in PCSW are ignored.

The ifloatrzflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB
controls the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not
changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ifloatrzflags r30 → r100 r100 ← 0

r40 = 0xffffffff (-1) ifloatrzflags r40 → r105 r105 ← 0

r10 = 0, r50 = 0xfffffffd IF r10 ifloatrzflags r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ifloatrzflags r50 → r115 r115 ← 0

r60 = 0x7fffffff (2147483647) ifloatrzflags r60 → r117 r117 ← 0x02 (INX)

r70 = 0x80000000 (-2147483648) ifloatrzflags r70 → r120 r120 ← 0

r80 = 0x7ffffff1 (2147483633) ifloatrzflags r80 → r122 r122 ← 0x02 (INX)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ifloatrz ifloatflags

ufloatflags ufloatrzflags

ifloatrzflags

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-96

Signed compare greater or equal

SYNTAX
[IF rguard] igeq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 >= rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 14
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The igeq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than or equal to

the second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The igeq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 igeq r30 r40 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 3 IF r10 igeq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 igeq r50 r60 → r90 r90 ← 1

r70 = 0x80000000, r40 = 4 igeq r70 r40 → r100 r100 ← 0

r70 = 0x80000000 igeq r70 r70 → r110 r110 ← 1

SEE ALSO
ileq igeqi

igeq

PNX1300/01/02/11 Data Book Philips Semiconductors

A-97 PRELIMINARY SPECIFICATION

Signed compare greater or equal with immediate

SYNTAX
[IF rguard] igeqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 >= n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 1
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The igeqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than or equal to

the opcode modifier, n; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The igeqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 igeqi(2) r30 → r80 r80 ← 1

r30 = 3 igeqi(3) r30 → r90 r90 ← 1

r30 = 3 igeqi(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 igeqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 igeqi(63) r40 → r100 r100 ← 1

r60 = 0x80000000 igeqi(-64) r60 → r120 r120 ← 0

SEE ALSO
igeq iles ieqli

igeqi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-98

Signed compare greater

SYNTAX
[IF rguard] igtr rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 > rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 15
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The igtr operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The igtr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 igtr r30 r40 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 3 IF r10 igtr r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 igtr r50 r60 → r90 r90 ← 1

r70 = 0x80000000, r40 = 4 igtr r70 r40 → r100 r100 ← 0

r70 = 0x80000000 igtr r70 r70 → r110 r110 ← 0

SEE ALSO
iles igtri

igtr

PNX1300/01/02/11 Data Book Philips Semiconductors

A-99 PRELIMINARY SPECIFICATION

Signed compare greater with immediate

SYNTAX
[IF rguard] igtri(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 > n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 0
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The igtri operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The igtri operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 igtri(2) r30 → r80 r80 ← 1

r30 = 3 igtri(3) r30 → r90 r90 ← 0

r30 = 3 igtri(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 igtri(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 igtri(63) r40 → r100 r100 ← 1

r60 = 0x80000000 igtri(-64) r60 → r120 r120 ← 0

SEE ALSO
igtr igeqi

igtri

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-100

Signed immediate

SYNTAX
iimm(n) → rdest

FUNCTION
rdest ← n

ATTRIBUTES
Function unit const
Operation code 191
Number of operands 0
Modifier 32 bits
Modifier range 0x80000000

..0x7fffffff
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The iimm operation stores the signed 32-bit opcode modifier n into rdest. Note: this operation is not guarded.

EXAMPLES

Initial Values Operation Result

iimm(2) → r10 r10 ← 2

iimm(0x100) → r20 r20 ← 0x100

iimm(0xfffc0000) → r30 r30 ← 0xfffc0000

SEE ALSO
uimm

iimm

PNX1300/01/02/11 Data Book Philips Semiconductors

A-101 PRELIMINARY SPECIFICATION

Interruptible indirect jump on false

SYNTAX
[IF rguard] ijmpf rsrc1 rsrc2

FUNCTION
if rguard then {

if (rsrc1 & 1) = 0 then {
DPC ← rsrc2
if exception is pending then

service exception
elseif interrupt is pending then

service interrupts
else

PC, SPC ← rsrc2
}

}

ATTRIBUTES
Function unit branch
Operation code 181
Number of operands 2
Modifier no
Modifier range —
Delay 3
Issue slots 2, 3, 4

DESCRIPTION
The ijmpf operation conditionally changes the program flow and allows pending interrupts or exceptions to be

serviced. If neither interrupts or exceptions are pending and the LSB of r src1 is 0, the DPC, PC, and SPC registers are
set equal to rsrc2. If an interrupt or exception is pending and the LSB of rsrc1 is 0, DPC is set equal to rsrc2 and the
service routine is invoked, where exceptions have priorities over interrupts. If the LSB of rsrc1 is 1, program execution
continues with the next sequential instruction.

The ijmpf operation optionally takes a guard, specified in rguard. If a guard is present, its LSB adds another
condition to the jump. If the LSB of rguard is 1, the instruction executes as previously described; otherwise, the jump
will not be taken and PC, DPC, and SPC are not modified regardless of the value of rsrc1.

EXAMPLES

Initial Values Operation Result

r50 = 0, r70 = 0x330 ijmpf r50 r70 program execution continues at 0x330 after
first servicing pending interrupts

r20 = 1, r70 = 0x330 ijmpf r20 r70 since r20 is true, program execution contin-
ues with next sequential instruction

r30 = 0, r50 = 0, r60 = 0x8000 IF r30 ijmpf r50 r60 since guard is false, program execution con-
tinues with next sequential instruction

r40 = 1, r50 = 0, r60 = 0x8000 IF r40 ijmpf r50 r60 program execution continues at 0x8000 after
first servicing pending interrupts

SEE ALSO
jmpf jmpt jmpi ijmpt ijmpi

ijmpf

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-102

Interruptible jump immediate

SYNTAX
[IF rguard] ijmpi(address)

FUNCTION
if rguard then {

DPC ← address
if exception is pending then

service exception
else if interrupt is pending then

service interrupts
else

PC, SPC ← address
}

ATTRIBUTES
Function unit branch
Operation code 179
Number of operands 0
Modifier 32 bits
Modifier range 0..0xffffffff
Delay 3
Issue slots 2, 3, 4

DESCRIPTION
The ijmpi operation changes the program flow and allows pending interrupts or exceptions to be serviced. If no

interrupts or exceptions are pending, the DPC, PC, and SPC registers are set equal to address. If an exception or
interrupts is pending, DPC is set equal to address and a service routine is invoked, where exceptions have priorities
over interrupts. address is an immediate opcode modifier.

The ijmpi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB adds a condition to
the jump. If the LSB of rguard is 1, the instruction executes as previously described; otherwise, the jump will not be
taken and PC, DPC, and SPC are not modified.

EXAMPLES

Initial Values Operation Result

ijmpi(0x330) program execution continues at 0x330

r30 = 0 IF r30 ijmpi(0x8000) since guard is false, program execution con-
tinues with next sequential instruction

r40 = 1 IF r40 ijmpi(0x8000) program execution continues at 0x8000

SEE ALSO
jmpf jmpt jmpi ijmpf ijmpt

ijmpi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-103 PRELIMINARY SPECIFICATION

Interruptible indirect jump on true

SYNTAX
[IF rguard] ijmpt rsrc1 rsrc2

FUNCTION
if rguard then {

if (rsrc1 & 1) = 1 then {
DPC ← rsrc2
if exception is pending then

service exception
elseif interrupt is pending then

service interrupts
else

PC, SPC ← rsrc2
}

}

ATTRIBUTES
Function unit branch
Operation code 177
Number of operands 2
Modifier no
Modifier range —
Delay 3
Issue slots 2, 3, 4

DESCRIPTION
The ijmpt operation conditionally changes the program flow and allows pending interrupts or exceptions to be

serviced. If no interrupts or exceptions are pending and the LSB of rsrc1 is 1, the DPC, PC, and SPC registers are set
equal to rsrc2. If an exception or interrupt is pending and the LSB of rsrc1 is 1, DPC is set equal to rsrc2 and a service
routine is invoked, where exceptions have priority over interrupts. If the LSB of rsrc1 is 0, program execution continues
with the next sequential instruction.

The ijmpt operation optionally takes a guard, specified in rguard. If a guard is present, its LSB adds another
condition to the jump. If the LSB of rguard is 1, the instruction executes as previously described; otherwise, the jump
will not be taken and PC, DPC, and SPC are not modified regardless of the value of rsrc1.

EXAMPLES

Initial Values Operation Result

r50 = 1, r70 = 0x330 ijmpt r50 r70 program execution continues at 0x330 after
first servicing pending interrupts

r20 = 0, r70 = 0x330 ijmpt r20 r70 since r20 is false, program execution contin-
ues with next sequential instruction

r30 = 0, r50 = 1, r60 = 0x8000 IF r30 ijmpt r50 r60 since guard is false, program execution con-
tinues with next sequential instruction

r40 = 1, r50 = 1, r60 = 0x8000 IF r40 ijmpt r50 r60 program execution continues at 0x8000 after
first servicing pending interrupts

SEE ALSO
jmpf jmpt jmpi ijmpf ijmpi

ijmpt

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-104

Signed 16-bit load
pseudo-op for ild16d(0)

SYNTAX
[IF rguard] ild16 rsrc1 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[(rsrc1 +(1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + (0 ⊕ bs)]
rdest ← sign_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 6
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild16 operation is a pseudo operation transformed by the scheduler into an ild16d(0) with the same

argument. (Note: pseudo operations cannot be used in assembly source files.)
The ild16 operation loads the 16-bit memory value from the address contained in rsrc1, sign extends it to 32 bits,

and stores the result in rdest. If the memory address contained in rsrc1 is not a multiple of 2, the result of ild16 is
undefined but no exception will be raised. This load operation is performed as little-endian or big-endian depending on
the current setting of the bytesex bit in the PCSW.

The result of an access by ild16 to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ild16 has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd00] = 0x22,
[0xd01] = 0x11

ild16 r10 → r60 r60 ← 0x00002211

r30 = 0, r20 = 0xd04, [0xd04] = 0x84,
[0xd05] = 0x33

IF r30 ild16 r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd04] = 0x84,
[0xd05] = 0x33

IF r40 ild16 r20 → r80 r80 ← 0xffff8433

r50 = 0xd01 ild16 r50 → r90 r90 undefined, since 0xd01 is not a multiple of 2

SEE ALSO
ild16d ild16r ild16x

ild16

PNX1300/01/02/11 Data Book Philips Semiconductors

A-105 PRELIMINARY SPECIFICATION

Signed 16-bit load with displacement

SYNTAX
[IF rguard] ild16d(d) rsrc1 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[(rsrc1 + d + (1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + d + (0 ⊕ bs)]
rdest ← sign_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 6
Number of operands 1
Modifier 7 bits
Modifier range –128..126 by 2
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild16d operation loads the 16-bit memory value from the address computed by rsrc1 + d, sign extends it to 32

bits, and stores the result in rdest. The d value is an opcode modifier, must be in the range –128 to 126 inclusive, and
must be a multiple of 2. If the memory address computed by r src1 + d is not a multiple of 2, the result of ild16d is
undefined but no exception will be raised. This load operation is performed as little-endian or big-endian depending on
the current setting of the bytesex bit in the PCSW.

The result of an access by ild16d to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild16d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ild16d has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd02] = 0x22,
[0xd03] = 0x11

ild16d(2) r10 → r60 r60 ← 0x00002211

r30 = 0, r20 = 0xd04, [0xd00] = 0x84,
[0xd01] = 0x33

IF r30 ild16d(-4) r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd00] = 0x84,
[0xd01] = 0x33

IF r40 ild16d(-4) r20 → r80 r80 ← 0xffff8433

r50 = 0xd01 ild16d(-4) r50 → r90 r90 undefined, since 0xd01 +(–4) is not a
multiple of 2

SEE ALSO
ild16 uld16 uld16d ild16r

uld16r ild16x uld16x

ild16d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-106

Signed 16-bit load with index

SYNTAX
[IF rguard] ild16r rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[(rsrc1 + rsrc2 +(1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + rsrc2 + (0 ⊕ bs)]
rdest ← sign_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 195
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild16r operation loads the 16-bit memory value from the address computed by rsrc1 + rsrc2, sign extends it

to 32 bits, and stores the result in rdest. If the memory address computed by rsrc1 + rsrc2 is not a multiple of 2, the
result of ild16r is undefined but no exception will be raised. This load operation is performed as little-endian or big-
endian depending on the current setting of the bytesex bit in the PCSW.

The result of an access by ild16r to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild16r operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ild16r has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r20 = 2, [0xd02] = 0x22,
[0xd03] = 0x11

ild16r r10 r20 → r80 r80 ← 0x00002211

r50 = 0, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84, [0xd01] = 0x33

IF r50 ild16r r40 r30 → r90 no change, since guard is false

r60 = 1, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84, [0xd01] = 0x33

IF r60 ild16r r40 r30 → r100 r100 ← 0xffff8433

r70 = 0xd01, r30 = 0xfffffffc ild16r r70 r30 → r110 r110 undefined, since 0xd01 +(–4) is not a
multiple of 2

SEE ALSO
ild16 uld16 ild16d uld16d

uld16r ild16x uld16x

ild16r

PNX1300/01/02/11 Data Book Philips Semiconductors

A-107 PRELIMINARY SPECIFICATION

Signed 16-bit load with scaled index

SYNTAX
[IF rguard] ild16x rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[(rsrc1 + (2 × rsrc2) + (1 ⊕ bs)]
temp<15:8> ← mem[(rsrc1 + (2 × rsrc2) + (0 ⊕ bs)]
rdest ← sign_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 196
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild16x operation loads the 16-bit memory value from the address computed by rsrc1 + 2×rsrc2, sign extends

it to 32 bits, and stores the result in rdest. If the memory address computed by rsrc1 + 2×rsrc2 is not a multiple of 2,
the result of ild16x is undefined but no exception will be raised. This load operation is performed as little-endian or
big-endian depending on the current setting of the bytesex bit in the PCSW.

The result of an access by ild16x to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild16x operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ild16x has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r30 = 1, [0xd02] = 0x22,
[0xd03] = 0x11

ild16x r10 r30 → r100 r100 ← 0x00002211

r50 = 0, r40 = 0xd04, r20 = 0xfffffffe,
[0xd00] = 0x84, [0xd01] = 0x33

IF r50 ild16x r40 r20 → r80 no change, since guard is false

r60 = 1, r40 = 0xd04, r20 = 0xfffffffe,
[0xd00] = 0x84, [0xd01] = 0x33

IF r60 ild16x r40 r20 → r90 r90 ← 0xffff8433

r70 = 0xd01, r30 = 1 ild16x r70 r30 → r110 r110 undefined, since 0xd01 + 2×1 is not a
multiple of 2

SEE ALSO
ild16 uld16 ild16d uld16d

ild16r uld16r uld16x

ild16x

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-108

Signed 8-bit load
pseudo-op for ild8d(0)

SYNTAX
[IF rguard] ild8 rsrc1 → rdest

FUNCTION
if rguard then

rdest ← sign_ext8to32(mem[rsrc1])

ATTRIBUTES
Function unit dmem
Operation code 192
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild8 operation is a pseudo operation transformed by the scheduler into an ild8d(0) with the same

argument. (Note: pseudo operations cannot be used in assembly source files.)
The ild8 operation loads the 8-bit memory value from the address contained in rsrc1, sign extends it to 32 bits,

and stores the result in rdest. This operation does not depend on the bytesex bit in the PCSW since only a single byte
is loaded.

The result of an access by ild8 to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild8 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed location is cacheable. if the LSB of rguard is 0, rdest is not
changed and ild8 has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd00] = 0x22 ild8 r10 → r60 r60 ← 0x00000022

r30 = 0, r20 = 0xd04, [0xd04] = 0x84 IF r30 ild8 r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd04] = 0x84 IF r40 ild8 r20 → r80 r80 ← 0xffffff84

r50 = 0xd01, [0xd01] = 0x33 ild8 r50 → r90 r90 ← 0x00000033

SEE ALSO
uld8 ild8d uld8d ild8r

uld8r

ild8

PNX1300/01/02/11 Data Book Philips Semiconductors

A-109 PRELIMINARY SPECIFICATION

Signed 8-bit load with displacement

SYNTAX
[IF rguard] ild8d(d) rsrc1 → rdest

FUNCTION
if rguard then

rdest ← sign_ext8to32(mem[rsrc1 + d])

ATTRIBUTES
Function unit dmem
Operation code 192
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild8d operation loads the 8-bit memory value from the address computed by r src1 + d, sign extends it to 32

bits, and stores the result in rdest. The d value is an opcode modifier in the range -64 to 63, inclusive. This operation
does not depend on the bytesex bit in the PCSW since only a single byte is loaded.

The result of an access by ild8d to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild8d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed location is cacheable. if the LSB of rguard is 0, rdest is not
changed and ild8d has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd02] = 0x22 ild8d(2) r10 → r60 r60 ← 0x000022

r30 = 0, r20 = 0xd04, [0xd00] = 0x84 IF r30 ild8d(-4) r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd00] = 0x84 IF r40 ild8d(-4) r20 → r80 r80 ← 0xffffff84

r50 = 0xd05, [0xd01] = 0x33 ild8d(-4) r50 → r90 r90 ← 0x00000033

SEE ALSO
ild8 uld8 uld8d ild8r

uld8r

ild8d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-110

Signed 8-bit load with index

SYNTAX
[IF rguard] ild8r rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← sign_ext8to32(mem[rsrc1 + rsrc2])

ATTRIBUTES
Function unit dmem
Operation code 193
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ild8r operation loads the 8-bit memory value from the address computed by rsrc1 + rsrc2, sign extends it to

32 bits, and stores the result in rdest. This operation does not depend on the bytesex bit in the PCSW since only a
single byte is loaded.

The result of an access by ild8r to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The ild8r operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed location is cacheable. if the LSB of rguard is 0, rdest is not
changed and ild8r has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r20 = 2, [0xd02] = 0x22 ild8r r10 r20 → r80 r80 ← 0x00000022

r50 = 0, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84

IF r50 ild8r r40 r30 → r90 no change, since guard is false

r60 = 1, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84

IF r60 ild8r r40 r30 → r100 r100 ← 0xffffff84

r70 = 0xd05, r30 = 0xfffffffc,
[0xd01] = 0x33

ild8r r70 r30 → r110 r110 ← 0x00000033

SEE ALSO
ild8 uld8 ild8d uld8d

uld8r

ild8r

PNX1300/01/02/11 Data Book Philips Semiconductors

A-111 PRELIMINARY SPECIFICATION

Signed compare less or equal
pseudo-op for igeq

SYNTAX
[IF rguard] ileq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 <= rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 14
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ileq operation is a pseudo operation transformed by the scheduler into an igeq with the arguments

exchanged (ileq’s rsrc1 is igeq’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The ileq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than or equal to the
second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as signed integers.

The ileq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ileq r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ileq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, 0x100 IF r20 ileq r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 ileq r70 r40 → r100 r100 ← 1

r70 = 0x80000000 ileq r70 r70 → r110 r110 ← 1

SEE ALSO
igeq ileqi

ileq

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-112

Signed compare less or equal with immediate

SYNTAX
[IF rguard] ileqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 <= n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 42
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ileqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than or equal to the

opcode modifier, n; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The ileqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ileqi(2) r30 → r80 r80 ← 0

r30 = 3 ileqi(3) r30 → r90 r90 ← 1

r30 = 3 ileqi(4) r30 → r100 r100 ← 1

r10 = 0, r40 = 0x100 IF r10 ileqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ileqi(63) r40 → r100 r100 ← 0

r60 = 0x80000000 ileqi(-64) r60 → r120 r120 ← 1

SEE ALSO
ileq igeqi

ileqi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-113 PRELIMINARY SPECIFICATION

Signed compare less
pseudo-op for igtr

SYNTAX
[IF rguard] iles rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 < rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 15
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The iles operation is a pseudo operation transformed by the scheduler into an igtr with the arguments

exchanged (iles’s rsrc1 is igtr’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The iles operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than the second
argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as signed integers.

The iles operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 iles r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 3 IF r10 iles r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, 0x100 IF r20 iles r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 iles r70 r40 → r100 r100 ← 1

r70 = 0x80000000 iles r70 r70 → r110 r110 ← 0

SEE ALSO
igtr ilesi

iles

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-114

Signed compare less with immediate

SYNTAX
[IF rguard] ilesi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 < n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 2
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ilesi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The ilesi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ilesi(2) r30 → r80 r80 ← 0

r30 = 3 ilesi(3) r30 → r90 r90 ← 0

r30 = 3 ilesi(4) r30 → r100 r100 ← 1

r10 = 0, r40 = 0x100 IF r10 ilesi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ilesi(63) r40 → r100 r100 ← 0

r60 = 0x80000000 ilesi(-64) r60 → r120 r120 ← 1

SEE ALSO
iles ileqi

ilesi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-115 PRELIMINARY SPECIFICATION

Signed maximum

SYNTAX
[IF rguard] imax rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 > rsrc2 then
rdest ← rsrc1

else
rdest ← rsrc2

}

ATTRIBUTES
Function unit dspalu
Operation code 24
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The imax operation sets the destination register, rdest, to the contents of rsrc1 if rsrc1>rsrc2; otherwise, rdest is set

to the contents of rsrc2. The arguments are treated as signed integers.
The imax operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 2, r20 = 1 imax r30 r20 → r80 r80 ← 2

r10 = 0, r60 = 0x100, r30 = 2 IF r10 imax r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r40 = 0xffffff9c IF r20 imax r60 r40 → r90 r90 ← 0x100

r70 = 0xffffff00, r40 = 0xffffff9c imax r70 r40 → r100 r100 ← 0xffffff9c

SEE ALSO
imin

imax

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-116

Signed minimum

SYNTAX
[IF rguard] imin rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 > rsrc2 then
rdest ← rsrc2

else
rdest ← rsrc1

}

ATTRIBUTES
Function unit dspalu
Operation code 23
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The imin operation sets the destination register, rdest, to the contents of rsrc2 if rsrc1>rsrc2; otherwise, rdest is set

to the contents of rsrc1. The arguments are treated as signed integers.
The imin operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 2, r20 = 1 imin r30 r20 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 2 IF r10 imin r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r40 = 0xffffff9c IF r20 imin r60 r40 → r90 r90 ← 0xffffff9c

r70 = 0xffffff00, r40 = 0xffffff9c imin r70 r40 → r100 r100 ← 0xffffff00

SEE ALSO
imax

imin

PNX1300/01/02/11 Data Book Philips Semiconductors

A-117 PRELIMINARY SPECIFICATION

Signed multiply

SYNTAX
[IF rguard] imul rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

temp ← (sign_ext32to64(rsrc1) × sign_ext32to64(rsrc2))
rdest ← temp<31:0>

ATTRIBUTES
Function unit ifmul
Operation code 27
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the imul operation computes the product rsrc1×rsrc2 and writes the least-significant 32 bits of the

full 64-bit product into rdest. The operands are considered signed integers. No overflow or underflow detection is
performed.

The imul operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0x100 imul r60 r60 → r80 r80 ← 0x10000

r10 = 0, r60 = 0x100, r30 = 0xf11 IF r10 imul r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r30 = 0xf11 IF r20 imul r60 r30 → r90 r90 ← 0xf1100

r70 = 0xffffff00, r40 = 0xffffff9c imul r70 r40 → r100 r100 ← 0x6400

031

rsrc1
031

rsrc2

031

rdest

×

063 31

64-bit result

signed signed

signed

signed

SEE ALSO
umul imulm umulm dspimul

dspumul dspidualmul
quadumulmsb fmul

imul

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-118

Signed multiply, return most-significant 32 bits

SYNTAX
[IF rguard] imulm rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

temp ← (sign_ext32to64(rsrc1) × sign_ext32to64(rsrc2))
rdest ← temp<63:32>

ATTRIBUTES
Function unit ifmul
Operation code 139
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the imulm operation computes the product rsrc1×rsrc2 and writes the most-significant 32 bits of

the full 64-bit product into rdest. The operands are considered signed integers.

The imulm operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0x10000 imulm r60 r60 → r80 r80 ← 0x00000001

r10 = 0, r60 = 0x100, r30 = 0xf11 IF r10 imulm r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x10001000,
r30 = 0xf1100000

IF r20 imulm r60 r30 → r90 r90 ← 0xff10ff11

r70 = 0xffffff00, r40 = 0x64 imulm r70 r40 → r100 r100 ← 0xffffffff

031

rsrc1
031

rsrc2

031

rdest

×

063 31

64-bit result

signed signed

signed

signed

SEE ALSO
umulm dspimul dspumul

dspidualmul quadumulmsb
fmul

imulm

PNX1300/01/02/11 Data Book Philips Semiconductors

A-119 PRELIMINARY SPECIFICATION

Signed negate
pseudo-op for isub

SYNTAX
[IF rguard] ineg rsrc1 → rdest

FUNCTION
if rguard then

rdest ← –rsrc1

ATTRIBUTES
Function unit alu
Operation code 13
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ineg operation is a pseudo operation transformed by the scheduler into an isub with r0 (always contains 0)

as the first argument and rsrc1 as the second argument. (Note: pseudo operations cannot be used in assembly source
files.)

The ineg operation computes the negative of rsrc1 and writes the result into rdest. The argument is a signed
integer; the result is an unsigned integer. If rsrc1 = 0x80000000, then ineg returns 0x80000000 since the positive
value is not representable.

The ineg operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffffffff ineg r30 → r60 r60 ← 0x00000001

r10 = 0, r40 = 0xfffffff4 IF r10 ineg r40 → r80 no change, since guard is false

r20 = 1, r40 = 0xfffffff4 IF r20 ineg r40 → r90 r90 ← 0xc

r50 = 0x80000001 ineg r50 → r100 r100 ← 0x7fffffff

r60 = 0x80000000 ineg r60 → r110 r110 ← 0x80000000

r20 = 1 ineg r20 → r120 r120 ← 0xffffffff

SEE ALSO
isub

ineg

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-120

Signed compare not equal

SYNTAX
[IF rguard] ineq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 != rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 39
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ineq operation sets the destination register, rdest, to 1 if the two arguments, r src1 and rsrc2, are not equal;

otherwise, rdest is set to 0.
The ineq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ineq r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x1000, r30 = 3 IF r10 ineq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x1000 IF r20 ineq r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 ineq r70 r40 → r100 r100 ← 1

r70 = 0x80000000 ineq r70 r70 → r110 r110 ← 0

SEE ALSO
ieql igtr ineqi

ineq

PNX1300/01/02/11 Data Book Philips Semiconductors

A-121 PRELIMINARY SPECIFICATION

Signed compare not equal with immediate

SYNTAX
[IF rguard] ineqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 != n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 3
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ineqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is not equal to the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as signed integers.
The ineqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ineqi(2) r30 → r80 r80 ← 1

r30 = 3 ineqi(3) r30 → r90 r90 ← 0

r30 = 3 ineqi(4) r30 → r100 r100 ← 1

r10 = 0, r40 = 0x100 IF r10 ineqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ineqi(63) r40 → r100 r100 ← 1

r60 = 0xffffffc0 ineqi(-64) r60 → r120 r120 ← 0

SEE ALSO
ineq igeqi ieqli

ineqi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-122

If nonzero select zero

SYNTAX
[IF rguard] inonzero rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 != 0 then
rdest ← 0

else
rdest ← rsrc2

}

ATTRIBUTES
Function unit alu
Operation code 47
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The inonzero operation writes 0 into rdest if the value of rsrc1 is not zero; otherwise, rsrc2 is copied to rdest. The

operands are considered signed integers.
The inonzero operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 2, r20 = 1 inonzero r30 r20 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 2 IF r10 inonzero r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r40 = 0xffffff9c IF r20 inonzero r60 r40 → r90 r90 ← 0

r10 = 0, r40 = 0xffffff9c inonzero r10 r40 → r100 r100 ← 0xffffff9c

r20 = 1, r60 = 0x100 inonzero r20 r60 → r110 r110 ← 0

r10 = 0, r70 = 0x456789 inonzero r10 r70 → r120 r120 ← 0x456789

SEE ALSO
izero iflip

inonzero

PNX1300/01/02/11 Data Book Philips Semiconductors

A-123 PRELIMINARY SPECIFICATION

Subtract

SYNTAX
[IF rguard] isub rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 – rsrc2

ATTRIBUTES
Function unit alu
Operation code 13
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The isub operation computes the difference rsrc1–rsrc2 and writes the result into rdest. The operands can be

either both signed or unsigned integers. No overflow or underflow detection is performed.
The isub operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 isub r30 r40 → r80 r80 ← 0xffffffff

r10 = 0, r60 = 0x100, r30 = 3 IF r10 isub r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 isub r50 r60 → r90 r90 ← 0xf00

r70 = 0x80000000, r40 = 4 isub r70 r40 → r100 r100 ← 0x7ffffffc

SEE ALSO
isubi borrow dspisub

dspidualsub fsub

isub

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-124

Subtract with immediate

SYNTAX
[IF rguard] isubi(n) rsrc1 → rdest

FUNCTION
if rguard then

rdest ← rsrc1 – n

ATTRIBUTES
Function unit alu
Operation code 32
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The isubi operation computes the difference of a single argument in rsrc1 and an immediate modifier n and stores

the result in rdest. The value of n must be between 0 and 127, inclusive.
The isubi operations optionally take a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0xf11 isubi(127) r30 → r70 r70 ← 0xe92

r10 = 0, r40 = 0xffffff9c IF r10 isubi(1) r40 → r80 no change, since guard is false

r20 = 1, r40 = 0xffffff9c IF r20 isubi(1) r40 → r90 r90 ← 0xffffff9b

r50 = 0x1000 isubi(15) r50 → r120 r120 ← 0x0ff1

r60 = 0xfffffff0 isubi(2) r60 → r110 r110 ← 0xffffffee

r20 = 1 isubi(17) r20 → r120 r120 ← 0xfffffff0

SEE ALSO
isub borrow

isubi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-125 PRELIMINARY SPECIFICATION

If zero select zero

SYNTAX
[IF rguard] izero rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 = 0 then
rdest ← 0

else
rdest ← rsrc2

}

ATTRIBUTES
Function unit alu
Operation code 46
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The izero operation writes 0 into rdest if the value of rsrc1 is equal to zero; otherwise, rsrc2 is copied to rdest. The

operands are considered signed integers.
The izero operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 2, r20 = 1 izero r30 r20 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 2 IF r10 izero r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r40 = 0xffffff9c IF r20 izero r60 r40 → r90 r90 ← 0xffffff9c

r10 = 0, r40 = 0xffffff9c izero r10 r40 → r100 r100 ← 0

r20 = 1, r60 = 0x100 izero r20 r60 → r110 r110 ← 0x100

r20 = 1, r70 = 0x456789 izero r20 r70 → r120 r120 ← 0x456789

SEE ALSO
inonzero iflip

izero

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-126

Indirect jump on false

SYNTAX
[IF rguard] jmpf rsrc1 rsrc2

FUNCTION
if rguard then {

if (rsrc1 & 1) = 0 then
PC ← rsrc2

}

ATTRIBUTES
Function unit branch
Operation code 180
Number of operands 2
Modifier No
Modifier range —
Delay 3
Issue slots 2, 3, 4

DESCRIPTION
The jmpf operation conditionally changes the program flow. If the LSB of rsrc1 is 0, the PC register is set equal to

rsrc2; otherwise, program execution continues with the next sequential instruction.
The jmpf operation optionally takes a guard, specified in rguard. If a guard is present, its LSB adds another

condition to the jump. If the LSB of rguard is 1, the instruction executes as previously described; otherwise, the jump
will not be taken regardless of the value of rsrc1.

EXAMPLES

Initial Values Operation Result

r50 = 0, r70 = 0x330 jmpf r50 r70 program execution continues at 0x330

r20 = 1, r70 = 0x330 jmpf r20 r70 since r20 is true, program execution contin-
ues with next sequential instruction

r30 = 0, r50 = 0, r60 = 0x8000 IF r30 jmpf r50 r60 since guard is false, program execution con-
tinues with next sequential instruction

r40 = 1, r50 = 0, r60 = 0x8000 IF r40 jmpf r50 r60 program execution continues at 0x8000

SEE ALSO
jmpt jmpi ijmpf ijmpt

ijmpi

jmpf

PNX1300/01/02/11 Data Book Philips Semiconductors

A-127 PRELIMINARY SPECIFICATION

Jump immediate

SYNTAX
[IF rguard] jmpi(address)

FUNCTION
if rguard then

PC ← address

ATTRIBUTES
Function unit branch
Operation code 178
Number of operands 0
Modifier 32 bits
Modifier range 0..0xffffffff
Delay 3
Issue slots 2, 3, 4

DESCRIPTION
The jmpi operation changes the program flow by setting the PC register equal to the immediate opcode modifier

address.
The jmpi operation optionally takes a guard, specified in r guard. If a guard is present, its LSB adds a condition to

the jump. If the LSB of rguard is 1, the instruction executes as previously described; otherwise, the jump will not be
taken.

EXAMPLES

Initial Values Operation Result

jmpi(0x330) program execution continues at 0x330

r30 = 0 IF r30 jmpi(0x8000) since guard is false, program execution con-
tinues with next sequential instruction

r40 = 1 IF r40 jmpi(0x8000) program execution continues at 0x8000

SEE ALSO
jmpf jmpt ijmpf ijmpt

ijmpi

jmpi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-128

Indirect jump on true

SYNTAX
[IF rguard] jmpt rsrc1 rsrc2

FUNCTION
if rguard then {

if (rsrc1 & 1) = 1 then
PC ← rsrc2

}

ATTRIBUTES
Function unit branch
Operation code 176
Number of operands 2
Modifier no
Modifier range —
Delay 3
Issue slots 2, 3, 4

DESCRIPTION
The jmpt operation conditionally changes the program flow. If the LSB of rsrc1 is 1, the PC register is set equal to

rsrc2; otherwise, program execution continues with the next sequential instruction.
The jmpt operation optionally takes a guard, specified in rguard. If a guard is present, its LSB adds another

condition to the jump. If the LSB of rguard is 1, the instruction executes as previously described; otherwise, the jump
will not be taken regardless of the value of rsrc1.

EXAMPLES

Initial Values Operation Result

r50 = 1, r70 = 0x330 jmpt r50 r70 program execution continues at 0x330

r20 = 0, r70 = 0x330 jmpt r20 r70 since r20 is false, program execution contin-
ues with next sequential instruction

r30 = 0, r50 = 1, r60 = 0x8000 IF r30 jmpt r50 r60 since guard is false, program execution con-
tinues with next sequential instruction

r40 = 1, r50 = 1, r60 = 0x8000 IF r40 jmpt r50 r60 program execution continues at 0x8000

SEE ALSO
jmpf jmpi ijmpf ijmpt

ijmpi

jmpt

PNX1300/01/02/11 Data Book Philips Semiconductors

A-129 PRELIMINARY SPECIFICATION

32-bit load
pseudo-op for ld32d(0)

SYNTAX
[IF rguard] ld32 rsrc1 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

rdest<7:0> ← mem[rsrc1 + (3 ⊕ bs)]
rdest<15:8> ← mem[rsrc1 + (2 ⊕ bs)]
rdest<23:16> ← mem[rsrc1 + (1 ⊕ bs)]
rdest<31:24> ← mem[rsrc1 + (0 ⊕ bs)]

}

ATTRIBUTES
Function unit dmem
Operation code 7
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ld32 operation is a pseudo operation transformed by the scheduler into an ld32d(0) with the same

argument. (Note: pseudo operations cannot be used in assembly source files.)
The ld32 operation loads the 32-bit memory value from the address contained in rsrc1 and stores the result in

rdest. If the memory address contained in rsrc1 is not a multiple of 4, the result of ld32 is undefined but no exception
will be raised. This load operation is performed as little-endian or big-endian depending on the current setting of the
bytesex bit in the PCSW.

The ld32 operation can be used to access the MMIO address aperture (the result of MMIO access by 8- or 16-bit
memory operations is undefined). The state of the BSX bit in the PCSW has no effect on MMIO access by ld32.

The ld32 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ld32 has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00,
[0xd00] = 0x84, [0xd01] = 0x33,
[0xd02] = 0x22, [0xd03] = 0x11

ld32 r10 → r60 r60 ← 0x84332211

r30 = 0, r20 = 0xd04,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r30 ld32 r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r40 ld32 r20 → r80 r80 ← 0x48665544

r50 = 0xd01 ld32 r50 → r90 r90 undefined, since 0xd01 is not a multiple of 4

SEE ALSO
ld32d ld32r ld32x st32

st32d h_st32d

ld32

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-130

32-bit load with displacement

SYNTAX
[IF rguard] ld32d(d) rsrc1 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

rdest<7:0> ← mem[rsrc1 + d + (3 ⊕ bs)]
rdest<15:8> ← mem[rsrc1 + d + (2 ⊕ bs)]
rdest<23:16> ← mem[rsrc1 + d + (1 ⊕ bs)]
rdest<31:24> ← mem[rsrc1 + d + (0 ⊕ bs)]

}

ATTRIBUTES
Function unit dmem
Operation code 7
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency 3
Issue slots 4, 5

DESCRIPTION
The ld32d operation loads the 32-bit memory value from the address computed by rsrc1 + d and stores the result

in rdest. The d value is an opcode modifier, must be in the range –256 to 252 inclusive, and must be a multiple of 4. If
the memory address computed by rsrc1 + d is not a multiple of 4, the result of ld32d is undefined but no exception
will be raised. This load operation is performed as little-endian or big-endian depending on the current setting of the
bytesex bit in the PCSW.

The ld32d operation can be used to access the MMIO address aperture (the result of MMIO access by 8- or 16-bit
memory operations is undefined). The state of the BSX bit in the PCSW has no effect on MMIO access by ld32d.

The ld32d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ld32d has no side effects whatever.
EXAMPLES

Initial Values Operation Result

r10 = 0xcfc,
[0xd00] = 0x84, [0xd01] = 0x33,
[0xd02] = 0x22, [0xd03] = 0x11

ld32d(4) r10 → r60 r60 ← 0x84332211

r30 = 0, r20 = 0xd0c,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r30 ld32d(-8) r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd0c,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r40 ld32d(-8) r20 → r80 r80 ← 0x48665544

r50 = 0xd01 ld32d(-8) r50 → r90 r90 undefined, since 0xd01 +(–8) is not a
multiple of 4

SEE ALSO
ld32 ld32r ld32x st32

st32d h_st32d

ld32d

PNX1300/01/02/11 Data Book Philips Semiconductors

A-131 PRELIMINARY SPECIFICATION

32-bit load with index

SYNTAX
[IF rguard] ld32r rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

rdest<7:0> ← mem[rsrc1 + rsrc2 + (3 ⊕ bs)]
rdest<15:8> ← mem[rsrc1 + rsrc2 + (2 ⊕ bs)]
rdest<23:16> ← mem[rsrc1 + rsrc2 + (1 ⊕ bs)]
rdest<31:24> ← mem[rsrc1 + rsrc2 + (0 ⊕ bs)]

}

ATTRIBUTES
Function unit dmem
Operation code 200
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ld32r operation loads the 32-bit memory value from the address computed by rsrc1 + rsrc2 and stores the

result in rdest. If the memory address computed by rsrc1 + rsrc2 is not a multiple of 4, the result of ld32r is
undefined but no exception will be raised. This load operation is performed as little-endian or big-endian depending on
the current setting of the bytesex bit in the PCSW.

The ld32r operation can be used to access the MMIO address aperture (the result of MMIO access by 8- or 16-bit
memory operations is undefined). The state of the BSX bit in the PCSW has no effect on MMIO access by ld32r.

The ld32r operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ld32r has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xcfc, r20 = 0x4,
[0xd00] = 0x84, [0xd01] = 0x33,
[0xd02] = 0x22, [0xd03] = 0x11

ld32r r10 r20 → r80 r80 ← 0x84332211

r50 = 0, r40 = 0xd0c, r30 = 0xfffffff8,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r50 ld32r r40 r30 → r90 no change, since guard is false

r60 = 1, r40 = 0xd0c, r30 = 0xfffffff8,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r60 ld32r r40 r30 → r100 r100 ← 0x48665544

r50 = 0xd01, r30 = 0xfffffff8 ld32r r70 r30 → r110 r110 undefined, since 0xd01 +(–8) is not a
multiple of 2

SEE ALSO
ld32 ld32d ld32x st32

st32d h_st32d

ld32r

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-132

32-bit load with scaled index

SYNTAX
[IF rguard] ld32x rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

rdest<7:0> ← mem[rsrc1 + (4 × rsrc2) +(3 ⊕ bs)]
rdest<15:8> ← mem[rsrc1 + (4 × rsrc2) + (2 ⊕ bs)]
rdest<23:16> ← mem[rsrc1 + (4 × rsrc2) + (1 ⊕ bs)]
rdest<31:24> ← mem[rsrc1 + (4 × rsrc2) + (0 ⊕ bs)]

}

ATTRIBUTES
Function unit dmem
Operation code 201
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The ld32x operation loads the 32-bit memory value from the address computed by rsrc1 + 4×rsrc2 and stores the

result in rdest. If the memory address computed by rsrc1 + 4×rsrc2 is not a multiple of 4, the result of ld32x is
undefined but no exception will be raised. This load operation is performed as little-endian or big-endian depending on
the current setting of the bytesex bit in the PCSW.

The ld32x operation can be used to access the MMIO address aperture (the result of MMIO access by 8- or 16-bit
memory operations is undefined). The state of the BSX bit in the PCSW has no effect on MMIO access by ld32x.

The ld32x operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and ld32x has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xcfc, r30 = 0x1,
[0xd00] = 0x84, [0xd01] = 0x33,
[0xd02] = 0x22, [0xd03] = 0x11

ld32x r10 r30 → r100 r100 ← 0x84332211

r50 = 0, r40 = 0xd0c, r20 = 0xfffffffe,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r50 ld32x r40 r20 → r80 no change, since guard is false

r60 = 1, r40 = 0xd0c, r20 = 0xfffffffe,
[0xd04] = 0x48, [0xd05] = 0x66,
[0xd06] = 0x55, [0xd07] = 0x44

IF r60 ld32x r40 r20 → r90 r90 ← 0x48665544

r70 = 0xd01, r30 = 0x1 ld32x r70 r30 → r110 r110 undefined, since 0xd01 + 4×1 is not a
multiple of 4

SEE ALSO
ld32 ld32d ld32r st32

st32d h_st32d

ld32x

PNX1300/01/02/11 Data Book Philips Semiconductors

A-133 PRELIMINARY SPECIFICATION

Logical shift left
pseudo-op for asl

SYNTAX
[IF rguard] lsl rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

n ← rsrc2<4:0>
rdest<31:n> ← rsrc1<31–n:0>
rdest<n–1:0> ← 0
if rsrc2<31:5> != 0 {

rdest <- 0
}

}

ATTRIBUTES
Function unit shifter
Operation code 19
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
The lsl operation is a pseudo operation that is transformed by the scheduler into an asl with the same

arguments. (Note: pseudo operations cannot be used in assembly source files.)
As shown below, the lsl operation takes two arguments, rsrc1 and rsrc2. Rsrc2 specify an unsigned shift amount,

and rdest is set to rsrc1 logically shifted left by this amount. If the rsrc2<31:5> value is not zero, then take this as a shift
by 32 or more bits. Zeros are shifted into the LSBs of rdest while the MSBs shifted out of rsrc1 are lost.

The lsl operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r60 = 0x20, r30 = 3 lsl r60 r30 → r90 r90 ← 0x100

r10 = 0, r60 = 0x20, r30 = 3 IF r10 lsl r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x20, r30 = 3 IF r20 lsl r60 r30 → r110 r110 ← 0x100

r70 = 0xfffffffc, r40 = 2 lsl r70 r40 → r120 r120 ← 0xfffffff0

r80 = 0xe, r50 = 0xfffffffe lsl r80 r50 → r125 r125 ← 0x00000000 (shift by more than 32))

r30 = 0x7008000f, r45 = 0x20 lsl r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x80000000 lsl r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x23 lsl r30 r45 → r100 r100 ← 0x00000000

031

rsrc1

031

rsrc2

000

Left shifter

32 bits from rsrc1

031

rdest
3

000

Intermediate result
(example: n = 3)

 rsrc2

SEE ALSO
asl asli asr asri lsli lsr

lsri rol roli

lsl

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-134

Logical shift left immediate
pseudo-op for asli

SYNTAX
[IF rguard] lsli(n) rsrc1 → rdest

FUNCTION
if rguard then {

rdest<31:n> ← rsrc1<31–n:0>
rdest<n–1:0> ← 0

}

ATTRIBUTES
Function unit shifter
Operation code 11
Number of operands 1
Modifier 7 bits
Modifier range 0..31
Latency 1
Issue slots 1, 2

DESCRIPTION
The lsli operation is a pseudo operation that is transformed by the scheduler into an asli with the same

argument and opcode modifier. (Note: pseudo operations cannot be used in assembly source files.)
As shown below, the lsli operation takes a single argument in rsrc1 and an immediate modifier n and produces a

result in rdest equal to rsrc1 logically shifted left by n bits. The value of n must be between 0 and 31, inclusive. Zeros
are shifted into the LSBs of rdest while the MSBs shifted out of rsrc1 are lost.

The lsli operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r60 = 0x20 lsli(3) r60 → r90 r90 ← 0x100

r10 = 0, r60 = 0x20 IF r10 lsli(3) r60 → r100 no change, since guard is false

r20 = 1, r60 = 0x20 IF r20 lsli(3) r60 → r110 r110 ← 0x100

r70 = 0xfffffffc lsli(2) r70 → r120 r120 ← 0xfffffff0

r80 = 0xe lsli(30) r80 → r125 r125 ← 0x80000000

031

rsrc1

000

Left shifter

32 bits from rsrc1

031

rdest
3

000

Intermediate result
(example: n = 3)

Shift amount n
from operation modifier

SEE ALSO
asl asli asr asri lsl lsr

lsri rol roli

lsli

PNX1300/01/02/11 Data Book Philips Semiconductors

A-135 PRELIMINARY SPECIFICATION

Logical shift right

SYNTAX
[IF rguard] lsr rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

n ← rsrc2<4:0>
rdest<31:32–n> ← 0
rdest<31–n:0> ← rsrc1<31:n>
if rsrc2<31:5> != 0 {

rdest <- 0
}

}

ATTRIBUTES
Function unit shifter
Operation code 96
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the lsr operation takes two arguments, rsrc1 and rsrc2. Rsrc2 specifies an unsigned shift

amount, and rsrc1 is logically shifted right by this amount. If the rsrc2<31:5> value is not zero, then take this as a shift
by 32 or more bits. Zeros fill vacated bits from the left.

The lsr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x7008000f, r20 = 1 lsr r30 r20 → r50 r50 ← 0x38040007

r30 = 0x7008000f, r42 = 2 lsr r30 r42 → r60 r60 ← 0x1c020003

r10 = 0, r30 = 0x7008000f, r44 = 4 IF r10 lsr r30 r44 → r70 no change, since guard is false

r20 = 1, r30 = 0x7008000f, r44 = 4 IF r20 lsr r30 r44 → r80 r80 ← 0x07008000

r40 = 0x80030007, r44 = 4 lsr r40 r44 → r90 r90 ← 0x08003000

r30 = 0x7008000f, r45 = 0x1f lsr r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x1f lsr r30 r45 → r100 r100 ← 0x00000001

r30 = 0x7008000f, r45 = 0x20 lsr r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x80000000 lsr r30 r45 → r100 r100 ← 0x00000000

r30 = 0x8008000f, r45 = 0x23 lsr r30 r45 → r100 r100 ← 0x00000000

031

rsrc1
031

rsrc2

000

Right shifter

32 bits from rsrc1

031

rdest
28

000

Intermediate result
(example: n = 3)

rsrc2

S

S

S

SEE ALSO
asl asli asr asri lsl lsli

lsri rol roli

lsr

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-136

Logical shift right immediate

SYNTAX
[IF rguard] lsri(n) rsrc1 → rdest

FUNCTION
if rguard then {

rdest<31:32–n> ← 0
rdest<31–n:0> ← rsrc1<31:n>

}

ATTRIBUTES
Function unit shifter
Operation code 9
Number of operands 1
Modifier 7 bits
Modifier range 0..31
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the lsri operation takes a single argument in rsrc1 and an immediate modifier n and produces a

result in rdest that is equal to rsrc1 logically shifted right by n bits. The value of n must be between 0 and 31, inclusive.
Zeros fill vacated bits from the left.

The lsri operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x7008000f lsri(1) r30 → r50 r50 ← 0x38040007

r30 = 0x7008000f lsri(2) r30 → r60 r60 ← 0x1c020003

r10 = 0, r30 = 0x7008000f IF r10 lsri(4) r30 → r70 no change, since guard is false

r20 = 1, r30 = 0x7008000f IF r20 lsri(4) r30 → r80 r80 ← 0x07008000

r40 = 0x80030007 lsri(4) r40 → r90 r90 ← 0x08003000

r30 = 0x7008000f lsri(31) r30 → r100 r100 ← 0x00000000

r40 = 0x80030007 lsri(31) r40 → r110 r110 ← 0x00000001

000

Right shifter

32 bits from rsrc1

031

rdest
28

000

Intermediate result
(example: n = 3) S

S

031

rsrc1

Shift amount n
from operation modifier

S

SEE ALSO
asl asli asr asri lsl lsli

lsr rol roli

lsri

PNX1300/01/02/11 Data Book Philips Semiconductors

A-137 PRELIMINARY SPECIFICATION

mergedual16lsb Merge dual 16-bit lsb bytes

SYNTAX
[IF rguard] mergedual16lsb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {
 rdest<31:24> <- rsrc1<23:16>

rdest<23:16> <- rsrc1<7:0>
rdest<15:8> <- rsrc2<23:16>
rdest<7:0> <- rsrc2<7:0>

}

ATTRIBUTES
Function unit shifter
Operation code 103
Number of operands 2
Modifier No
Modifier range -
Latency 1
Issue slots 1,2

DESCRIPTION
The arguments rsrc1 and rsrc2 are vectors of two 16-bit data. The mergedual16lsb operation merges the least

significant bytes from each 16-bit data rsrc1 and rsrc2 into one 32-bit data in dest register, to convert to quad 8-bit.
The mergedual16lsb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls

the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd mergedual16lsb r30 r40 -> r50 r50 <- 0x3478bbdd

r10 = 0, r30 = 0x12345678, r40 = 0xaabbccdd IF r10 mergedual16lsb r30 r40 -> r50 no change, since guard is
false

r10 = 1, r30 = 0x01020304, r40 = 0x0a0b0c0d IF r10 mergedual16lsb r30 r40 -> r50 r50 <- 0x02040b0d

07152331

rsrc1
0

7152331

rsrc2

07152331

rdest

SEE ALSO
mergelsb mergemsb

pack16lsb pack16msb

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-138

Merge least-significant byte

SYNTAX
[IF rguard] mergelsb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<7:0> ← rsrc2<7:0>
rdest<15:8> ← rsrc1<7:0>
rdest<23:16> ← rsrc2<15:8>
rdest<31:24> ← rsrc1<15:8>

}

ATTRIBUTES
Function unit alu
Operation code 57
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the mergelsb operation interleaves the two pairs of least-significant bytes from the arguments

rsrc1 and rsrc2 into rdest. The least-significant byte from rsrc2 is packed into the least-significant byte of rdest; the
least-significant byte from rsrc1 is packed into the second-least-significant byte of rdest; the second-least-significant
byte from rsrc2 is packed into the second-most-significant byte of rdest; and the second-least-significant byte from
rsrc1 is packed into the most-significant byte of rdest.

The mergelsb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd mergelsb r30 r40 → r50 r50 ← 0x56cc78dd

r10 = 0, r40 = 0xaabbccdd, r30 = 0x12345678 IF r10 mergelsb r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0xaabbccdd, r30 = 0x12345678 IF r20 mergelsb r40 r30 → r70 r70 ← 0xcc56dd78

07152331

rsrc1
07152331

rsrc2

07152331

rdest

SEE ALSO
pack16lsb pack16msb
packbytes mergemsb

mergelsb

PNX1300/01/02/11 Data Book Philips Semiconductors

A-139 PRELIMINARY SPECIFICATION

Merge most-significant byte

SYNTAX
[IF rguard] mergemsb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<7:0> ← rsrc2<23:15>
rdest<15:8> ← rsrc1<23:15>
rdest<23:16> ← rsrc2<31:24>
rdest<31:24> ← rsrc1<31:24>

}

ATTRIBUTES
Function unit alu
Operation code 58
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the mergemsb operation interleaves the two pairs of most-significant bytes from the arguments

rsrc1 and rsrc2 into rdest. The second-most-significant byte from rsrc2 is packed into the least-significant byte of
rdest; the second-most-significant byte from rsrc1 is packed into the second-least-significant byte of rdest; the most-
significant byte from rsrc2 is packed into the second-most-significant byte of rdest; and the most-significant byte from
rsrc1 is packed into the most-significant byte of rdest.

The mergemsb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd mergemsb r30 r40 → r50 r50 ← 0x12aa34bb

r10 = 0, r40 = 0xaabbccdd, r30 = 0x12345678 IF r10 mergemsb r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0xaabbccdd, r30 = 0x12345678 IF r20 mergemsb r40 r30 → r70 r70 ← 0xaa12bb34

07152331

rsrc1
07152331

rsrc2

07152331

rdest

SEE ALSO
pack16lsb pack16msb
packbytes mergelsb

mergemsb

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-140

No operation

SYNTAX
nop

FUNCTION
No operation

ATTRIBUTES
Function unit -
Operation code -
Number of operands -
Modifier -
Modifier range -
Latency 1
Issue slots 1-5

DESCRIPTION
The NOP operation does not change any DSPCPU state. It is mainly used to fill-up the empty issue slots. Only two

bits are used to code the NOP operation.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 =
0xaabbccdd

nop No change in any regsiters

SEE ALSO

nop

PNX1300/01/02/11 Data Book Philips Semiconductors

A-141 PRELIMINARY SPECIFICATION

Pack least-significant 16-bit halfwords

SYNTAX
[IF rguard] pack16lsb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<15:0> ← rsrc2<15:0>
rdest<31:16> ← rsrc1<15:0>

}

ATTRIBUTES
Function unit alu
Operation code 53
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the pack16lsb operation packs the two least-significant halfwords from the arguments rsrc1 and

rsrc2 into rdest. The halfword from rsrc1 is packed into the most-significant halfword of rdest; the halfword from rsrc2
is packed into the least-significant halfword of rdest.

The pack16lsb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd pack16lsb r30 r40 → r50 r50 ← 0x5678ccdd

r10 = 0, r40 = 0xaabbccdd, r30 = 0x12345678 IF r10 pack16lsb r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0xaabbccdd, r30 = 0x12345678 IF r20 pack16lsb r40 r30 → r70 r70 ← 0xccdd5678

01531

rsrc1
01531

rsrc2

01531

rdest

SEE ALSO
pack16msb packbytes
mergelsb mergemsb

pack16lsb

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-142

Pack most-significant 16 bits

SYNTAX
[IF rguard] pack16msb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<15:0> ← rsrc2<31:16>
rdest<31:16> ← rsrc1<31:16>

}

ATTRIBUTES
Function unit alu
Operation code 54
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the pack16msb operation packs the two most-significant halfwords from the arguments rsrc1 and

rsrc2 into rdest. The halfword from rsrc1 is packed into the most-significant halfword of rdest; the halfword from rsrc2
is packed into the least-significant halfword of rdest.

The pack16msb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd pack16msb r30 r40 → r50 r50 ← 0x1234aabb

r10 = 0, r40 = 0xaabbccdd, r30 = 0x12345678 IF r10 pack16msb r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0xaabbccdd, r30 = 0x12345678 IF r20 pack16msb r40 r30 → r70 r70 ← 0xaabb1234

01531

rsrc1
01531

rsrc2

01531

rdest

SEE ALSO
pack16lsb packbytes
mergelsb mergemsb

pack16msb

PNX1300/01/02/11 Data Book Philips Semiconductors

A-143 PRELIMINARY SPECIFICATION

Pack least-significant byte

SYNTAX
[IF rguard] packbytes rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<7:0> ← rsrc2<7:0>
rdest<15:8> ← rsrc1<7:0>

}

ATTRIBUTES
Function unit alu
Operation code 52
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the packbytes operation packs the two least-significant bytes from the arguments rsrc1 and

rsrc2 into rdest. The byte from rsrc1 is packed into the second-least-significant byte of rdest; the byte from rsrc2 is
packed into the least-significant byte of rdest. The two most-significant bytes of rdest are filled with zeros.

The packbytes operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x12345678, r40 = 0xaabbccdd packbytes r30 r40 → r50 r50 ← 0x000078dd

r10 = 0, r40 = 0xaabbccdd, r30 = 0x12345678 IF r10 packbytes r40 r30 → r60 no change, since guard is false

r20 = 1, r40 = 0xaabbccdd, r30 = 0x12345678 IF r20 packbytes r40 r30 → r70 r70 ← 0x0000dd78

07152331

rsrc1
07152331

rsrc2

07152331

rdest 0000000000000000

SEE ALSO
pack16lsb pack16msb
mergelsb mergemsb

packbytes

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-144

prefetch
pseudo-op for prefd(0)

SYNTAX
[IF rguard] pref rsrc1

FUNCTION
if rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + 0) & cache_block_mask]

}

ATTRIBUTES
Function unit dmemspec
Operation code 209
Number of operands 1
Modifier -
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The pref operation is a pseudo operation transformed by the scheduler into an prefd(0) with the same arguments.

(Note: pseudo operations cannot be used in assembly files.)
The pref operation loads the one full cache block size of memory value from the address computed by ((rsrc1+0) &

cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be executed. The
prefetch unit will not execute this operation when the data to be prefetched is already in the data cache. A pref
operation will not be executed when the cache is already occupied with 2 cache misses, when the operation is issued.

The pref operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the execution
of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not executed.

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd,
cache_block_size = 0x40

pref r10 Loads a cache line for the address space from
0xabc0 to 0x0xabff from the main memory. If the data
is already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0,
cache_block_size = 0x40

IF r11 pref r10 since guard is false, pref operation is not executed

r10 = 0xabff, r11 = 1,
cache_block_size = 0x40

IF r11 pref r10 Loads a cache line for the address space from
0xabc0 to 0x0xabff from the main memory. If the data
is already in the cache, the operation is not executed.

SEE ALSO
pref16x pref32x prefd

prefr allocd allocr allocx

pref

PNX1300/01/02/11 Data Book Philips Semiconductors

A-145 PRELIMINARY SPECIFICATION

pref16x prefetch with 16-bit scaled index

SYNTAX
[IF rguard] pref16x rsrc1 rsrc2

FUNCTION
if rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + (2 x rscr2)) & cache_block_mask]

}

ATTRIBUTES
Function unit dmemspec
Operation code 211
Number of operands 2
Modifier No
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The pref16x operation loads one full cache block from the main memory at the address computed by ((rsrc1+ (2 x

rscr2)) & cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be
executed. The prefetch unit will not execute this operation when the data to be prefetched is already in the data cache.
The data cache has hardware to simultaneously sustain two cache misses or prefetches. A pref16x operation will not
be executed when the cache is already occupied with 2 cache misses, when the operation is issued.

The pref16x operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
execution of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not
executed

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd, r12 = 0xc
cache_block_size = 0x40

pref16x r10 r12 Loads a cache line for the address space from
0xabc0 to 0xabff from the main memory. If the data is
already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0, r12=0xc,
cache_block_size = 0x40

IF r11 pref16x r10 r12 since guard is false, pref16x operation is not executed

r10 = 0xabff, r11 = 1, r12 =0x1,
cache_block_size = 0x40

IF r11 pref16x r10 r12 Loads a cache line for the address space from
0xac00 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

SEE ALSO
pref32x prefd prefr allocd

allocr allocx

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-146

prefetch with 32-bit scaled index

SYNTAX
[IF rguard] pref32x rsrc1 rsrc2

FUNCTION
if rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + (4 x rscr2)) & cache_block_mask]

}

ATTRIBUTES
Function unit dmemspec
Operation code 212
Number of operands 2
Modifier No
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The pref32x operation loads the one full cache block size of memory value from the address computed by ((rsrc1+ (4

x rscr2)) & cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be
executed. The prefetch unit will not execute this operation when the data to be prefetched is already in the data cache.
A pref32x operation will not be executed when the cache is already occupied with 2 cache misses, when the operation
is issued.

The pref32x operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
execution of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not
executed..

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd, r12 = 0xd
cache_block_size = 0x40

pref32x r10 r12 Loads a cache line for the address space from
0xac00 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0, r12=0xd,
cache_block_size = 0x40

IF r11 pref32x r10 r12 since guard is false, pref32x operation is not executed

r10 = 0xabff, r11 = 1, r12 =0x1,
cache_block_size = 0x40

IF r11 pref32x r10 r12 Loads a cache line for the address space from
0xac00 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

SEE ALSO
pref16x prefd prefr allocd

allocr allocx

pref32x

PNX1300/01/02/11 Data Book Philips Semiconductors

A-147 PRELIMINARY SPECIFICATION

prefd prefetch with displacement

SYNTAX
[IF rguard] prefd(d) rsrc1

FUNCTION
if rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + d) & cache_block_mask]

}

ATTRIBUTES
Function unit dmemspec
Operation code 209
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency -
Issue slots 5

DESCRIPTION
The prefd operation loads the one full cache block size of memory value from the address computed by ((rsrc1+d) &

cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be executed. The
prefetch unit will not execute this operation when the data to be prefetched is already in the data cache. A prefd
operation will not be executed when the cache is already occupied with 2 cache misses, when the operation is issued.

The prefd operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the execution
of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not executed..

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd,
cache_block_size = 0x40

prefd(0xd) r10 Loads a cache line for the address space from
0xabc0 to 0x0xabff from the main memory. If the data
is already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0,
cache_block_size = 0x40

IF r11 prefd(0xd) r10 since guard is false, prefd operation is not executed

r10 = 0xabff, r11 = 1,
cache_block_size = 0x40

IF r11 prefd(ox1) r10 Loads a cache line for the address space from
0xac00 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

SEE ALSO
pref16x pref32x prefr
allocd allocr allocx

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-148

prefetch with index

SYNTAX
[IF rguard] prefr rsrc1 rsrc2

FUNCTION
i f rguard then {

cache_block_mask = ~(cache_block_size - 1)
data_cache <- mem[(rsrc1 + rscr2) & cache_block_mask]

}

ATTRIBUTES
Function unit dmemspec
Operation code 210
Number of operands 2
Modifier No
Modifier range -
Latency -
Issue slots 5

DESCRIPTION
The prefr operation loads the one full cache block size of memory value from the address computed by

((rsrc1+rscr2) & cache_block_mask) and stores the data into the data cache. This operation is not guaranteed to be
executed. The prefetch unit will not execute this operation when the data to be prefetched is already in the data cache.
A prefr operation will not be executed when the cache is already occupied with 2 cache misses, when the operation is
issued.

The prefr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
execution of the prefetch operation. If the LSB of rguard is 1, prefetch operation is executed; otherwise, it is not
executed..

EXAMPLES

NOTE: This operation may only be supported in TM-1000, TM-1100, TM-1300 and
PNX1300/01/02/11. It is not guaranteed to be available in future generations of Trimedia
products.

Initial Values Operation Result

r10 = 0xabcd, r12 = 0xd
cache_block_size = 0x40

prefr r10 r12 Loads a cache line for the address space from
0xabc0 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

r10 = 0xabcd, r11 = 0, r12=0xd,
cache_block_size = 0x40

IF r11 prefr r10 r12 since guard is false, prefr operation is not executed

r10 = 0xabff, r11 = 1, r12 =0x1,
cache_block_size = 0x40

IF r11 prefr r10 r12 Loads a cache line for the address space from
0xac00 to 0x0xac3f from the main memory. If the data
is already in the cache, the operation is not executed.

SEE ALSO
pref16x pref32x prefd
allocd allocr allocx

prefr

PNX1300/01/02/11 Data Book Philips Semiconductors

A-149 PRELIMINARY SPECIFICATION

Unsigned byte-wise quad average

SYNTAX
[IF rguard] quadavg rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← (zero_ext8to32(rsrc1<7:0>) + zero_ext8to32(rsrc2<7:0>) + 1) / 2
rdest<7:0> ← temp<7:0>
temp ← (zero_ext8to32(rsrc1<15:8>) + zero_ext8to32(rsrc2<15:8>) + 1) / 2
rdest<15:8> ← temp<7:0>
temp ← (zero_ext8to32(rsrc1<23:16>) + zero_ext8to32(rsrc2<23:16>) + 1) / 2
rdest<23:16> ← temp<7:0>
temp ← (zero_ext8to32(rsrc1<31:24>) + zero_ext8to32(rsrc2<31:24>) + 1) / 2
rdest<31:24> ← temp<7:0>

}

ATTRIBUTES
Function unit dspalu
Operation code 73
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the quadavg operation computes four separate averages of the four pairs of corresponding 8-bit

bytes of rsrc1 and rsrc2. All bytes are considered unsigned. The least-significant 8 bits of each average is written to
the corresponding byte in rdest. No overflow or underflow detection is performed.

The quadavg operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x0201000e, r40 = 0xffffff02 quadavg r30 r40 → r50 r50 ← 0x81808008

r10 = 0, r60 = 0x9c9c6464, r70 = 0x649c649c IF r10 quadavg r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x9c9c6464, r70 = 0x649c649c IF r20 quadavg r60 r70 → r90 r90 ← 0x809c6480

01531

rsrc1
01531

rsrc2

031

rdest

+
+

+
+

23 7 23 7

1

1

1

1

71523

08 0808 08
Four full-precision

9-bit sums

unsigned unsigned unsigned unsigned unsigned unsigned unsigned unsigned

unsigned unsigned unsigned unsigned

unsigned unsigned unsigned unsigned

SEE ALSO
iavgonep dspuquadaddui

ifir8ii

quadavg

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-150

Unsigned byte-wise quad maximum

SYNTAX
[IF rguard] quadumax rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<7:0> ← if rsrc1<7:0> > rsrc2<7:0> then rsrc1<7:0> else rsrc2<7:0>
rdest<15:8> ← if rsrc1<15:8> > rsrc2<15:8> then rsrc1<15:8> else rsrc2<15:8>
rdest<23:16> ← if rsrc1<23:16> > rsrc2<23:16> then rsrc1<23:16> else rsrc2<23:16>
rdest<31:24> ← if rsrc1<31:24> > rsrc2<31:24> then rsrc1<31:24> else rsrc2<31:24>

}

ATTRIBUTES
Function unit dspalu
Operation code 81
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1,3

DESCRIPTION
The quadumax operation computes four separate maximum values of the four pairs of corresponding 8-bit bytes of

rsrc1 and rsrc2. All bytes are considered unsigned. The quadumax operation is particularly suited to implement
median computation on packed pixel data structures:

MEDIAN_Q(a,b,c) (QUADUMIN(QUADUMAX(QUADUMIN((a),(b)), (c)), QUADUMAX((a),(b))))

The quadumax operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x0201000e, r40 = 0xff00ff02 quadumax r30 r40 → r50 r50 ← 0xff01ff0e

r10 = 0, r60 = 0x9c9c6464, r70 = 0x649d649c IF r10 quadumax r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x9c9c6464, r70 = 0x649d649c IF r20 quadumax r60 r70 → r90 r90 ← 0x9c9d649c

SEE ALSO
imax imin quadumin

quadumax

PNX1300/01/02/11 Data Book Philips Semiconductors

A-151 PRELIMINARY SPECIFICATION

quadumin Unsigned bytewise quad minimum

SYNTAX
[IF rguard] quadumin rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

rdest<7:0> ← if rsrc1<7:0> < rsrc2<7:0> then rsrc1<7:0> else rsrc2<7:0>
rdest<15:8> ← if rsrc1<15:8> < rsrc2<15:8> then rsrc1<15:8> else rsrc2<15:8>
rdest<23:16> ← if rsrc1<23:16> < rsrc2<23:16> then rsrc1<23:16> else rsrc2<23:16>
rdest<31:24> ← if rsrc1<31:24> < rsrc2<31:24> then rsrc1<31:24> else rsrc2<31:24>

}

ATTRIBUTES
Function unit dspalu
Operation code 80
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1,3

DESCRIPTION
The quadumin operation computes four separate minimum values of the four pairs of corresponding 8-bit bytes of

rsrc1 and rsrc2. All bytes are considered unsigned. The quadumin operation is particularly suited to implement
median computation on packed pixel data structures:

MEDIAN_Q(a,b,c) (QUADUMIN(QUADUMAX(QUADUMIN((a),(b)), (c)), QUADUMAX((a),(b))))

The quadumin operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x0201000e, r40 = 0xff00ff02 quadumin r30 r40 → r50 r50 ← 0x02000002

r10 = 0, r60 = 0x9c9c6464, r70 = 0x649d649c IF r10 quadumin r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x9c9c6464, r70 = 0x649d649c IF r20 quadumin r60 r70 → r90 r90 ← 0x649c6464

SEE ALSO
imin imax quadumax

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-152

Unsigned quad 8-bit multiply most significant

SYNTAX
[IF rguard] quadumulmsb rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

temp ← (zero_ext8to32(rsrc1<7:0>) × zero_ext8to32(rsrc2<7:0>))
rdest<7:0> ← temp<15:8>
temp ← (zero_ext8to32(rsrc1<15:8>) × zero_ext8to32(rsrc2<15:8>))
rdest<15:8> ← temp<15:8>
temp ← (zero_ext8to32(rsrc1<23:16>) × zero_ext8to32(rsrc2<23:16>))
rdest<23:16> ← temp<15:8>
temp ← (zero_ext8to32(rsrc1<31:24>) × zero_ext8to32(rsrc2<31:24>))
rdest<31:24> ← temp<15:8>

}

ATTRIBUTES
Function unit dspmul
Operation code 89
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the quadumulmsb operation computes four separate products of the four pairs of corresponding

8-bit bytes of rsrc1 and rsrc2. All bytes are considered unsigned. The most-significant 8 bits of each 16-bit product is
written to the corresponding byte in rdest.

The quadumulmsb operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x0210800e, r40 = 0xffffff02 quadumulmsb r30 r40 → r50 r50 ← 0x010f7f00

r10 = 0, r60 = 0x80ff1010, r70 = 0x80ff100f IF r10 quadumulmsb r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x80ff1010, r70 = 0x80ff100f IF r20 quadumulmsb r60 r70 → r90 r90 ← 0x40fe0100

01531

rsrc1
01531

rsrc2

031

rdest

×
×

×
×

23 7 23 7

71523

715

Four full-precision
16-bit products

0 715 0 715 0 715 0

unsigned unsigned unsigned unsigned unsigned unsigned unsigned unsigned

unsigned unsigned unsigned unsigned

unsigned unsigned unsigned unsigned

SEE ALSO
quadavg dspuquadaddui

ifir8ii

quadumulmsb

PNX1300/01/02/11 Data Book Philips Semiconductors

A-153 PRELIMINARY SPECIFICATION

Read data cache status bits

SYNTAX
[IF rguard] rdstatus(d) rsrc1 → rdest

FUNCTION
if rguard then {

set_addr ← rsrc1 + d

/* set_addr<10:6> selects set */

rdest<9:0> ← dcache_LRU_set(set_addr)
rdest<17:10> ← dcache_dirty_set(set_addr)
rdest<31:18> ← 0

}

ATTRIBUTES
Function unit dmemspec
Operation code 203
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency 3
Issue slots 5

DESCRIPTION
The rdstatus operation reads the LRU and dirty bits associated with a set in the data cache and writes these bits

into the destination register rdest. The target set in the data cache is determined by bits 10..6 of the result of rsrc1 + d.
The d value is an opcode modifier, must be in the range –256 to 252 inclusive, and must be a multiple of 4.

The result of rdstatus contains LRU information in bits 9..0 and dirty-bit information in bits 17..10. All other bits of
rdest are set to zero.
rdstatus requires two stall cycles to complete.
The dual-ported data cache uses two separate copies of tag and status information. A rdstatus operation returns

the LRU and dirty information stored in the cache port that corresponds to the operation slot in which the rdstatus
operation is issued.

The rdstatus operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

rdstatus(0) r30 → r60
r10 = 0 IF r10 rdstatus(4) r40 → r70 no change, since guard is false

r20 = 1 IF r20 rdstatus(8) r50 → r80

SEE ALSO
rdtag

rdstatus

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-154

Read data cache address tag

SYNTAX
[IF rguard] rdtag(d) rsrc1 → rdest

FUNCTION
if rguard then {

block_addr ← rsrc1 + d

/* block_addr<13:11> selects element, block_addr<10:6> selects set */

rdest<21:0> ← dcache_tag_block(block_addr)
rdest<31:22> ← 0

}

ATTRIBUTES
Function unit dmemspec
Operation code 202
Number of operands 1
Modifier 7 bits
Modifier range –256..252 by 4
Latency 3
Issue slots 5

DESCRIPTION
The rdtag operation reads the address tag associated with a block in the data cache and writes these bits into the

destination register rdest. The target block in the data cache is determined by bits 13..6 of the result of rsrc1 + d. Bits
10..6 of rsrc1 + d select the cache set and 13..11 of rsrc1 + d select the element within that set. The d value is an
opcode modifier, must be in the range –256 to 252 inclusive, and must be a multiple of 4.
rdtag writes the address tag for the selected block in bits 2 1..0 of rdest. All other bits of rdest are set to zero.
rdtag requires no stall cycles to complete.
The dual-ported data cache uses two separate copies of tag and status information. A rdtag operation returns the

address tag information stored in the cache port that corresponds to the operation slot in which the rdtag operation
is issued.

The rdtag operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

rdtag(0) r30 → r60
r10 = 0 IF r10 rdtag(4) r40 → r70 no change, since guard is false

r20 = 1 IF r20 rdtag(8) r50 → r80

SEE ALSO
rdstatus

rdtag

PNX1300/01/02/11 Data Book Philips Semiconductors

A-155 PRELIMINARY SPECIFICATION

Read destination program counter

SYNTAX
[IF rguard] readdpc → rdest

FUNCTION
if rguard then {

rdest ← DPC
}

ATTRIBUTES
Function unit fcomp
Operation code 156
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The readdpc writes the current value of the DPC (Destination Program Counter) processor register to rdest.
Interruptible jumps write their target address to the DPC. If an interrupt or exception is taken at an interruptible jump,

execution of the interrupted program can be resumed by jumping to the value contained in DPC. This operation can be
used to save state before idling a task in a multi-tasking environment.

The readdpc operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

DPC = 0xbeebee readdpc → r100 r100 ← 0xbeebee

r20 = 0, DPC = 0xabba IF r20 readdpc → r101 no change, since guard is false

r21 = 1, DPC = 0xabba IF r21 readdpc → r102 r102 ← 0xabba

SEE ALSO
writedpc readspc ijmpf

ijmpi ijmpt

readdpc

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-156

Read program control and status word

SYNTAX
[IF rguard] readpcsw → rdest

FUNCTION
if rguard then {

rdest ← PCSW
}

ATTRIBUTES
Function unit fcomp
Operation code 158
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The readpcsw writes the current value of the PCSW (Program Control and Status Word) processor register to

rdest. The layout of PCSW is shown below.
Fields in the PCSW have two chief purposes: to control aspects of processor operation and to record events that

occur during program execution. Thus, readpcsw can be used to determine current processor operating modes and
what events have occurred; this operation can also be used to save state before idling a task in a multi-tasking
environment.

The readpcsw operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

PCSW = 0x80110642 readpcsw → r100 r100 ← 0x80110642 (trap on MSE, INV and DBZ
enabled, IEN=1 - interrupts enabled, BSX=1 - little
endian mode of operation, OFZ=1 - a denormalized
result was produced somewhere, INX=1 - an inexact
result was produced somewhere)

r20 = 0, PCSW = 0x80000000 IF r20 readpcsw → r101 no change, since guard is false

r21 = 1, PCSW = 0x80000000 IF r21 readpcsw → r102 r102 ← 0x80000000 (trap on MSE enabled)

MSE CS IEN BSX IEEE MODE OFZ IFZ INV OVF UNF INX DBZ

01234567891011121415

Misaligned store exception

Count stalls (1 ⇒ Yes)

FP exception trap-enable bits

IEEE rounding mode
0 ⇒ to nearest, 1 ⇒ to zero, 2 ⇒ to positive, 3 ⇒ to negative

Interrupt enable (1 ⇒ allow interrupts)

Byte sex (1 ⇒ little endian)

PCSW<31:16>

PCSW<15:0> UNDEF

Misaligned store
exception trap enable Trap on first exit

FP exceptions

TRP
MSE TFE TRP

OFZ
TRP
IFZ

TRP
INV

TRP
OVF

TRP
UNF

TRP
INX

TRP
DBZ

1617181920212223252627283031

UNDEF U N D E F I N E D

13

WBE RSE

Write back error
Reserved exception

TRP
WBE

TRP
RSE

Write back error trap enable
Reserved exception
trap enable

29

SEE ALSO
writepcsw

readpcsw

PNX1300/01/02/11 Data Book Philips Semiconductors

A-157 PRELIMINARY SPECIFICATION

Read source program counter

SYNTAX
[IF rguard] readspc → rdest

FUNCTION
if rguard then {

rdest ← SPC
}

ATTRIBUTES
Function unit fcomp
Operation code 157
Number of operands 0
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The readspc writes the current value of the SPC (Source Program Counter) processor register to rdest.
An interruptible jump that is not interrupted (no NMI, INT, or EXC event was pending when the jump was executed)

writes its target address to SPC. The value of SPC allows an exception-handling routine to determine the start
address of the block of scheduled code (called a decision tree) that was executing before the exception was
taken.This operation can be used to save state before idling a task in a multi-tasking environment.

The readspc operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

SPC = 0xbeebee readspc → r100 r100 ← 0xbeebee

r20 = 0, SPC = 0xabba IF r20 readspc → r101 no change, since guard is false

r21 = 1, SPC = 0xabba IF r21 readspc → r102 r102 ← 0xabba

SEE ALSO
writespc readdpc ijmpf

ijmpi ijmpt

readspc

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-158

Rotate left

SYNTAX
[IF rguard] rol rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

n ← rsrc2<4:0>
rdest<31:n> ← rsrc1<31–n:0>
rdest<n–1:0> ← rsrc1<31:32–n>

}

ATTRIBUTES
Function unit shifter
Operation code 97
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the rol operation takes two arguments, rsrc1 and rsrc2. The least-significant five bits of rsrc2

specify an unsigned rotate amount, and rdest is set to rsrc1 rotated left by this amount. The most-significant n bits of
rsrc1, where n is the rotate amount, appear as the least-significant n bits in rdest.

The rol operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r60 = 0x20, r30 = 3 rol r60 r30 → r90 r90 ← 0x100

r10 = 0, r60 = 0x20, r30 = 3 IF r10 rol r60 r30 → r100 no change, since guard is false

r20 = 1, r60 = 0x20, r30 = 3 IF r20 rol r60 r30 → r110 r110 ← 0x100

r70 = 0xfffffffc, r40 = 2 rol r70 r40 → r120 r120 ← 0xfffffff3

r80 = 0xe, r50 = 0xfffffffe rol r80 r50 → r125 r125 ← 0x80000003 (r50 is effectively equal to 0x1e)

031

rsrc1
031

rsrc2
4

n

Left rotator

32 bits from rsrc1

031

rdest
9

Intermediate result
(example: n = 9)

Five LSBs of rsrc2

031

32 bits from rsrc1
03123 23

SEE ALSO
roli asr asri lsl lsli lsr

lsri

rol

PNX1300/01/02/11 Data Book Philips Semiconductors

A-159 PRELIMINARY SPECIFICATION

Rotate left by immediate

SYNTAX
[IF rguard] roli(n) rsrc1 → rdest

FUNCTION
if rguard then {

rdest<31:n> ← rsrc1<31–n:0>
rdest<n–1:0> ← rsrc1<31:32–n>

}

ATTRIBUTES
Function unit shifter
Operation code 98
Number of operands 1
Modifier 7 bits
Modifier range 0..31
Latency 1
Issue slots 1, 2

DESCRIPTION
As shown below, the roli operation takes a single argument in rsrc1 and an immediate modifier n and produces a

result in rdest equal to rsrc1 rotated left by n bits. The value of n must be between 0 and 31, inclusive. The most-
significant n bits of rsrc1 appear as the least-significant n bits in rdest.

The roli operations optionally take a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is unchanged.

EXAMPLES

Initial Values Operation Result

r60 = 0x20 roli(3) r60 → r90 r90 ← 0x100

r10 = 0, r60 = 0x20 IF r10 roli(3) r60 → r100 no change, since guard is false

r20 = 1, r60 = 0x20 IF r20 roli(3) r60 → r110 r110 ← 0x100

r70 = 0xfffffffc roli(2) r70 → r120 r120 ← 0xfffffff3

r80 = 0xe roli(30) r80 → r125 r125 ← 0x80000003

Rotate amount n
from operation modifier

031

rsrc1

Left rotator

32 bits from rsrc1

031

rdest
9

Intermediate result
(example: n = 9)

031

32 bits from rsrc1
03123 23

SEE ALSO
rol asl asli asr asri lsl

lsli lsr lsri

roli

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-160

Sign extend 16 bits

SYNTAX
[IF rguard] sex16 rsrc1 → rdest

FUNCTION
if rguard then

rdest ← sign_ext16to32(rsrc1<15:0>)

ATTRIBUTES
Function unit alu
Operation code 51
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the sex16 operation sign extends the least-significant 16bit halfword of the argument, rsrc1, to 32

bits and stores the result in rdest.

The sex16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of the guard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffff0040 sex16 r30 → r60 r60 ← 0x00000040

r10 = 0, r40 = 0xff0fff91 IF r10 sex16 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0xff0fff91 IF r20 sex16 r40 → r100 r100 ← 0xffffff91

r50 = 0x00000091 sex16 r50 → r110 r110 ← 0x00000091

01531

rsrc1

031

rdest
15

S

SSSSSSSSSSSSSSSSS

signed

signed

SEE ALSO
zex16 sex8 zex8

sex16

PNX1300/01/02/11 Data Book Philips Semiconductors

A-161 PRELIMINARY SPECIFICATION

Sign extend 8 bits
pseudo-op for ibytesel

SYNTAX
[IF rguard] sex8 rsrc1 → rdest

FUNCTION
if rguard then

rdest ← sign_ext8to32(rsrc1<7:0>)

ATTRIBUTES
Function unit alu
Operation code 56
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The sex8 operation is a pseudo operation transformed by the scheduler into a ibytesel with rsrc1 as the first

argument and r0 (always contains 0) as the second. (Note: pseudo operations cannot be used in assembly source
files.)

As shown below, the sex8 operation sign extends the least-significant halfword of the argument, r src1, to 32 bits
and writes the result in rdest.

The sex8 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffff0040 sex8 r30 → r60 r60 ← 0x00000040

r10 = 0, r40 = 0xff0fff91 IF r10 sex8 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0xff0fff91 IF r20 sex8 r40 → r100 r100 ← 0xffffff91

r50 = 0x00000091 sex8 r50 → r110 r110 ← 0xffffff91

01531

rsrc1

031

rdest
15 7

7

23

23

S

S

SSSSSSSSSSSSSSSSSSSSSSSS

signed

signed

SEE ALSO
ibytesel sex16 zex8 zex16

sex8

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-162

16-bit store
pseudo-op for h_st16d(0)

SYNTAX
[IF rguard] st16 rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

mem[rsrc1 + (1 ⊕ bs)] ← rsrc2<7:0>
mem[rsrc1 + (0 ⊕ bs)] ← rsrc2<15:8>

}

ATTRIBUTES
Function unit dmem
Operation code 30
Number of operands 2
Modifier No
Modifier range —
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st16 operation is a pseudo operation transformed by the scheduler into an h_st16d(0) with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st16 operation stores the least-significant 16-bit halfword of rsrc2 into the memory locations pointed to by the

address in rsrc1. This store operation is performed as little-endian or big-endian depending on the current setting of
the bytesex bit in the PCSW.

If st16 is misaligned (the memory address in rsrc1 is not a multiple of 2), the result of st16 is undefined, and the
MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if the TRPMSE (TRaP on
Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the next interruptible jump.

The result of an access by st16 to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The st16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, st16 has no side effects whatever; in particular, the
LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 st16 r10 r80 [0xd00] ← 0x22, [0xd01] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 st16 r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd02,
r70 = 0xaabbccdd

IF r60 st16 r30 r70 [0xd02] ← 0xcc, [0xd03] ← 0xdd

SEE ALSO
st16d h_st16d st8 st8d

st32 st32d

st16

PNX1300/01/02/11 Data Book Philips Semiconductors

A-163 PRELIMINARY SPECIFICATION

16-bit store with displacement
pseudo-op for h_st16d

SYNTAX
[IF rguard] st16d(d) rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

mem[rsrc1 + d + (1 ⊕ bs)] ← rsrc2<7:0>
mem[rsrc1 + d + (0 ⊕ bs)] ← rsrc2<15:8>

}

ATTRIBUTES
Function unit dmem
Operation code 30
Number of operands 2
Modifier 7 bits
Modifier range –128..126 by 2
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st16d operation is a pseudo operation transformed by the scheduler into an h_st16d with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st16d operation stores the least-significant 16-bit halfword of rsrc2 into the memory locations pointed to by the

address in rsrc1 + d. The d value is an opcode modifier, must be in the range –128 and 126 inclusive, and must be a
multiple of 2. This store operation is performed as little-endian or big-endian depending on the current setting of the
bytesex bit in the PCSW.

If st16d is misaligned (the memory address computed by rsrc1 + d is not a multiple of 2), the result of st16d is
undefined, and the MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if the TRPMSE
(TRaP on Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the next
interruptible jump.

The result of an access by st16d to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The st16d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, st16d has no side effects whatever; in particular, the
LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xcfe, r80 = 0x44332211 st16d(2) r10 r80 [0xd00] ← 0x22, [0xd01] ← 0x11

r50 = 0, r20 = 0xd05,
r70 = 0xaabbccdd

IF r50 st16d(–4) r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd06,
r70 = 0xaabbccdd

IF r60 st16d(–4) r30 r70 [0xd02] ← 0xcc, [0xd03] ← 0xdd

SEE ALSO
st16 h_st16d st8 st8d st32

st32d

st16d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-164

32-bit store
pseudo-op for h_st32d(0)

SYNTAX
[IF rguard] st32 rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

mem[rsrc1 + (3 ⊕ bs)] ← rsrc2<7:0>
mem[rsrc1 + (2 ⊕ bs)] ← rsrc2<15:8>
mem[rsrc1 + (1 ⊕ bs)] ← rsrc2<23:16>
mem[rsrc1 + (0 ⊕ bs)] ← rsrc2<31:24>

}

ATTRIBUTES
Function unit dmem
Operation code 31
Number of operands 2
Modifier No
Modifier range —
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st32 operation is a pseudo operation transformed by the scheduler into an h_st32d(0) with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st32 operation stores all 32 bits of rsrc2 into the memory locations pointed to by the address in rsrc1. The d

value is an opcode modifier and must be a multiple of 4. This store operation is performed as little-endian or big-
endian depending on the current setting of the bytesex bit in the PCSW.

If st32 is misaligned (the memory address in rsrc1 is not a multiple of 4), the result of st32 is undefined, and the
MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if the TRPMSE (TRaP on
Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the next interruptible jump.

The st32 operation can be used to access the MMIO address aperture (the result of MMIO access by 8- or 16-bit
memory operations is undefined). The state of the BSX bit in the PCSW has no effect on MMIO access by st32.

The st32 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, st32 has no side effects whatever; in particular, the
LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 st32 r10 r80 [0xd00] ← 0x44, [0xd01] ← 0x33,
[0xd02] ← 0x22, [0xd03] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 st32 r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd04,
r70 = 0xaabbccdd

IF r60 st32 r30 r70 [0xd04] ← 0xaa, [0xd05] ← 0xbb,
[0xd06] ← 0xcc, [0xd07] ← 0xdd

SEE ALSO
h_st32d st32d st16 st16d

st8 st8d

st32

PNX1300/01/02/11 Data Book Philips Semiconductors

A-165 PRELIMINARY SPECIFICATION

32-bit store with displacement
pseudo-op for h_st32d

SYNTAX
[IF rguard] st32d(d) rsrc1 rsrc2

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 3

else
bs ← 0

mem[rsrc1 + d + (3 ⊕ bs)] ← rsrc2<7:0>
mem[rsrc1 + d + (2 ⊕ bs)] ← rsrc2<15:8>
mem[rsrc1 + d + (1 ⊕ bs)] ← rsrc2<23:16>
mem[rsrc1 + d + (0 ⊕ bs)] ← rsrc2<31:24>

}

ATTRIBUTES
Function unit dmem
Operation code 31
Number of operands 2
Modifier 7 bits
Modifier range –256..252 by 4
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st32d operation is a pseudo operation transformed by the scheduler into an h_st32d with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st32d operation stores all 32 bits of rsrc2 into the memory locations pointed to by the address in rsrc1 + d.

The d value is an opcode modifier, must be in the range –256 and 252 inclusive, and must be a multiple of 4. This
store operation is performed as little-endian or big-endian depending on the current setting of the bytesex bit in the
PCSW.

If st32d is misaligned (the memory address computed by rsrc1 + d is not a multiple of 4), the result of st32d is
undefined, and the MSE (Misaligned Store Exception) bit in the PCSW register is set to 1. Additionally, if the TRPMSE
(TRaP on Misaligned Store Exception) bit in PCSW is 1, exception processing will be requested on the next
interruptible jump.

The st32d operation can be used to access the MMIO address aperture (the result of MMIO access by 8- or 16-bit
memory operations is undefined). The state of the BSX bit in the PCSW has no effect on MMIO access by st32d.

The st32d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory locations (and the modification of cache if the locations are cacheable). If the
LSB of rguard is 1, the store takes effect. If the LSB of rguard is 0, st32d has no side effects whatever; in particular, the
LRU and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xcfc, r80 = 0x44332211 st32d(4) r10 r80 [0xd00] ← 0x44, [0xd01] ← 0x33,
[0xd02] ← 0x22, [0xd03] ← 0x11

r50 = 0, r20 = 0xd0b,
r70 = 0xaabbccdd

IF r50 st32d(–8) r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd0c,
r70 = 0xaabbccdd

IF r60 st32d(–8) r30 r70 [0xd04] ← 0xaa, [0xd05] ← 0xbb,
[0xd06] ← 0xcc, [0xd07] ← 0xdd

SEE ALSO
h_st32d st32 st16 st16d

st8 st8d

st32d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-166

8-bit store
pseudo-op for h_st8d(0)

SYNTAX
[IF rguard] st8 rsrc1 rsrc2

FUNCTION
if rguard then

mem[rsrc1] ← rsrc2<7:0>

ATTRIBUTES
Function unit dmem
Operation code 29
Number of operands 2
Modifier No
Modifier range —
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st8 operation is a pseudo operation transformed by the scheduler into an h_st8d(0) with the same

arguments. (Note: pseudo operations cannot be used in assembly files.)
The st8 operation stores the least-significant 8-bit byte of rsrc2 into the memory location pointed to by the address

in rsrc1. This operation does not depend on the bytesex bit in the PCSW since only a single byte is stored.
The result of an access by st8 to the MMIO address aperture is undefined; access to the MMIO aperture is defined

only for 32-bit loads and stores.
The st8 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the addressed memory location (and the modification of cache if the location is cacheable). If the LSB
of rguard is 1, the store takes effect. If the LSB of rguard is 0, st8 has no side effects whatever; in particular, the LRU
and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 st8 r10 r80 [0xd00] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 st8 r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd02,
r70 = 0xaabbccdd

IF r60 st8 r30 r70 [0xd02] ← 0xdd

SEE ALSO
h_st8d st8d st16 st16d

st32 st32d

st8

PNX1300/01/02/11 Data Book Philips Semiconductors

A-167 PRELIMINARY SPECIFICATION

8-bit store with displacement
pseudo-op for h_st8d

SYNTAX
[IF rguard] st8d(d) rsrc1 rsrc2

FUNCTION
if rguard then

mem[rsrc1 + d] ← rsrc2<7:0>

ATTRIBUTES
Function unit dmem
Operation code 29
Number of operands 2
Modifier 7 bits
Modifier range –64..63
Latency n/a
Issue slots 4, 5

DESCRIPTION
The st8d operation is a pseudo operation transformed by the scheduler into an h_st8d with the same arguments.

(Note: pseudo operations cannot be used in assembly files.)
The st8d operation stores the least-significant 8-bit byte of rsrc2 into the memory location pointed to by the

address formed from the sum rsrc1 + d. The value of the opcode modifier d must be in the range -64 and 63 inclusive.
This operation does not depend on the bytesex bit in the PCSW since only a single byte is stored.

The result of an access by st8d to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The st8d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the addressed memory location (and the modification of cache if the location is cacheable). If the LSB
of rguard is 1, the store takes effect. If the LSB of rguard is 0, st8d has no side effects whatever; in particular, the LRU
and other status bits in the data cache are not affected.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r80 = 0x44332211 st8d(3) r10 r80 [0xd03] ← 0x11

r50 = 0, r20 = 0xd01,
r70 = 0xaabbccdd

IF r50 st8d(-4) r20 r70 no change, since guard is false

r60 = 1, r30 = 0xd02,
r70 = 0xaabbccdd

IF r60 st8d(-4) r30 r70 [0xcfe] ← 0xdd

SEE ALSO
h_st8d st8 st16 st16d st32

st32d

st8d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-168

Select unsigned byte

SYNTAX
[IF rguard] ubytesel rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc2 = 0 then
rdest ← zero_ext8to32(rsrc1<7:0>)

else if rsrc2 = 1 then
rdest ← zero_ext8to32(rsrc1<15:8>)

else if rsrc2 = 2 then
rdest ← zero_ext8to32(rsrc1<23:15>)

else if rsrc2 = 3 then
rdest ← zero_ext8to32(rsrc1<31:24>)

}

ATTRIBUTES
Function unit alu
Operation code 55
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
As shown below, the ubytesel operation selects one byte from the argument, rsrc1, zero-extends the byte to 32

bits, and stores the result in rdest. The value of rsrc2 determines which byte is selected, with rsrc2=0 selecting the
LSB of rsrc1 and rsrc2=3 selecting the MSB of rsrc1. If rsrc2 is not between 0 and 3 inclusive, the result of
ubytesel is undefined.

The ubytesel operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x44332211, r40 = 1 ubytesel r30 r40 → r50 r50 ← 0x00000022

r10 = 0, r60 = 0xddccbbaa, r70 = 2 IF r10 ubytesel r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0xddccbbaa, r70 = 2 IF r20 ubytesel r60 r70 → r90 r90 ← 0x000000cc

r100 = 0xffffff7f, r110 = 0 ubytesel r100 r110 → r120 r120 ← 0x0000007f

01531

rsrc1
031

rsrc2
23 7 1

031

rdest
7

0

3 2 1 0

00000000000000000000000

unsigned unsigned unsigned unsigned

unsigned

SEE ALSO
ibytesel sex8 packbytes

ubytesel

PNX1300/01/02/11 Data Book Philips Semiconductors

A-169 PRELIMINARY SPECIFICATION

Clip signed to unsigned

SYNTAX
[IF rguard] uclipi rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← min(max(rsrc1, 0), rsrc2)

ATTRIBUTES
Function unit dspalu
Operation code 75
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The uclipi operation returns the value of rsrc1 clipped into the unsigned integer range 0 to rsrc2, inclusive. The

argument rsrc1 is considered a signed integer; rsrc2 is considered an unsigned integer.
The uclipi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x80, r40 = 0x7f uclipi r30 r40 → r50 r50 ← 0x7f

r10 = 0, r60 = 0x12345678,
r70 = 0xabc

IF r10 uclipi r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x12345678,
r70 = 0xabc

IF r20 uclipi r60 r70 → r90 r90 ← 0xabc

r100 = 0x80000000, r110 = 0x3fffff uclipi r100 r110 → r120 r120 ← 0

SEE ALSO
iclipi uclipu imin imax

uclipi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-170

Clip unsigned to unsigned

SYNTAX
[IF rguard] uclipu rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 > rsrc2 then
rdest ← rsrc2

else
rdest ← rsrc1

}

ATTRIBUTES
Function unit dspalu
Operation code 76
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The uclipu operation returns the value of rsrc1 clipped into the unsigned integer range 0 to rsrc2, inclusive. The

arguments rsrc1 and rsrc2 are considered unsigned integers.
The uclipu operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x80, r40 = 0x7f uclipu r30 r40 → r50 r50 ← 0x7f

r10 = 0, r60 = 0x12345678,
r70 = 0xabc

IF r10 uclipu r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x12345678,
r70 = 0xabc

IF r20 uclipu r60 r70 → r90 r90 ← 0xabc

r100 = 0x80000000, r110 = 0x3fffff uclipu r100 r110 → r120 r120 ← 0x3fffff

SEE ALSO
iclipi uclipi imin imax

uclipu

PNX1300/01/02/11 Data Book Philips Semiconductors

A-171 PRELIMINARY SPECIFICATION

Unsigned compare equal
pseudo-op for ieql

SYNTAX
[IF rguard] ueql rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 = rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 37
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ueql operation is a pseudo operation transformed by the scheduler into an ieql with the same arguments.

(Note: pseudo operations cannot be used in assembly files.)
The ueql operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is equal to the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ueql operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ueql r30 r40 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ueql r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x1000 IF r20 ueql r50 r60 → r90 r90 ← 1

r70 = 0x80000000, r40 = 4 ueql r70 r40 → r100 r100 ← 0

r70 = 0x80000000 ueql r70 r70 → r110 r110 ← 1

SEE ALSO
ieql ueqli igeq uneq

ueql

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-172

Unsigned compare equal with immediate

SYNTAX
[IF rguard] ueqli(n) rsrc1 → rdest

FUNCTION
if rguard then {

if rsrc1 = n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 38
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ueqli operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is equal to the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ueqli operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ueqli(2) r30 → r80 r80 ← 0

r30 = 3 ueqli(3) r30 → r90 r90 ← 1

r30 = 3 ueqli(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 ueqli(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ueqli(63) r40 → r100 r100 ← 0

r60 = 0x07f ueqli(127) r60 → r120 r120 ← 1

SEE ALSO
ieqli ueql igeqi uneqi

ueqli

PNX1300/01/02/11 Data Book Philips Semiconductors

A-173 PRELIMINARY SPECIFICATION

Sum of products of unsigned 16-bit halfwords

SYNTAX
[IF rguard] ufir16 rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← zero_ext16to32(rsrc1<31:16>) × zero_ext16to32(rsrc2<31:16>) +
zero_ext16to32(rsrc1<15:0>) × zero_ext16to32(rsrc2<15:0>)

ATTRIBUTES
Function unit dspmul
Operation code 94
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the ufir16 operation computes two separate products of the two pairs of corresponding 16-bit

halfwords of rsrc1 and rsrc2; the two products are summed, and the result is written to rdest. All halfwords are
considered unsigned; thus, the intermediate products and the final sum of products are unsigned. All intermediate
computations are performed without loss of precision; the final sum of products is clipped into the range [0xffffffff..0]
before being written into rdest.

The ufir16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x00020003, r40 = 0x00010002 ufir16 r30 r40 → r50 r50 ← 8

r10 = 0, r60 = 0x80000064, r70 = 0x00648000 IF r10 ufir16 r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x80000064, r70 = 0x00648000 IF r20 ufir16 r60 r70 → r90 r90 ← 0x00640000

r30 = 0x00020003, r70 = 0x00648000 ufir16 r30 r70 → r100 r100 ← 0x000180c8

01531

rsrc1
01531

rsrc2

031

rdest

×
×

+

unsigned unsigned unsigned unsigned

unsigned

032

Clip to [232–1..0]

Full-precision
33-bit result unsigned

SEE ALSO
ifir16 ifir8ii ifir8ui

ufir8uu

ufir16

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-174

Unsigned sum of products of unsigned bytes

SYNTAX
[IF rguard] ufir8uu rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← zero_ext8to32(rsrc1<31:24>) × zero_ext8to32(rsrc2<31:24>) +
zero_ext8to32(rsrc1<23:16>) × zero_ext8to32(rsrc2<23:16>) +
zero_ext8to32(rsrc1<15:8>) × zero_ext8to32(rsrc2<15:8>) +
zero_ext8to32(rsrc1<7:0>) × zero_ext8to32(rsrc2<7:0>)

ATTRIBUTES
Function unit dspmul
Operation code 90
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the ufir8uu operation computes four separate products of the four pairs of corresponding 8-bit

bytes of rsrc1 and rsrc2; the four products are summed, and the result is written to rdest. All values are considered
unsigned. All computations are performed without loss of precision.

The ufir8uu operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r70 = 0x0afb14f6, r30 = 0x0a0a1414 ufir8uu r70 r30 → r90 r90 ← 0x1efa

r10 = 0, r70 = 0x0afb14f6, r30 = 0x0a0a1414 IF r10 ufir8uu r70 r30 → r100 no change, since guard is false

r20 = 1, r80 = 0x649c649c, r40 = 0x9c649c64 IF r20 ufir8uu r80 r40 → r110 r110 ← 0xf3c0

r50 = 0x80808080, r60 = 0xffffffff ufir8uu r50 r60 → r120 r120 ← 0x1fe00

01531

rsrc1
01531

rsrc2

031

rdest

×
×

+

×
×

23 7 23 7

unsigned unsigned unsigned unsigned unsigned unsigned unsigned unsigned

unsigned

SEE ALSO
ifir8ui ifir8ii ifir16

ufir16

ufir8uu

PNX1300/01/02/11 Data Book Philips Semiconductors

A-175 PRELIMINARY SPECIFICATION

Convert floating-point to unsigned integer using
PCSW rounding mode

SYNTAX
[IF rguard] ufixieee rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (unsigned long) ((float)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 123
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufixieee operation converts the single-precision IEEE floating-point value in rsrc1 to an unsigned integer

and writes the result into rdest. Rounding is according to the IEEE rounding mode bits in PCSW. If rsrc1 is
denormalized, zero is substituted before conversion, and the IFZ flag in the PCSW is set. If ufixieee causes an
IEEE exception, such as overflow or underflow, the corresponding exception flags in the PCSW are set. The PCSW
exception flags are sticky: the flags can be set as a side-effect of any floating-point operation but can only be reset by
an explicit writepcsw operation. The update of the PCSW exception flags occurs at the same time as rdest is
written. If any other floating-point compute operations update the PCSW at the same time, the net result in each
exception flag is the logical OR of all simultaneous updates ORed with the existing PCSW value for that exception flag.

The ufixieeeflags operation computes the exception flags that would result from an individual ufixieee.
The ufixieee operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ufixieee r30 → r100 r100 ← 3

r35 = 0x40247ae1 (2.57) ufixieee r35 → r102 r102 ← 3, INX flag set

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ufixieee r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ufixieee r40 → r110 r110 ← 0x0, INV flag set

r45 = 0x7f800000 (+INF)) ufixieee r45 → r112 r112 ← 0xffffffff (232-1), INV flag set

r50 = 0xbfc147ae (-1.51) ufixieee r50 → r115 r115 ← 0, INV flag set

r60 = 0x00400000 (5.877471754e-39) ufixieee r60 → r117 r117 ← 0, IFZ set

r70 = 0xffffffff (QNaN) ufixieee r70 → r120 r120 ← 0, INV flag set

r80 = 0xffbfffff (SNaN) ufixieee r80 → r122 r122 ← 0, INV flag set

SEE ALSO
ifixieee ifixrz ufixrz

ufixieee

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-176

IEEE status flags from convert floating-point to
unsigned integer using PCSW rounding mode

SYNTAX
[IF rguard] ufixieeeflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((unsigned long) ((float)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 124
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufixieeeflags operation computes the IEEE exceptions that would result from converting the single-

precision IEEE floating-point value in rsrc1 to an unsigned integer, and an integer bit vector representing the
computed exception flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE
exception bits in the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is according
to the IEEE rounding mode bits in PCSW. If an argument is denormalized, zero is substituted before computing the
conversion, and the IFZ bit in the result is set.

The ufixieeeflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB
controls the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not
changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ufixieeeflags r30 → r100 r100 ← 0

r35 = 0x40247ae1 (2.57) ufixieeeflags r35 → r102 r102 ← 0x02 (INX)

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ufixieeeflags r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ufixieeeflags r40 → r110 r110 ← 0x10 (INV)

r45 = 0x7f800000 (+INF)) ufixieeeflags r45 → r112 r112 ← 0x10 (INV)

r50 = 0xbfc147ae (-1.51) ufixieeeflags r50 → r115 r115 ← 0x10 (INV)

r60 = 0x00400000 (5.877471754e-39) ufixieeeflags r60 → r117 r117 ← 0x20 (IFZ)

r70 = 0xffffffff (QNaN) ufixieeeflags r70 → r120 r120 ← 0x10 (INV)

r80 = 0xffbfffff (SNaN) ufixieeeflags r80 → r122 r122 ← 0x10 (INV)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ufixieee ifixieeeflags
ifixrzflags ufixrzflags

ufixieeeflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-177 PRELIMINARY SPECIFICATION

Convert floating-point to unsigned integer with
round toward zero

SYNTAX
[IF rguard] ufixrz rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (unsigned long) ((float)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 125
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufixrz operation converts the single-precision IEEE floating-point value in rsrc1 to an unsigned integer and

writes the result into rdest. Rounding toward zero is performed; the IEEE rounding mode bits in PCSW are ignored.
This is the preferred rounding mode for ANSI C. If rsrc1 is denormalized, zero is substituted before conversion, and
the IFZ flag in the PCSW is set. If ufixrz causes an IEEE exception, such as overflow or underflow, the
corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as a
side-effect of any floating-point operation but can only be reset by an explicit writepcsw operation. The update of
the PCSW exception flags occurs at the same time as rdest is written. If any other floating-point compute operations
update the PCSW at the same time, the net result in each exception flag is the logical OR of all simultaneous updates
ORed with the existing PCSW value for that exception flag.

The ufixrzflags operation computes the exception flags that would result from an individual ufixrz.
The ufixrz operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ufixrz r30 → r100 r100 ← 3

r35 = 0x40247ae1 (2.57) ufixrz r35 → r102 r102 ← 2, INX flag set

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ufixrz r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ufixrz r40 → r110 r110 ← 0x0, INV flag set

r45 = 0x7f800000 (+INF)) ufixrz r45 → r112 r112 ← 0xffffffff (232-1), INV flag set

r50 = 0xbfc147ae (-1.51) ufixrz r50 → r115 r115 ← 0, INV flag set

r60 = 0x00400000 (5.877471754e-39) ufixrz r60 → r117 r117 ← 0, IFZ set

r70 = 0xffffffff (QNaN) ufixrz r70 → r120 r120 ← 0, INV flag set

r80 = 0xffbfffff (SNaN) ufixrz r80 → r122 r122 ← 0, INV flag set

SEE ALSO
ifixieee ufixieee ifixrz

ufixrz

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-178

IEEE status flags from convert floating-point to
unsigned integer with round toward zero

SYNTAX
[IF rguard] ufixrzflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((unsigned long) ((float)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 126
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufixrzflags operation computes the IEEE exceptions that would result from converting the single-precision

IEEE floating-point value in rsrc1 to an unsigned integer, and an integer bit vector representing the computed
exception flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in
the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding toward zero is performed;
the IEEE rounding mode bits in PCSW are ignored. If an argument is denormalized, zero is substituted before
computing the conversion, and the IFZ bit in the result is set.

The ufixrzflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x40400000 (3.0) ufixrzflags r30 → r100 r100 ← 0

r35 = 0x40247ae1 (2.57) ufixrzflags r35 → r102 r102 ← 0x02 (INX)

r10 = 0,
r40 = 0xff4fffff (–3.402823466e+38)

IF r10 ufixrzflags r40 → r105 no change, since guard is false

r20 = 1,
r40 = 0xff4fffff (–3.402823466e+38)

IF r20 ufixrzflags r40 → r110 r110 ← 0x10 (INV)

r45 = 0x7f800000 (+INF)) ufixrzflags r45 → r112 r112 ← 0x10 (INV)

r50 = 0xbfc147ae (-1.51) ufixrzflags r50 → r115 r115 ← 0x10 (INV)

r60 = 0x00400000 (5.877471754e-39) ufixrzflags r60 → r117 r117 ← 0x20 (IFZ)

r70 = 0xffffffff (QNaN) ufixrzflags r70 → r120 r120 ← 0x10 (INV)

r80 = 0xffbfffff (SNaN) ufixrzflags r80 → r122 r122 ← 0x10 (INV)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ufixrz ifixrzflags

ifixieeeflags
ufixieeeflags

ufixrzflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-179 PRELIMINARY SPECIFICATION

Convert unsigned integer to floating-point

SYNTAX
[IF rguard] ufloat rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (float) ((unsigned long)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 127
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufloat operation converts the unsigned integer value in rsrc1 to single-precision IEEE floating-point format

and writes the result into rdest. Rounding is according to the IEEE rounding mode bits in PCSW. If ufloat causes
an IEEE exception, such as inexact, the corresponding exception flags in the PCSW are set. The PCSW exception
flags are sticky: the flags can be set as a side-effect of any floating-point operation but can only be reset by an explicit
writepcsw operation. The update of the PCSW exception flags occurs at the same time as rdest is written. If any
other floating-point compute operations update the PCSW at the same time, the net result in each exception flag is the
logical OR of all simultaneous updates ORed with the existing PCSW value for that exception flag.

The ufloatflags operation computes the exception flags that would result from an individual ufloat.
The ufloat operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 3 ufloat r30 → r100 r100 ← 0x40400000 (3.0)

r40 = 0xffffffff (4294967295) ufloat r40 → r105 r105 ← 0x4f800000 (4.294967296e+9), INX flag set

r10 = 0, r50 = 0xfffffffd IF r10 ufloat r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ufloat r50 → r115 r115 ← 0x4f800000 (4.294967296e+9), INX flag set

r60 = 0x7fffffff (2147483647) ufloat r60 → r117 r117 ← 0x4f000000 (2.147483648e+9), INX flag set

r70 = 0x80000000 (2147483648) ufloat r70 → r120 r120 ← 0x4f000000 (2.147483648e+9)

r80 = 0x7ffffff1 (2147483633) ufloat r80 → r122 r122 ← 0x4f000000 (2.147483648e+9), INX flag set

SEE ALSO
ifloat ifloatrz ufloatrz

ifixieee ufloatflags

ufloat

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-180

IEEE status flags from convert unsigned integer
to floating-point

SYNTAX
[IF rguard] ufloatflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float) ((unsigned long)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 128
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufloatflags operation computes the IEEE exceptions that would result from converting the unsigned

integer in rsrc1 to a single-precision IEEE floating-point value, and an integer bit vector representing the computed
exception flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in
the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is according to the IEEE
rounding mode bits in PCSW.

The ufloatflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls
the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ufloatflags r30 → r100 r100 ← 0

r40 = 0xffffffff (4294967295) ufloatflags r40 → r105 r105 ← 0x02 (INX)

r10 = 0, r50 = 0xfffffffd IF r10 ufloatflags r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ufloatflags r50 → r115 r115 ← 0x02 (INX)

r60 = 0x7fffffff (2147483647) ufloatflags r60 → r117 r117 ← 0x02 (INX)

r70 = 0x80000000 (2147483648) ufloatflags r70 → r120 r120 ← 0

r80 = 0x7ffffff1 (2147483633) ufloatflags r80 → r122 r122 ← 0x02 (INX)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ufloat ifloatflags

ifloatrzflags
ufloatrzflags

ufloatflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-181 PRELIMINARY SPECIFICATION

Convert unsigned integer to floating-point with
rounding toward zero

SYNTAX
[IF rguard] ufloatrz rsrc1 → rdest

FUNCTION
if rguard then {

rdest ← (float) ((unsigned long)rsrc1)
}

ATTRIBUTES
Function unit falu
Operation code 119
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufloatrz operation converts the unsigned integer value in rsrc1 to single-precision IEEE floating-point

format and writes the result into rdest. Rounding is performed toward zero; the IEEE rounding mode bits in PCSW are
ignored. This is the preferred rounding mode for ANSI C. If ufloatrz causes an IEEE exception, such as inexact,
the corresponding exception flags in the PCSW are set. The PCSW exception flags are sticky: the flags can be set as
a side-effect of any floating-point operation but can only be reset by an explicit writepcsw operation. The update of
the PCSW exception flags occurs at the same time as rdest is written. If any other floating-point compute operations
update the PCSW at the same time, the net result in each exception flag is the logical OR of all simultaneous updates
ORed with the existing PCSW value for that exception flag.

The ufloatrzflags operation computes the exception flags that would result from an individual ufloatrz.
The ufloatrz operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of r guard is 1, rdest and the exception flags in PCSW are written;
otherwise, rdest is not changed and the operation does not affect the exception flags in PCSW.

EXAMPLES

Initial Values Operation Result

r30 = 3 ufloatrz r30 → r100 r100 ← 0x40400000 (3.0)

r40 = 0xffffffff (4294967295) ufloatrz r40 → r105 r105 ← 0x4f7fffff (4.294967040e+9), INX flag set

r10 = 0, r50 = 0xfffffffd IF r10 ufloatrz r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ufloatrz r50 → r115 r115 ← 0x4f7fffff (4.294967040e+9), INX flag set

r60 = 0x7fffffff (2147483647) ufloatrz r60 → r117 r117 ← 0x4effffff (2.147483520e+9), INX flag set

r70 = 0x80000000 (2147483648) ufloatrz r70 → r120 r120 ← 0x4f000000 (2.147483648e+9)

r80 = 0x7ffffff1 (2147483633) ufloatrz r80 → r122 r122 ← 0x4effffff (2.147483520e+9), INX flag set

SEE ALSO
ifloatrz ifloat ufloat
ifixieee ufloatflags

ufloatrz

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-182

IEEE status flags from convert unsigned integer
to floating-point with rounding toward zero

SYNTAX
[IF rguard] ufloatrzflags rsrc1 → rdest

FUNCTION
if rguard then

rdest ← ieee_flags((float) ((unsigned long)rsrc1))

ATTRIBUTES
Function unit falu
Operation code 120
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 1, 4

DESCRIPTION
The ufloatrzflags operation computes the IEEE exceptions that would result from converting the unsigned

integer in rsrc1 to a single-precision IEEE floating-point value, and an integer bit vector representing the computed
exception flags is written into rdest. The bit vector stored in rdest has the same format as the IEEE exception bits in
the PCSW. The exception flags in PCSW are left unchanged by this operation. Rounding is performed toward zero;
the IEEE rounding mode bits in PCSW are ignored.

The ufloatrzflags operation optionally takes a guard, specified in rguard. If a guard is present, its LSB
controls the modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not
changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ufloatrzflags r30 → r100 r100 ← 0

r40 = 0xffffffff (4294967295) ufloatrzflags r40 → r105 r105 ← 0x02 (INX)

r10 = 0, r50 = 0xfffffffd IF r10 ufloatrzflags r50 → r110 no change, since guard is false

r20 = 1, r50 = 0xfffffffd IF r20 ufloatrzflags r50 → r115 r115 ← 0x02 (INX)

r60 = 0x7fffffff (2147483647) ufloatrzflags r60 → r117 r117 ← 0x02 (INX)

r70 = 0x80000000 (2147483648) ufloatrzflags r70 → r120 r120 ← 0

r80 = 0x7ffffff1 (2147483633) ufloatrzflags r80 → r122 r122 ← 0x02 (INX)

OFZ IFZ INV OVF UNF INX DBZ

0123456731

0 0

SEE ALSO
ufloatrz ifloatflags

ufloatflags ifloatrzflags

ufloatrzflags

PNX1300/01/02/11 Data Book Philips Semiconductors

A-183 PRELIMINARY SPECIFICATION

Unsigned compare greater or equal

SYNTAX
[IF rguard] ugeq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 >= (unsigned)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 35
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ugeq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than or equal to

the second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ugeq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ugeq r30 r40 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ugeq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 ugeq r50 r60 → r90 r90 ← 1

r70 = 0x80000000, r40 = 4 ugeq r70 r40 → r100 r100 ← 1

r70 = 0x80000000 ugeq r70 r70 → r110 r110 ← 1

SEE ALSO
igeq ugeqi

ugeq

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-184

Unsigned compare greater or equal with
immediate

SYNTAX
[IF rguard] ugeqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 >= (unsigned)n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 36
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ugeqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than or equal to

the opcode modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ugeqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ugeqi(2) r30 → r80 r80 ← 1

r30 = 3 ugeqi(3) r30 → r90 r90 ← 1

r30 = 3 ugeqi(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 ugeqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ugeqi(63) r40 → r100 r100 ← 1

r60 = 0x80000000 ugeqi(127) r60 → r120 r120 ← 1

SEE ALSO
ugeq igeqi

ugeqi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-185 PRELIMINARY SPECIFICATION

Unsigned compare greater

SYNTAX
[IF rguard] ugtr rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 > (unsigned)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 33
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ugtr operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than the second

argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ugtr operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ugtr r30 r40 → r80 r80 ← 0

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ugtr r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 ugtr r50 r60 → r90 r90 ← 1

r70 = 0x80000000, r40 = 4 ugtr r70 r40 → r100 r100 ← 1

r70 = 0x80000000 ugtr r70 r70 → r110 r110 ← 0

SEE ALSO
igtr ugtri

ugtr

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-186

Unsigned compare greater with immediate

SYNTAX
[IF rguard] ugtri(n) rsrc1 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 > (unsigned)n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 34
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ugeqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is greater than the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ugeqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ugtri(2) r30 → r80 r80 ← 1

r30 = 3 ugtri(3) r30 → r90 r90 ← 0

r30 = 3 ugtri(4) r30 → r100 r100 ← 0

r10 = 0, r40 = 0x100 IF r10 ugtri(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ugtri(63) r40 → r100 r100 ← 1

r60 = 0x80000000 ugtri(127) r60 → r120 r120 ← 1

SEE ALSO
igtri ugtr

ugtri

PNX1300/01/02/11 Data Book Philips Semiconductors

A-187 PRELIMINARY SPECIFICATION

Unsigned immediate

SYNTAX
uimm(n) → rdest

FUNCTION
rdest ← n

ATTRIBUTES
Function unit const
Operation code 191
Number of operands 0
Modifier 32 bits
Modifier range 0..0xffffffff
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The uimm operation writes the unsigned 32-bit opcode modifier n into rdest. Note: this operation is not guarded.

EXAMPLES

Initial Values Operation Result

uimm(2) → r10 r10 ← 2

uimm(0x100) → r20 r20 ← 0x100

uimm(0xfffc0000) → r30 r30 ← 0xfffc0000

SEE ALSO
iimm

uimm

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-188

Unsigned 16-bit load
pseudo-op for uld16d(0)

SYNTAX
[IF rguard] uld16 rsrc1 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[rsrc1 + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + (0 ⊕ bs)]
rdest ← zero_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 197
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld16 operation is a pseudo operation transformed by the scheduler into an uld16d(0) with the same

argument. (Note: pseudo operations cannot be used in assembly source files.)
The uld16 operation loads the 16-bit memory value from the address contained in rsrc1, zero extends it to 32 bits,

and writes the result in rdest. If the memory address contained in rsrc1 is not a multiple of 2, the result of uld16 is
undefined but no exception will be raised. This load operation is performed as little-endian or big-endian depending on
the current setting of the bytesex bit in the PCSW.

The result of an access by uld16 to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and uld16 has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd00] = 0x22,
[0xd01] = 0x11

uld16 r10 → r60 r60 ← 0x00002211

r30 = 0, r20 = 0xd04, [0xd04] = 0x84,
[0xd05] = 0x33

IF r30 uld16 r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd04] = 0x84,
[0xd05] = 0x33

IF r40 uld16 r20 → r80 r80 ← 0x00008433

r50 = 0xd01 uld16 r50 → r90 r90 undefined (0xd01 is not a multiple of 2)

SEE ALSO
uld16d ild16 ild16d uld16r

ild16r uld16x ild16x

uld16

PNX1300/01/02/11 Data Book Philips Semiconductors

A-189 PRELIMINARY SPECIFICATION

Unsigned 16-bit load with displacement

SYNTAX
[IF rguard] uld16d(d) rsrc1 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[rsrc1 + d + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + d + (0 ⊕ bs)]
rdest ← zero_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 197
Number of operands 1
Modifier 7 bits
Modifier range –128..126 by 2
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld16d operation loads the 16-bit memory value from the address computed by rsrc1 + d, zero extends it to

32 bits, and writes the result in rdest. The d value is an opcode modifier, must be in the range –128 and 126 inclusive,
and must be a multiple of 2. If the memory address computed by rsrc1 + d is not a multiple of 2, the result of uld16d
is undefined but no exception will be raised. This load operation is performed as little-endian or big-endian depending
on the current setting of the bytesex bit in the PCSW.

The result of an access by uld16d to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld16d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and uld16d has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd02] = 0x22,
[0xd03] = 0x11

uld16d(2) r10 → r60 r60 ← 0x00002211

r30 = 0, r20 = 0xd04, [0xd00] = 0x84,
[0xd01] = 0x33

IF r30 uld16d(-4) r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd00] = 0x84,
[0xd01] = 0x33

IF r40 uld16d(-4) r20 → r80 r80 ← 0x00008433

r50 = 0xd01 uld16d(-4) r50 → r90 r90 undefined (0xd01 +(–4) is not a multiple
of 2)

SEE ALSO
uld16 ild16 ild16d uld16r

ild16r uld16x ild16x

uld16d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-190

Unsigned 16-bit load with index

SYNTAX
[IF rguard] uld16r rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[rsrc1 + rsrc2 + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + rsrc2 + (0 ⊕ bs)]
rdest ← zero_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 198
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld16r operation loads the 16-bit memory value from the address computed by rsrc1 + rsrc2, zero extends it

to 32 bits, and writes the result in rdest. If the memory address computed by rsrc1 + rsrc2 is not a multiple of 2, the
result of uld16r is undefined but no exception will be raised. This load operation is performed as little-endian or big-
endian depending on the current setting of the bytesex bit in the PCSW.

The result of an access by uld16r to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld16r operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and uld16r has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r20 = 2, [0xd02] = 0x22,
[0xd03] = 0x11

uld16r r10 r20 → r80 r80 ← 0x00002211

r50 = 0, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84, [0xd01] = 0x33

IF r50 uld16r r40 r30 → r90 no change, since guard is false

r60 = 1, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84, [0xd01] = 0x33

IF r60 uld16r r40 r30 → r100 r100 ← 0x00008433

r70 = 0xd01, r30 = 0xfffffffc uld16r r70 r30 → r110 r110 undefined (0xd01 +(–4) is not a multiple
of 2)

SEE ALSO
uld16 ild16 uld16d ild16d

ild16r uld16x ild16x

uld16r

PNX1300/01/02/11 Data Book Philips Semiconductors

A-191 PRELIMINARY SPECIFICATION

Unsigned 16-bit load with scaled index

SYNTAX
[IF rguard] uld16x rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if PCSW.bytesex = LITTLE_ENDIAN then
bs ← 1

else
bs ← 0

temp<7:0> ← mem[rsrc1 + (2 × rsrc2) + (1 ⊕ bs)]
temp<15:8> ← mem[rsrc1 + (2 × rsrc2) + (0 ⊕ bs)]
rdest ← zero_ext16to32(temp<15:0>)

}

ATTRIBUTES
Function unit dmem
Operation code 199
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld16x operation loads the 16-bit memory value from the address computed by rsrc1 + 2×rsrc2, zero extends

it to 32 bits, and writes the result in rdest. If the memory address computed by rsrc1 + 2×rsrc2 is not a multiple of 2,
the result of uld16x is undefined but no exception will be raised. This load operation is performed as little-endian or
big-endian depending on the current setting of the bytesex bit in the PCSW.

The result of an access by uld16x to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld16x operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed locations are cacheable. if the LSB of rguard is 0, rdest is not
changed and uld16x has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r30 = 1, [0xd02] = 0x22,
[0xd03] = 0x11

uld16x r10 r30 → r100 r100 ← 0x00002211

r50 = 0, r40 = 0xd04, r20 = 0xfffffffe,
[0xd00] = 0x84, [0xd01] = 0x33

IF r50 uld16x r40 r20 → r80 no change, since guard is false

r60 = 1, r40 = 0xd04, r20 = 0xfffffffe,
[0xd00] = 0x84, [0xd01] = 0x33

IF r60 uld16x r40 r20 → r90 r90 ← 0x00008433

r70 = 0xd01, r30 = 1 uld16x r70 r30 → r110 r110 undefined (0xd01 + 2×1 is not a multi-
ple of 2)

SEE ALSO
uld16 ild16 uld16d ild16d

uld16r ild16r ild16x

uld16x

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-192

Unsigned 8-bit load
pseudo-op for uld8d(0)

SYNTAX
[IF rguard] uld8 rsrc1 → rdest

FUNCTION
if rguard then

rdest ← zero_ext8to32(mem[rsrc1])

ATTRIBUTES
Function unit dmem
Operation code 8
Number of operands 1
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld8 operation is a pseudo operation transformed by the scheduler into an uld8d(0) with the same

argument. (Note: pseudo operations cannot be used in assembly source files.)
The uld8 operation loads the 8-bit memory value from the address contained in rsrc1, zero extends it to 32 bits,

and writes the result in rdest. This operation does not depend on the bytesex bit in the PCSW since only a single byte
is loaded.

The result of an access by uld8 to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld8 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed location is cacheable. if the LSB of rguard is 0, rdest is not
changed and uld8 has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd00] = 0x22 uld8 r10 → r60 r60 ← 0x00000022

r30 = 0, r20 = 0xd04, [0xd04] = 0x84 IF r30 uld8 r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd04] = 0x84 IF r40 uld8 r20 → r80 r80 ← 0x00000084

r50 = 0xd01, [0xd01] = 0x33 uld8 r50 → r90 r90 ← 0x00000033

SEE ALSO
ild8 uld8d ild8d uld8r

ild8r

uld8

PNX1300/01/02/11 Data Book Philips Semiconductors

A-193 PRELIMINARY SPECIFICATION

Unsigned 8-bit load with displacement

SYNTAX
[IF rguard] uld8d(d) rsrc1 → rdest

FUNCTION
if rguard then

rdest ← zero_ext8to32(mem[rsrc1 + d])

ATTRIBUTES
Function unit dmem
Operation code 8
Number of operands 1
Modifier 7 bits
Modifier range –64..63
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld8d operation loads the 8-bit memory value from the address computed by rsrc1 + d, zero extends it to 32

bits, and writes the result in rdest. The d value is an opcode modifier in the range –64 to 63 inclusive. This operation
does not depend on the bytesex bit in the PCSW since only a single byte is loaded.

The result of an access by uld8d to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld8d operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed location is cacheable. if the LSB of rguard is 0, rdest is not
changed and uld8d has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, [0xd02] = 0x22 uld8d(2) r10 → r60 r60 ← 0x000022

r30 = 0, r20 = 0xd04, [0xd00] = 0x84 IF r30 uld8d(-4) r20 → r70 no change, since guard is false

r40 = 1, r20 = 0xd04, [0xd00] = 0x84 IF r40 uld8d(-4) r20 → r80 r80 ← 0x00000084

r50 = 0xd05, [0xd01] = 0x33 uld8d(-4) r50 → r90 r90 ← 0x00000033

SEE ALSO
uld8 ild8 ild8d uld8r

ild8r

uld8d

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-194

Unsigned 8-bit load with index

SYNTAX
[IF rguard] uld8r rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← zero_ext8to32(mem[rsrc1 + rsrc2])

ATTRIBUTES
Function unit dmem
Operation code 194
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 4, 5

DESCRIPTION
The uld8r operation loads the 8-bit memory value from the address computed by rsrc1 + rsrc2, zero extends it to

32 bits, and writes the result in rdest. This operation does not depend on the bytesex bit in the PCSW since only a
single byte is loaded.

The result of an access by uld8r to the MMIO address aperture is undefined; access to the MMIO aperture is
defined only for 32-bit loads and stores.

The uld8r operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register and the occurrence of side effects. If the LSB of rguard is 1, rdest is written and
the data cache status bits are updated if the addressed location is cacheable. if the LSB of rguard is 0, rdest is not
changed and uld8r has no side effects whatever.

EXAMPLES

Initial Values Operation Result

r10 = 0xd00, r20 = 2, [0xd02] = 0x22 uld8r r10 r20 → r80 r80 ← 0x00000022

r50 = 0, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84

IF r50 uld8r r40 r30 → r90 no change, since guard is false

r60 = 1, r40 = 0xd04, r30 = 0xfffffffc,
[0xd00] = 0x84

IF r60 uld8r r40 r30 → r100 r100 ← 0x00000084

r70 = 0xd05, r30 = 0xfffffffc,
[0xd01] = 0x33

uld8r r70 r30 → r110 r110 ← 0x00000033

SEE ALSO
uld8 ild8 uld8d ild8d

ild8r

uld8r

PNX1300/01/02/11 Data Book Philips Semiconductors

A-195 PRELIMINARY SPECIFICATION

Unsigned compare less or equal
pseudo-op for ugeq

SYNTAX
[IF rguard] uleq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 <= (unsigned)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 35
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The uleq operation is a pseudo operation transformed by the scheduler into an ugeq with the arguments

exchanged (uleq’s rsrc1 is ugeq’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The uleq operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than or equal to the
second argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.

The uleq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 uleq r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 3 IF r10 uleq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 uleq r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 uleq r70 r40 → r100 r100 ← 0

r70 = 0x80000000 uleq r70 r70 → r110 r110 ← 1

SEE ALSO
ileq uleqi

uleq

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-196

Unsigned compare less or equal with immediate

SYNTAX
[IF rguard] uleqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 <= (unsigned)n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 43
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The uleqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than or equal to the

opcode modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The uleqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 uleqi(2) r30 → r80 r80 ← 0

r30 = 3 uleqi(3) r30 → r90 r90 ← 1

r30 = 3 uleqi(4) r30 → r100 r100 ← 1

r10 = 0, r40 = 0x100 IF r10 uleqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 uleqi(63) r40 → r100 r100 ← 0

r60 = 0x80000000 uleqi(127) r60 → r120 r120 ← 0

SEE ALSO
uleq ileqi

uleqi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-197 PRELIMINARY SPECIFICATION

Unsigned compare less
pseudo-op for ugtr

SYNTAX
[IF rguard] ules rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 < (unsigned)rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 33
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ules operation is a pseudo operation transformed by the scheduler into an ugtr with the arguments

exchanged (ules’s rsrc1 is ugtr’s rsrc2 and vice versa). (Note: pseudo operations cannot be used in assembly
source files.)

The ules operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than the second
argument, rsrc2; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.

The ules operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 ules r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x100, r30 = 3 IF r10 ules r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x100 IF r20 ules r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 ules r70 r40 → r100 r100 ← 0

r70 = 0x80000000 ules r70 r70 → r110 r110 ← 0

SEE ALSO
iles ugtr

ules

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-198

Unsigned compare less with immediate

SYNTAX
[IF rguard] ulesi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 < (unsigned)n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 41
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The ulesi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is less than the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The ulesi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 ulesi(2) r30 → r80 r80 ← 0

r30 = 3 ulesi(3) r30 → r90 r90 ← 0

r30 = 3 ulesi(4) r30 → r100 r100 ← 1

r10 = 0, r40 = 0x100 IF r10 ulesi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 ulesi(63) r40 → r100 r100 ← 0

r60 = 0x80000000 ulesi(127) r60 → r120 r120 ← 0

SEE ALSO
ules ilesi

ulesi

PNX1300/01/02/11 Data Book Philips Semiconductors

A-199 PRELIMINARY SPECIFICATION

Unsigned sum of absolute values
of signed 8-bit differences

SYNTAX
[IF rguard] ume8ii rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← abs_val(sign_ext8to32(rsrc1<31:24>) – sign_ext8to32(rsrc2<31:24>)) +
abs_val(sign_ext8to32(rsrc1<23:16>) – sign_ext8to32(rsrc2<23:16>)) +
abs_val(sign_ext8to32(rsrc1<15:8>) – sign_ext8to32(rsrc2<15:8>)) +
abs_val(sign_ext8to32(rsrc1<7:0>) – sign_ext8to32(rsrc2<7:0>))

ATTRIBUTES
Function unit dspalu
Operation code 64
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the ume8ii operation computes four separate differences of the four pairs of corresponding

signed 8-bit bytes of rsrc1 and rsrc2; the absolute values of the four differences are summed, and the sum is written to
rdest. All computations are performed without loss of precision.

The ume8ii operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r80 = 0x0a14f6f6, r30 = 0x1414ecf6 ume8ii r80 r30 → r100 r100 ← 0x14

r10 = 0, r80 = 0x0a14f6f6, r30 = 0x1414ecf6 IF r10 ume8ii r80 r30 → r70 no change, since guard is false

r20 = 1, r90 = 0x64649c9c, r40 = 0x649c649c IF r20 ume8ii r90 r40 → r110 r110 ← 0x190

r40 = 0x649c649c, r90 = 0x64649c9c ume8ii r40 r90 → r120 r120 ← 0x190

r50 = 0x80808080, r60 = 0x7f7f7f7f ume8ii r50 r60 → r125 r125 ← 0x3fc

01531

rsrc1
01531

rsrc2

031

rdest

−
−

+

−
−

| |

| |

| |

| |

23 7 23 7

signed signed signed signed signed signed signed signed

unsigned

SEE ALSO
ume8uu

ume8ii

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-200

Sum of absolute values of unsigned 8-bit
differences

SYNTAX
[IF rguard] ume8uu rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

rdest ← abs_val(zero_ext8to32(rsrc1<31:24>) – zero_ext8to32(rsrc2<31:24>)) +
abs_val(zero_ext8to32(rsrc1<23:16>) – zero_ext8to32(rsrc2<23:16>)) +
abs_val(zero_ext8to32(rsrc1<15:8>) – zero_ext8to32(rsrc2<15:8>)) +
abs_val(zero_ext8to32(rsrc1<7:0>) – zero_ext8to32(rsrc2<7:0>))

ATTRIBUTES
Function unit dspalu
Operation code 26
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
As shown below, the ume8uu operation computes four separate differences of the four pairs of corresponding

unsigned 8-bit bytes of rsrc1 and rsrc2. The absolute values of the four differences are summed and the result is
written to rdest. All computations are performed without loss of precision.

The ume8uu operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r80 = 0x0a14f6f6, r30 = 0x1414ecf6 ume8uu r80 r30 → r100 r100 ← 0x14

r10 = 0, r80 = 0x0a14f6f6, r30 = 0x1414ecf6 IF r10 ume8uu r80 r30 → r70 no change, since guard is false

r20 = 1, r90 = 0x64649c9c, r40 = 0x649c649c IF r20 ume8uu r90 r40 → r110 r110 ← 0x70

r40 = 0x649c649c, r90 = 0x64649c9c ume8uu r40 r90 → r120 r120 ← 0x70

r50 = 0x80808080, r60 = 0x7f7f7f7f ume8uu r50 r60 → r125 r125 ← 0x4

01531

rsrc1
01531

rsrc2

031

rdest

−
−

+

−
−

| |

| |

| |

| |

23 7 23 7

unsigned unsigned unsigned unsigned unsigned unsigned unsigned unsigned

unsigned

SEE ALSO
ume8ii

ume8uu

PNX1300/01/02/11 Data Book Philips Semiconductors

A-201 PRELIMINARY SPECIFICATION

umin Minimum of unsigned values
pseudo-op for uclipu

SYNTAX
[IF rguard] umin rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 > rsrc2 then
rdest ← rsrc2

else
rdest ← rsrc1

}

ATTRIBUTES
Function unit dspalu
Operation code 76
Number of operands 2
Modifier No
Modifier range —
Latency 2
Issue slots 1, 3

DESCRIPTION
The umin operation returns the minimum value of rsrc1 and rsrc2. The arguments rsrc1 and rsrc2 are considered

unsigned integers.
The umin operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0x80, r40 = 0x7f umin r30 r40 → r50 r50 ← 0x7f

r10 = 0, r60 = 0x12345678,
r70 = 0xabc

IF r10 umin r60 r70 → r80 no change, since guard is false

r20 = 1, r60 = 0x12345678,
r70 = 0xabc

IF r20 umin r60 r70 → r90 r90 ← 0xabc

r100 = 0x80000000, r110 = 0x3fffff umin r100 r110 → r120 r120 ← 0x3fffff

SEE ALSO
iclipi uclipi imin imax

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-202

Unsigned multiply

SYNTAX
[IF rguard] umul rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

temp ← zero_ext32to64(rsrc1) × zero_ext32to64(rsrc2)
rdest ← temp<31:0>

ATTRIBUTES
Function unit ifmul
Operation code 138
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the umul operation computes the product rsrc1×rsrc2 and writes the least-significant 32 bits of the

full 64-bit product into rdest. The operands are considered unsigned integers. No overflow or underflow detection is
performed.

The umul operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0x100 umul r60 r60 → r80 r80 ← 0x10000

r10 = 0, r60 = 0x100, r30 = 0xf11 IF r10 umul r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x100, r30 = 0xf11 IF r20 umul r60 r30 → r90 r90 ← 0xf1100

r70 = 0x100, r40 = 0xffffff9c umul r70 r40 → r100 r100 ← 0xffff9c00

031

rsrc1
031

rsrc2

031

rdest

×

063 31

64-bit result

unsigned unsigned

unsigned

unsigned

SEE ALSO
imul imulm umulm dspimul

dspumul dspidualmul
quadumulmsb fmul

umul

PNX1300/01/02/11 Data Book Philips Semiconductors

A-203 PRELIMINARY SPECIFICATION

Unsigned multiply, return most-significant 32
bits

SYNTAX
[IF rguard] umulm rsrc1 rsrc2 → rdest

FUNCTION
if rguard then

temp ← zero_ext32to64(rsrc1) × zero_ext32to64(rsrc2)
rdest ← temp<63:32>

ATTRIBUTES
Function unit ifmul
Operation code 140
Number of operands 2
Modifier No
Modifier range —
Latency 3
Issue slots 2, 3

DESCRIPTION
As shown below, the umulm operation computes the product rsrc1×rsrc2 and writes the most-significant 32 bits of

the 64-bit product into rdest. The operands are considered unsigned integers.

The umulm operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r60 = 0x10000 umulm r60 r60 → r80 r80 ← 0x00000001

r10 = 0, r60 = 0x100, r30 = 0xf11 IF r10 umulm r60 r30 → r50 no change, since guard is false

r20 = 1, r60 = 0x10001000,
r30 = 0xf1100000

IF r20 umulm r60 r30 → r90 r90 ← 0xf110f11

r70 = 0xffffff00, r40 = 0x100 umulm r70 r40 → r100 r100 ← 0xff

031

rsrc1
031

rsrc2

031

rdest

×

063 31

64-bit result

unsigned unsigned

unsigned

unsigned

SEE ALSO
umulm dspimul dspumul

dspidualmul quadumulmsb
fmul

umulm

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-204

Unsigned compare not equal
pseudo-op for ineq

SYNTAX
[IF rguard] uneq rsrc1 rsrc2 → rdest

FUNCTION
if rguard then {

if rsrc1 != rsrc2 then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 39
Number of operands 2
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The uneq operation is a pseudo operation transformed by the scheduler into an ineq. (Note: pseudo operations

cannot be used in assembly source files.)
The uneq operation sets the destination register, rdest, to 1 if the two arguments, r src1 and rsrc2, are not equal;

otherwise, rdest is set to 0.
The uneq operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3, r40 = 4 uneq r30 r40 → r80 r80 ← 1

r10 = 0, r60 = 0x1000, r30 = 3 IF r10 uneq r60 r30 → r50 no change, since guard is false

r20 = 1, r50 = 0x1000, r60 = 0x1000 IF r20 uneq r50 r60 → r90 r90 ← 0

r70 = 0x80000000, r40 = 4 uneq r70 r40 → r100 r100 ← 1

r70 = 0x80000000 uneq r70 r70 → r110 r110 ← 0

SEE ALSO
ineq igtr uneqi

uneq

PNX1300/01/02/11 Data Book Philips Semiconductors

A-205 PRELIMINARY SPECIFICATION

Unsigned compare not equal with immediate

SYNTAX
[IF rguard] uneqi(n) rsrc1 → rdest

FUNCTION
if rguard then {

if (unsigned)rsrc1 != (unsigned)n then
rdest ← 1

else
rdest ← 0

}

ATTRIBUTES
Function unit alu
Operation code 40
Number of operands 1
Modifier 7 bits
Modifier range 0..127
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The uneqi operation sets the destination register, rdest, to 1 if the first argument, rsrc1, is not equal to the opcode

modifier, n; otherwise, rdest is set to 0. The arguments are treated as unsigned integers.
The uneqi operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the

modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 3 uneqi(2) r30 → r80 r80 ← 1

r30 = 3 uneqi(3) r30 → r90 r90 ← 0

r30 = 3 uneqi(4) r30 → r100 r100 ← 1

r10 = 0, r40 = 0x100 IF r10 uneqi(63) r40 → r50 no change, since guard is false

r20 = 1, r40 = 0x100 IF r20 uneqi(63) r40 → r100 r100 ← 1

r60 = 0x80000000 uneqi(127) r60 → r120 r120 ← 1

SEE ALSO
uneq ineqi ueqli

uneqi

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-206

Write destination program counter

SYNTAX
[IF rguard] writedpc rsrc1

FUNCTION
if rguard then {

DPC ← rsrc1
}

ATTRIBUTES
Function unit fcomp
Operation code 160
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The writedpc copies the value of rsrc1 to the DPC (Destination Program Counter) processor register. Whenever

a hardware update (during an interruptible jump) and a software update (through a writedpc) coincide, the
software update takes precedence.

Interruptible jumps write their target address to the DPC. The value of DPC is intended to be used by an exception-
handling routine as a jump address to resume execution of the program that was running before the exception was
taken.

The writedpc operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of DPC. If the LSB of rguard is 1, DPC is written; otherwise, DPC is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0xbeebee writedpc r30 DPC ← 0xbeebee

r20 = 0, r31 = 0xabba IF r20 writedpc r31 no change, since guard is false

r21 = 1, r31 = 0xabba IF r21 writedpc r31 DPC ← 0xabba

SEE ALSO
readdpc writespc ijmpf

ijmpi ijmpt

writedpc

PNX1300/01/02/11 Data Book Philips Semiconductors

A-207 PRELIMINARY SPECIFICATION

Write program control and status word

SYNTAX
[IF rguard] writepcsw rsrc1 rsrc2

FUNCTION
if rguard then {

PCSW ← (PCSW & ~rsrc2) | (rsrc1 & rsrc2)
}

ATTRIBUTES
Function unit fcomp
Operation code 161
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The writepcsw copies the value of rsrc1 to the PCSW (Program Control and Status Word) processor register

using rsrc2 as a mask. A bit in PCSW is affected by writepcsw only if the corresponding bit in rsrc2 is set to 1; the
value of any bit in PCSW with a corresponding 0-bit in rsrc2 will not be changed by writepcsw. Whenever a
hardware update (e.g., when a floating-point exception is raised) and a software update (through a writepcsw)
coincide, the PCSW bits currently being updated by hardware will reflect the hardware-determined value while the bits
not being affected by hardware will reflect the value in the writepcsw operand. The layout of PCSW is shown
below. The programmer should take care not to alter UNDEF fields in the PCSW.

Fields in the PCSW have two chief purposes: to control aspects of processor operation and to record events that
occur during program execution. Thus, writepcsw can be used to effect changes in some aspects of processor
operation and to clear fields that record events; this operation can also be used to restore state before resuming an
idled task in a multi-tasking environment. Note: The latency of writepcsw is 1, i.e. the PCSW reflects the new value in
the next cycle. But it takes additional 3 cycles for updates to the exception flags and exception enable bits to take
effect in the hardware. Therefore 3 delay slots / nops shall be inserted between writepcsw and the next interruptible
jump, if exception flags or enable bits are changed. This guarantees that the new state is recognized in the interrupt
logic during execution of the ijump.

The writepcsw operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of PCSW. If the LSB of rguard is 1, PCSW is written; otherwise, PCSW is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0x100, r40 = 0x180 writepcsw r30 r40 PCSW.IEEE MODE = to positive infinity

r20 = 0, r50 = 0x0, r60 = 0x400 IF r20 writepcsw r50 r60 no change, since guard is false

r21 = 1, r50 = 0x0, r60 = 0x400 IF r21 writepcsw r50 r60 PCSW.IEN = 0 (disable interrupts)

r70 = 0x80110000, r80 = 0xffff0000 writepcsw r70 r80 enable trap on MSE, INV and DBZ exclusively

MSE CS IEN BSX IEEE MODE OFZ IFZ INV OVF UNF INX DBZ

01234567891011121415

Misaligned store exception

Count stalls (1 ⇒ Yes)

FP exception trap-enable bits

IEEE rounding mode
0 ⇒ to nearest, 1 ⇒ to zero, 2 ⇒ to positive, 3 ⇒ to negative

Interrupt enable (1 ⇒ allow interrupts)

Byte sex (1 ⇒ little endian)

PCSW<31:16>

PCSW<15:0> UNDEF

Misaligned store
exception trap enable Trap on first exit

FP exceptions

TRP
MSE TFE TRP

OFZ
TRP
IFZ

TRP
INV

TRP
OVF

TRP
UNF

TRP
INX

TRP
DBZ

1617181920212223252627283031

UNDEF U N D E F I N E D

13

WBE RSE

Write back error
Reserved exception

TRP
WBE

TRP
RSE

Write back error trap enable

Reserved exception
trap enable

29

SEE ALSO
readpcsw fadd faddflags
ijmpf cycles hicycles

writepcsw

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-208

Write source program counter

SYNTAX
[IF rguard] writespc rsrc1

FUNCTION
if rguard then

SPC ← rsrc1

ATTRIBUTES
Function unit fcomp
Operation code 159
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 3

DESCRIPTION
The writespc copies the value of rsrc1 to the SPC (Source Program Counter) processor register. Whenever a

hardware update (during an interruptible jump) and a software update (through a writespc) coincide, the software
update takes precedence.

An interruptible jump that is not interrupted (no NMI, INT, or EXC event was pending when the jump was executed)
writes its target address to SPC. The value of SPC is intended to allow an exception-handling routine to determine the
start address of the block of scheduled code (called a decision tree) that was executing before the exception was
taken.

The writespc operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of SPC. If the LSB of rguard is 1, SPC is written; otherwise, SPC is unchanged.

EXAMPLES

Initial Values Operation Result

r30 = 0xbeebee writespc r30 SPC ← 0xbeebee

r20 = 0, r31 = 0xabba IF r20 writespc r31 no change, since guard is false

r21 = 1, r31 = 0xabba IF r21 writespc r31 SPC ← 0xabba

SEE ALSO
readspc writedpc ijmpf

ijmpi ijmpt

writespc

PNX1300/01/02/11 Data Book Philips Semiconductors

A-209 PRELIMINARY SPECIFICATION

Zero extend 16 bits
pseudo-op for pack16lsb

SYNTAX
[IF rguard] zex16 rsrc1 → rdest

FUNCTION
if rguard then

rdest ← zero_ext16to32(rsrc1<15:0>)

ATTRIBUTES
Function unit alu
Operation code 53
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The zex16 operation is a pseudo operation transformed by the scheduler into a pack16lsb with 0 as the first

argument and rsrc1 as the second. (Note: pseudo operations cannot be used in assembly source files.)
As shown below, the zex16 operation zero extends the least-significant 16-bit halfword of the argument, r src1, to

32 bits and writes the result in rdest.

The zex16 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffff0040 zex16 r30 → r60 r60 ← 0x00000040

r10 = 0, r40 = 0xff0fff91 IF r10 zex16 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0xff0fff91 IF r20 zex16 r40 → r100 r100 ← 0x0000ff91

r50 = 0x00000091 zex16 r50 → r110 r110 ← 0x00000091

01531

rsrc1

031

rdest
15

0000000000000000

unsigned

unsigned

SEE ALSO
sex16 sex8 zex8

zex16

Philips Semiconductors PNX1300/01/02/11 DSPCPU Operations

PRELIMINARY SPECIFICATION A-210

Zero extend 8 bits
pseudo-op for ubytesel

SYNTAX
[IF rguard] zex8 rsrc1 → rdest

FUNCTION
if rguard then

rdest ← zero_ext8to32(rsrc1<7:0>)

ATTRIBUTES
Function unit alu
Operation code 55
Number of operands 1
Modifier No
Modifier range —
Latency 1
Issue slots 1, 2, 3, 4, 5

DESCRIPTION
The zex8 operation is a pseudo operation transformed by the scheduler into a ubytesel with r0 (always contains

0) as the first argument and rsrc1 as the second. (Note: pseudo operations cannot be used in assembly source files.)
As shown below, the zex8 operation zero extends the least-significant byte of the argument, rsrc1, to 32 bits and

writes the result in rdest.

The zex8 operation optionally takes a guard, specified in rguard. If a guard is present, its LSB controls the
modification of the destination register. If the LSB of rguard is 1, rdest is written; otherwise, rdest is not changed.

EXAMPLES

Initial Values Operation Result

r30 = 0xffff0040 zex8 r30 → r60 r60 ← 0x00000040

r10 = 0, r40 = 0xff0fff91 IF r10 zex8 r40 → r70 no change, since guard is false

r20 = 1, r40 = 0xff0fff91 IF r20 zex8 r40 → r100 r100 ← 0x00000091

r50 = 0x00000091 zex8 r50 → r110 r110 ← 0x00000091

031

rsrc1

031

rdest 0

7

7

00000000000000000000000

unsigned

unsigned

SEE ALSO
ubytesel sex16 sex8 zex16

zex8

PNX1300/01/02/11 Data Book Philips Semiconductors

A-211 PRELIMINARY SPECIFICATION

PNX1300/01/02/11 Data Book Philips Semiconductors

A-212 PRELIMINARY SPECIFICATION

MMIO Register Summary Chapter B

by Gert Slavenburg, and Selliah Rathnam

B.1 MMIO REGISTERS

The following table lists all the MMIO registers implemented in PNX1300/01/02/11. The registers are grouped accord-
ing to the unit to which they belong. For compatibility with future devices, any undefined MMIO bits should be ignored
when read, and written as zeroes.

MMIO Register Name Offset
(in hex)

Accessibility

Description
DSPCPU

External
PCI

Initiators

DSPCPU Registers

DRAM_BASE 10 0000 R/W R/W Start of DRAM address aperture

DRAM_LIMIT 10 0004 R/W R/W End of DRAM address aperture

MMIO_BASE 10 0400 R/W R/W Start of 2-MB MMIO-register address aperture

EXCVEC 10 0800 R/W R/W Interrupt vector (handler start address) for exceptions

ISETTING0 10 0810 R/W R/W Interrupt mode & priority settings for sources 0-7

ISETTING1 10 0814 R/W R/W Interrupt mode & priority settings for sources 8-15

ISETTING2 10 0818 R/W R/W Interrupt mode & priority settings for sources 16-23

ISETTING3 10 081c R/W R/W Interrupt mode & priority settings for sources 24-31

IPENDING 10 0820 R/W R/W Interrupt-pending status bit for all 32 sources

ICLEAR 10 0824 R/W R/W Interrupt-clear bit for all 32 sources

IMASK 10 0828 R/W R/W Interrupt-mask bit for all 32 sources

INTVEC0 10 0880 R/W R/W Interrupt vector (handler start address) for source 0

INTVEC1 10 0884 R/W R/W Interrupt vector (handler start address) for source 1

INTVEC2 10 0888 R/W R/W Interrupt vector (handler start address) for source 2

INTVEC3 10 088c R/W R/W Interrupt vector (handler start address) for source 3

INTVEC4 10 0890 R/W R/W Interrupt vector (handler start address) for source 4

INTVEC5 10 0894 R/W R/W Interrupt vector (handler start address) for source 5

INTVEC6 10 0898 R/W R/W Interrupt vector (handler start address) for source 6

INTVEC7 10 089c R/W R/W Interrupt vector (handler start address) for source 7

INTVEC8 10 08a0 R/W R/W Interrupt vector (handler start address) for source 8

INTVEC9 10 08a4 R/W R/W Interrupt vector (handler start address) for source 9

INTVEC10 10 08a8 R/W R/W Interrupt vector (handler start address) for source 10

INTVEC11 10 08ac R/W R/W Interrupt vector (handler start address) for source 11

INTVEC12 10 08b0 R/W R/W Interrupt vector (handler start address) for source 12

INTVEC13 10 08b4 R/W R/W Interrupt vector (handler start address) for source 13

INTVEC14 10 08b8 R/W R/W Interrupt vector (handler start address) for source 14

INTVEC15 10 08bc R/W R/W Interrupt vector (handler start address) for source 15

INTVEC16 10 08c0 R/W R/W Interrupt vector (handler start address) for source 16

INTVEC17 10 08c4 R/W R/W Interrupt vector (handler start address) for source 17

INTVEC18 10 08c8 R/W R/W Interrupt vector (handler start address) for source 18

INTVEC19 10 08cc R/W R/W Interrupt vector (handler start address) for source 19
PRELIMINARY SPECIFICATION B-1

PNX1300/01/02/11 Data Book Philips Semiconductors
INTVEC20 10 08d0 R/W R/W Interrupt vector (handler start address) for source 20

INTVEC21 10 08d4 R/W R/W Interrupt vector (handler start address) for source 21

INTVEC22 10 08d8 R/W R/W Interrupt vector (handler start address) for source 22

INTVEC23 10 08dc R/W R/W Interrupt vector (handler start address) for source 23

INTVEC24 10 08e0 R/W R/W Interrupt vector (handler start address) for source 24

INTVEC25 10 08e4 R/W R/W Interrupt vector (handler start address) for source 25

INTVEC26 10 08e8 R/W R/W Interrupt vector (handler start address) for source 26

INTVEC27 10 08ec R/W R/W Interrupt vector (handler start address) for source 27

INTVEC28 10 08f0 R/W R/W Interrupt vector (handler start address) for source 28

INTVEC29 10 08f4 R/W R/W Interrupt vector (handler start address) for source 29

INTVEC30 10 08f8 R/W R/W Interrupt vector (handler start address) for source 30

INTVEC31 10 08fc R/W R/W Interrupt vector (handler start address) for source 31

TIMER1_TMODULUS 10 0c00 R/W R/W Contains: (maximum count value for timer 1) + 1

TIMER1_TVALUE 10 0c04 R/W R/W Current value of timer 1 counter

TIMER1_TCTL 10 0c08 R/W R/W Timer 1 control (prescale value, source select, run bit)

TIMER2_TMODULUS 10 0c20 R/W R/W Contains: (maximum count value for timer 2) + 1

TIMER2_TVALUE 10 0c24 R/W R/W Current value of timer 2 counter

TIMER2_TCTL 10 0c28 R/W R/W Timer 2 control (prescale value, source select, run bit)

TIMER3_TMODULUS 10 0c40 R/W R/W Contains: (maximum count value for timer 3) + 1

TIMER3_TVALUE 10 0c44 R/W R/W Current value of timer 3 counter

TIMER3_TCTL 10 0c48 R/W R/W Timer 3 control (prescale value, source select, run bit)

SYSTIMER_TMODULUS 10 0c60 R/W R/W Contains: (maximum count value for system timer) + 1

SYSTIMER_TVALUE 10 0c64 R/W R/W Current value of system timer/counter

SYSTIMER_TCTL 10 0c68 R/W R/W System timer control (prescale value, source select, run bit)

BICTL 10 1000 R/W R/W Instruction breakpoint control

BINSTLOW 10 1004 R/W R/W Start of address range that causes instruction breakpoints

BINSTHIGH 10 1008 R/W R/W End of address range that causes instruction breakpoints

BDCTL 10 1020 R/W R/W Data breakpoint control

BDATAALOW 10 1030 R/W R/W Start of address range that causes data breakpoints

BDATAAHIGH 10 1034 R/W R/W End of address range that causes data breakpoints

BDATAVAL 10 1038 R/W R/W Compare value for data breakpoints

BDATAMASK 10 103c R/W R/W Compare mask for compare value for data breakpoints

Cache And Memory System

DRAM_CACHEABLE_LIMIT 10 0008 R/W R/W Start of non-cacheable region in DRAM

MEM_EVENTS 10 000c R/W R/W Selects two cache-related events for counting

DC_LOCK_CTL 10 0010 R/W R/W Enable bit for data-cache locking, also PCI hole disable

DC_LOCK_ADDR 10 0014 R/W R/W Start of address range that will be locked into the data cache

DC_LOCK_SIZE 10 0018 R/W R/W Size of address range that will be locked into the data cache

DC_PARAMS 10 001c R/— R/— Data-cache geometry (blocksize, associativity, # of sets)

IC_PARAMS 10 0020 R/— R/— Instruction-cache geometry (blocksize, assoc., # of sets)

MM_CONFIG 10 0100 R/— R/— DRAM settings (rank size, bus width, refresh interval)

ARB_BW_CTL 10 0104 R/W R/W Internal bus arbitration control (bandwidth/latency allocation)

ARB_RAISE 10 010C R/W R/W Arbiter Priority Raising timer

POWER_DOWN 10 0108 R/W R/W Write to this register to initiate power down

IC_LOCK_CTL 10 0210 R/W R/W Enable bit for instruction-cache locking

IC_LOCK_ADDR 10 0214 R/W R/W Start of address range that will be locked into the instruction
cache

MMIO Register Name Offset
(in hex)

Accessibility

Description
DSPCPU

External
PCI

Initiators
B-2 PRELIMINARY SPECIFICATION

Philips Semiconductors MMIO Register Summary
IC_LOCK_SIZE 10 0218 R/W R/W Size of address range that will be locked into the instruction
cache

PLL_RATIOS 10 0300 R/— R/— Sets ratios of external and internal clock frequencies

BLOCK_POWER_DOWN 10 3428 R/W R/W Powers up and down individual blocks

Video In

VI_STATUS 10 1400 R/— R/— Status of video-in unit

VI_CTL 10 1404 R/W R/W Sets operation and interrupt modes for video in

VI_CLOCK 10 1408 R/W R/W Sets clock source (internal/external), frequency

VI_CAP_START 10 140c R/W R/W Sets capture start x and y offsets

VI_CAP_SIZE 10 1410 R/W R/W Sets capture size width and height

VI_BASE1
VI_Y_BASE_ADR

10 1414 R/W R/W Capture modes: sets base address of Y-value array
Message/raw modes: sets base address of buffer 1

VI_BASE2
VI_U_BASE_ADR

10 1418 R/W R/W Capture modes: sets base address of U-value array
Message/raw modes: sets base address of buffer 2

VI_SIZE
VI_V_BASE_ADR

10 141c R/W R/W Capture modes: sets base address of V-value array
Message/raw modes: sets size of buffers

VI_UV_DELTA 10 1420 R/W R/W Capture modes: address delta for adjacent U, V lines

VI_Y_DELTA 10 1424 R/W R/W Capture modes: address delta for adjacent Y lines

Video Out

VO_STATUS 10 1800 R/— R/— Status of video-out unit

VO_CTL 10 1804 R/W R/W Sets operation and interrupt modes for video out

VO_CLOCK 10 1808 R/W R/W Sets video-out clock frequency

VO_FRAME 10 180c R/W R/W Sets frame parameters (preset, start, length)

VO_FIELD 10 1810 R/W R/W Sets field parameters (overlap, field-1 line, field-2 line)

VO_LINE 10 1814 R/W R/W Sets field parameters (starting pixel, frame width)

VO_IMAGE 10 1818 R/W R/W Sets image parameters (height, width)

VO_YTHR 10 181c R/W R/W Sets threshold for YTR interrupt, image v/h offsets

VO_OLSTART 10 1820 R/W R/W Sets overlay image parameters (start line/pixel, alpha)

VO_OLHW 10 1824 R/W R/W Sets overlay image parameters (height, width)

VO_YADD 10 1828 R/W R/W Sets Y-component/buffer-1 starting address

VO_UADD 10 182c R/W R/W Sets U-component/buffer-2 starting address

VO_VADD 10 1830 R/W R/W Sets V-component address/buffer-1 length

VO_OLADD 10 1834 R/W R/W Sets overlay image address/buffer-2 length

VO_VUF 10 1838 R/W R/W Sets start-of-line-to-start-of-line address offsets (U, V)

VO_YOLF 10 183c R/W R/W Sets start-of-line-to-start-of-line addr. offsets (Y, overlay)

EVO_CTL 10 1840 R/W R/W Sets operations for enhance video out

EVO_MASK 10 1844 R/W R/W Sets YUV mask values foe the chroma-key process

EVO_CLIP 10 1848 R/W R/W Sets output clip values

EVO_KEY 10 184c R/W R/W Sets YUV chroma-key values

EVO_SLVDLY 10 1850 R/W R/W Sets delay cycles for genlock mode

Audio In

AI_STATUS 10 1c00 R/— R/— Status of audio-in unit

AI_CTL 10 1c04 R/W R/W Sets operation and interrupt modes for audio in

AI_SERIAL 10 1c08 R/W R/W Sets clock ratios and internal/external clock generation

AI_FRAMING 10 1c0c R/W R/W Sets format of serial data stream

MMIO Register Name Offset
(in hex)

Accessibility

Description
DSPCPU

External
PCI

Initiators
PRELIMINARY SPECIFICATION B-3

PNX1300/01/02/11 Data Book Philips Semiconductors
AI_FREQ 10 1c10 R/W R/W Sets AI_OSCLK frequency

AI_BASE1 10 1c14 R/W R/W Sets base address of buffer 1

AI_BASE2 10 1c18 R/W R/W Sets base address of buffer 2

AI_SIZE 10 1c1c R/W R/W Sets number of samples in buffers

Audio Out

AO_STATUS 10 2000 R/— R/— Status of audio-out unit

AO_CTL 10 2004 R/W R/W Sets operation and interrupt modes for audio out

AO_SERIAL 10 2008 R/W R/W Sets clock ratios and internal/external clock generation

AO_FRAMING 10 200c R/W R/W Sets format of serial data stream

AO_FREQ 10 2010 R/W R/W Set AO_OSCLK frequency

AO_BASE1 10 2014 R/W R/W Sets base address of buffer 1

AO_BASE2 10 2018 R/W R/W Sets base address of buffer 2

AO_SIZE 10 201c R/W R/W Sets number of samples in buffers

AO_CC 10 2020 R/W R/W Codec control field values

AO_CFC 10 2024 R/W R/W Codec Frame Control

AO_TSTAMP 10 2028 R/— R/W Timestamp of the last buffer

SPDIF Out

SDO_STATUS 10 4C00 R/— R/— Status register

SDO_CTL 10 4C04 R/W R/W Control register

SDO_FREQ 10 4C08 R/W R/W Frequency register

SDO_BASE1 10 4C0C R/W R/W Base address of buffer 1

SDO_BASE2 10 4C10 R/W R/W Base address of buffer 2

SDO_SIZE 10 4C14 R/W R/W Number of samples in buffers

SDO_TSTAMP 10 4C18 R/— R/— Timestamp of the last buffer

PCI Interface

BIU_STATUS 10 3004 R/— R/— Status of PCI interface (done/busy bits, error bits)

BIU_CTL 10 3008 R/W R/W Sets operation and interrupt modes for PCI

PCI_ADR 10 300c R/W —/— Holds address for DSPCPU PCI access

PCI_DATA 10 3010 R/W —/— Holds data for DSPCPU PCI access

CONFIG_ADR 10 3014 R/W R/W Holds address for configuration access

CONFIG_DATA 10 3018 R/W R/W Holds data for configuration access

CONFIG_CTL 10 301c R/W R/W Sets read/write, bus number for configuration access

IO_ADR 10 3020 R/W R/W Holds address for I/O access

IO_DATA 10 3024 R/W R/W Holds data for I/O access

IO_CTL 10 3028 R/W R/W Sets read/write, byte-enable for I/O access

SRC_ADR 10 302c R/W R/W Holds source address for DMA operation

DEST_ADR 10 3030 R/W R/W Holds destination address for DMA operation

DMA_CTL 10 3034 R/W R/W Sets read/write, transfer length for DMA operation

INT_CTL 10 3038 R/W R/W Controls interrupt system

XIO_CTL 10 3060 R/W R/W XIO control register

JTAG

JTAG_DATA_IN 10 3800 R/W R/W JTAG data input buffer

JTAG_DATA_OUT 10 3804 R/W R/W JTAG data output buffer

JTAG_CTL 10 3808 R/W R/W JTAG control

Image Co-Processor

MMIO Register Name Offset
(in hex)

Accessibility

Description
DSPCPU

External
PCI

Initiators
B-4 PRELIMINARY SPECIFICATION

Philips Semiconductors MMIO Register Summary
ICP_MPC 10 2400 R/W R/W MicroProgram Counter

ICP_MIR 10 2404 R/W R/W Micro Instruction Register

ICP_DP 10 2408 R/W R/W Data Pointer

ICP_DR 10 2410 R/W R/W Data Register

ICP_SR 10 2414 R/W R/W Status Register

VLD Co-Processor

VLD_COMMAND 10 2800 R/W R/W Next action to be taken by VLD

VLD_SR 10 2804 R/— R/— Bitstream shift register

VLD_QS 10 2808 R/W R/W Quantization Scale Code

VLD_PI 10 280C R/W R/W Picture layer Information

VLD_STATUS 10 2810 R/W R/W Status Register

VLD_IMASK 10 2814 R/W R/W Controls which status bits causes VLD interrupts

VLD_CTL 10 2818 R/W R/W Control Register

VLD_BIT_ADR 10 281C R/W R/W Current Bitstream Read Address

VLD_BIT_CNT 10 2820 R/W R/W Bitstream remaining byte count

VLD_MBH_ADR 10 2824 R/W R/W Macro Block Header output address

VLD_MBH_CNT 10 2828 R/W R/W Macro Block Header output remaining count

VLD_RL_ADR 10 282C R/W R/W Run/Length output address

VLD_RL_CNT 10 2830 R/W R/W Run/Length output remaining count

I2C Interface

IIC_AR 10 3400 R/W R/W Address, Byte count and Direction

IIC_DR 10 3404 R/W R/W Data Register

IIC_STATUS 10 3408 R/— R/— Status Register

IIC_CTL 10 340C R/W R/W Control Register

Synchronous Serial Interface

SSI_CTL 10 2C00 R/W R/W Control Register

SSI_CSR 10 2C04 R/W R/W Additional Control and Status register

SSI_TXDR 10 2C10 —/W —/W Transmit Data Register

SSI_RXDR 10 2C20 R/— R/— Receive Data Register

SSI_RXACK 10 2C24 —/W —/W Write a ‘1’ here to ACK read of Receive Data Register

SEM Device

SEM 10 0500 R/W R/W Simple multi-processor semaphore

MMIO Register Name Offset
(in hex)

Accessibility

Description
DSPCPU

External
PCI

Initiators
PRELIMINARY SPECIFICATION B-5

PNX1300/01/02/11 Data Book Philips Semiconductors
B-6 PRELIMINARY SPECIFICATION

Endian-ness Appendix C

by Selliah Rathnam, Luis Lucas

C.1 PURPOSE

In this document, the generic PNX1300 name refers
to the PNX1300 Series, or the PNX1300/01/02/11
products.

PNX1300 was designed to support both Little and Big
Endian systems. The PCI system bus (controlled by the
PCI Interface Unit (BIU)) operates in Little Endian mode
in both systems. This document describes how the dual
endian-ness feature is handled in PNX1300.

C.2 LITTLE AND BIG ENDIAN
ADDRESSING CONVENTIONS

In Big Endian mode, a given word address (32-bit) base
corresponds to the most significant byte (MSB) of the
word. Increasing the byte address generally means de-

creasing the significance of the byte being accessed. In
Little Endian mode, the same word address base refers
to the least significant byte (LSB) of that word. Increasing
the byte address generally means increasing the signifi-
cance of the byte being accessed. This addressing con-
vention is shown in Figure C-1.

In Figure C-1, there is a two-line ‘C’ code which defines
a 32-bit constant in hex format assigned to the variable
‘w’ (assumes ‘int’ is 32-bit) and its address is copied into
the byte (character) pointer variable ‘cp’. The value of ad-
dress referenced by the ‘cp’ has a value of ‘0x04’ in Big
Endian machine and a value of ‘0x07’ in Little Endian ma-
chine.

It is possible to transfer from one endian-ness to another
just by swapping the bytes within a word as shown in Fig-
ure C-2.

int w = 0x04050607;
char *cp = (char *)&w;

Figure C-1. Big and Little Endian address references

031

04 05 06 07

Big Endian Mode Little Endian Mode

cp+0

04 05 06 07

cp+3cp+1 cp+2 cp+3 cp+2 cp+1 cp+0

031

Figure C-2. Data conversion from Big Endian to Little Endian (BSW)

int w = 0x04050607;
char *cp = (char *)&w;

031

07 06 05 04

Big Endian Mode

Little Endian Mode

cp+0

04 05 06 07

cp+3

cp+1 cp+2 cp+3

cp+2 cp+1 cp+0

031
PRELIMINARY SPECIFICATION C-1

PNX1300/01/02/11 Data Book Philips Semiconductors
C.3 TEST TO VERIFY THE CORRECT
OPERATION OF PNX1300 IN BIG AND
LITTLE ENDIAN SYSTEMS

The following test can be used to verify the correct oper-
ation of PNX1300 in Little Endian and Big Endian sys-
tems.

1. Store a 32-bit constant ‘0x04050607’ from the host
CPU to the PNX1300 SDRAM through the PCI inter-
face. Load the word from the same address to one of
the PNX1300’s global register and check for the same
value.

2. Store a 32-bit constant ‘0x04050607’ from the host
CPU to the PNX1300 SDRAM through PCI interface.
Load a byte from the same address to one of the
PNX1300 global registers. Check for the value of
‘0x04’ in Big Endian systems, and check for the value
‘0x07’ in Little Endian systems.

C.4 REQUIREMENT FOR THE PNX1300 TO
OPERATE IN EITHER LITTLE ENDIAN
OR BIG ENDIAN MODE

The endian-ness handling in each PNX1300 unit is de-
scribed in the following sections. Most units use the high-
way/PCI bus to transfer data. The highway/PCI bus has
four byte lanes. The bit assignment of the highway/PCI
bus lanes is shown in Table C-2.

The PCI bus and PNX1300 highway buses are address-
invariant buses, i.e the data corresponding to address
offset ‘0’ uses the byte-0 lane of the highway/PCI bus,
the data corresponds to address offset ‘1’ uses the byte-
1 lane of the highway/PCI bus etc.

C.4.1 Data Cache

The PNX1300 PCSW register has a byte-sex (BSX) bit
to configure the PNX1300 in Big Endian or Little Endian
mode. This bit must be set to ‘1’ for the Little Endian
mode as defined in Chapter 3, “DSPCPU Architecture.”
This BSX bit is used by the PNX1300 data cache unit for
the store/load operation. Data cache performs three cat-
egories of data transactions:

• Read/write data from/to DSPCPU registers to/from
data cache or SDRAM

• Read/write of MMIO data from/to DSPCPU registers
to/from MMIO registers

• Read/write data from/to DSPCPU registers to/from
PCI address space through special registers in the
BIU unit.

The DSPCPU endian-ness is determined by the value of
the BSX bit in the PCSW register. Table C-1 and Table
C-3 describe the data translation format being used by
the data cache to transfer the data to/from DSPCPU reg-
ister to/from data cache or SDRAM. Table C-1 and Table
C-3 are restricted to addresses that fall in the
DRAM_BASE and DRAM_LIMIT range.

There is no byte-swap required for the MMIO data trans-
action from/to DSPCPU register to the MMIO registers.
However, one of the special registers, PCI_DATA, does
not follow the normal MMIO transactions. The data
cache byte-swaps the data to/from the PCI_DATA regis-
ter using the data translation format as defined in Table
C-1 and Table C-3 for the memory cycle.

For the PCI configuration cycle and I/O cycle transac-
tions from the DSPCPU, a programmer can byte-swap
the data in the DSPCPU registers and write to the
PCI_DATA register using MMIO write operations. There
is no byte-swap from the PCI_DATA register in BIU unit
to the PCI bus. Software uses the Table C-1 or Table C-
3 data to byte-swap the data within the CPU register be-
fore writing the data to the PCI_DATA register for the
configuration and I/O cycle transactions.

Table C-1. Little Endian data format in PNX1300 DSPCPU register, highway, SDRAM memory, PCI bus, host
memory, host CPU register

PCSW-
BSX
value

Endian
Mode

Data Transaction
type Address

Data in
DSPCPU
register

msb lsb

 Data in highway/
Dcache/SDRAM/

PCI-bus
byte3 byte0
[31:24] [7:0]

Data in host
CPU register
msb lsb

 Data in host
memory

byte3 byte0
[31:24] [7:0]

1 Little Word r/w 00001000 01020304 01020304 01020304 01020304

1 Little Half-Word r/w 00001000 xxxx0304 xxxx0304 xxxx0304 xxxx0304

1 Little Half-Word r/w 00001002 xxxx0304 0304xxxx xxxx0304 0304xxxx

1 Little Byte read/write 00001000 xxxxxx04 xxxxxx04 xxxxxx04 xxxxxx04

1 Little Byte read/write 00001001 xxxxxx04 xxxx04xx xxxxxx04 xxxx04xx

1 Little Byte read/write 00001002 xxxxxx04 xx04xxxx xxxxxx04 xx04xxxx

1 Little Byte read/write 00001003 xxxxxx04 04xxxxxx xxxxxx04 04xxxxxx

Table C-2. Bit assignment of the highway/PCI bus
lanes

byte 3 byte 2 byte 1 byte 0

Bits 31:24 23:16 15:8 7:0
C-2 PRELIMINARY SPECIFICATION

Philips Semiconductors Endian-ness
C.4.2 Instruction Cache

It is assumed that the instruction cache always operates
in Little Endian regardless of the host and PNX1300 en-
dian-ness. Instruction cache does not use the PCSW’s
byte sex bit (BSX). The compiler supports the loading of
instructions in memory differently for Big Endian and Lit-
tle Endian modes.

C.4.3 PNX1300 PCI Interface Unit

The PNX1300 highway bus and the PCI bus are address
invariant buses, i.e. a data corresponding to address
zero is always transferred through the byte-zero line re-
gardless of the endian-ness. The address-invariant na-
ture of the PCI and the highway buses allows data to be
transferred from/to PCI bus directly to/from SDRAM with-
out byte swapping in either Big or Little Endian mode The
byte swapping of data for Big Endian mode is performed
by the data cache unit. However, MMIO data does not go
through the byte swapper in the Data cache. This results
in using a byte-swapper in the BIU to byte-swap the
MMIO data in Big Endian mode.

The PNX1300 BIU has a separate byte sex (SE, Swap
Enabled) flag defined in its control register (BIU_CTL).
This byte-sex flag must be set by the software, i.e. MMIO
write operation from the host CPU. This byte-sex flag is
used only for MMIO data accesses and none of the
MMIO data accesses is affected by this SE flag. Table C-
4 shows the byte-swap logic that handles the MMIO ac-
cesses from the DSPCPU and host CPU and the non
MMIO data accesses from any source.

The BIU has several special registers to handle memory,
PCI configuration, I/O and DMA accesses. It does not
byte-swap the I/O data from the special registers. The
data cache and software performs the necessary byte
swapping for this data.

When using PNX1300 in Little Endian-based systems,
the first transaction to the PNX1300 is to set the SE bit in
the BIU configuration register to avoid unnecessary soft-
ware byte-swapping in the host CPU for the subsequent
MMIO read/write accesses. The SE bit in the BIU_CTL
register controls the byte swapping of outgoing and in-
coming data from PCI bus. The default value of SE is ‘0’,
i.e the BIU byte-swaps the MMIO data including the write
operation to the BIU_CTL register. Software is required
to byte swap the BIU_CTL register value within the host
CPU before storing the value in BIU_CTL register. Once,
the BIU.SE bit has been set, no additional software byte-
swapping is required for further read/write operations to
any MMIO registers.

C.4.4 Image Coprocessor (ICP)

The input source data for the ICP unit might come from
different units such as Video In, the DSPCPU, PCI bus,
etc. via SDRAM. Data consistency needs to be main-
tained when the PNX1300 operates in Little or Big Endi-
an systems/mode. The ICP needs the capability to oper-
ate on the SDRAM as source data and SDRAM or PCI
as destination data in either Little or Big Endian mode.
Figure C-3, Figure C-4, Figure C-5 and Figure C-6 illus-
trate the Big and Little Endian memory image format for
the image input format (Figure C-3) and the three sup-
ported image overlay formats.

The ICP can output the data to either the SDRAM or PCI
bus. RGB 8R and RGB 8A pixel formats are byte streams
and therefore do not require any byte swapping. Figure
C-9 pictures the data format. RGB-24+α, RGB-15+α,
RGB-16 and YUV-4:2:2 pixel formats can be used to out-
put the pixels to PCI or SDRAM in both Endian modes.
Output formats are shown, respectively, in Figure C-4,
Figure C-5, Figure C-8, and Figure C-7. Packed RGB-24
cannot be used in Big Endian mode. Little Endian data
format is shown in Figure C-11.

Table C-3. Big Endian data format in the PNX1300 DSPCPU register, highway, SDRAM memory, PCI bus, host
memory, and host CPU register

PCSW-
BSX
value

Endian
Mode

Data transaction
type Address

Data in
DSPCPU
register
msb lsb

 Data in highway/
Dcache/SDRAM/

PCI-bus
byte3 byte0
[31:24] [7:0]

Data in Host
CPU register
msb lsb

 Data in host
memory

byte0 byte3
[31:24] [7:0]

0 Big Word r/w 00001000 01020304 04030201 01020304 01020304

0 Big Half-word r/w 00001000 xxxx0304 xxxx0403 xxxx0304 0304xxxx

0 Big Half-word r/w 00001002 xxxx0304 0403xxxx xxxx0304 xxxx0304

0 Big Byte read/write 00001000 xxxxxx04 xxxxxx04 xxxxxx04 04xxxxxx

0 Big Byte read/write 00001001 xxxxxx04 xxxx04xx xxxxxx04 xx04xxxx

0 Big Byte read/write 00001002 xxxxxx04 xx04xxxx xxxxxx04 xxxx04xx

0 Big Byte read/write 00001003 xxxxxx04 04xxxxxx xxxxxx04 xxxxxx04

Table C-4. BIU.SE bit usage in processing data in
BIU unit

BIU.SE
value

Endian
Mode

MMIO
access
from

DSPCPU

MMIO
access from

PCI side

Non MMIO
data

0 Big No byte-swap byte-swap No byte-
swap

1 Little No byte-swap No byte-swap No byte-
swap
PRELIMINARY SPECIFICATION C-3

PNX1300/01/02/11 Data Book Philips Semiconductors
Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy
and A+3 corresponds to byte-3 lane of SDRAM/Hwy

Figure C-3. Byte mask, planar YUV 4:2:0 and YUV 4:2:2 for ICP, VO or VI memory data in Little and Big En-
dian modes

Y pixel byte data

Y7 Y6 Y5 Y4

Y3 Y2 Y1 Y0

Big Endian Mode Little Endian Mode

in memory

A+3

(same for U, V, B)

Y3 Y2 Y1 Y0

Y7 Y6 Y5 Y4

A+3A+2 A+1 A+0 A+2 A+1 A+0

31 31 00

Figure C-4. RBG-24+α data format for ICP in Little and Big Endian modes

α0R0G0B0Pixel word data

α1 R1 G1 B1α1R1G1B1

α0 R0 G0 B0

Big Endian Mode Little Endian Mode

in memory or PCI

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-3 lane of SDRAM/Hwy/PCI

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

31 31 00

Figure C-5. RBG-15+α data format for ICP in Little and Big Endian modes

Pixel half-word data
in memory or PCI

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

αR0G’0G0B0αR1G’1G1B1

αR2G’2G2B2αR3G’3G3B3

αR0G’0 G0B0αR1G’1 G1B1

αR2G’2 G2B2αR3G’3 G3B3

Big Endian Mode Little Endian Mode

Pn+1 Pn+1Pn
Pn

31 31 00

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-3 lane of SDRAM/Hwy/PCI
C-4 PRELIMINARY SPECIFICATION

Philips Semiconductors Endian-ness
Figure C-6. Packed YUV 4:2:2+α data format for the ICP or VO in Little and Big Endian modes

Pixel half-word data

Big Endian Mode Little Endian Mode

in memory or PCI

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

Pn+1 Pn+1Pn
Pn

U0α0 Y0V0α1 Y1

U1α2 Y2V1α3 Y3

U0α0Y0V0α1Y1

U1α2Y2V1α3Y3

31 31 00

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-3 lane of SDRAM/Hwy/PCI

Figure C-7. Packed YUV 4:2:2 data format for ICP in Little and Big Endian modes

Pixel half-word data

Big Endian Mode Little Endian Mode

in memory or PCI

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

Pn+1 Pn+1Pn
Pn

U0 Y0V0 Y1

U1 Y2V1 Y3

U0Y0V0Y1

U1Y2V1Y3

31 31 00

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-3 lane of SDRAM/Hwy/PCI

Figure C-8. RBG-16 data format for ICP in Little and Big Endian modes

Pixel half-word data
in memory or PCI

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

R0G’0G0B0R1G’1G1B1

R2G’2G2B2R3G’3G3B3

R0G’0 G0B0R1G’1 G1B1

R2G’2 G2B2R3G’3 G3B3

Big Endian Mode Little Endian Mode

Pn+1 Pn+1Pn
Pn

31 31 00

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-3 lane of SDRAM/Hwy/PCI
PRELIMINARY SPECIFICATION C-5

PNX1300/01/02/11 Data Book Philips Semiconductors
Figure C-9. RGB8A and RGB8R data format for ICP in Little and Big Endian modes

RGB 8A or 8R

P7 P6 P5 P4

P3 P2 P1 P0

Big Endian Mode Little Endian Mode

in Memory or PCI

A+3

(Same for U, V, B)

P3 P2 P1 P0

P7 P6 P5 P4

A+3A+2 A+1 A+0 A+2 A+1 A+0

31 31 00

Note: A+0 corresponds to byte-zero lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-three lane of SDRAM/Hwy/PCI

Figure C-10. Half-word swap within a half-word (BSH)

031

05 04 07 06

Before swap

After Swap

04 05 06 07

031

Figure C-11. Packed RBG-24 data format for ICP in Little Endian mode only

Pixel Word Data

B1 R0 G0 B0

Big Endian Mode Little Endian Mode

in Memory or PCI

Note: A+0 corresponds to byte-zero lane of SDRAM/Hwy/PCI
and A+3 corresponds to byte-three lane of SDRAM/Hwy/PCI

A+3 A+2 A+1 A+0

31 0

R2

G2 B2
NOT SUPPORTED

G1R1

R3 G3 B3
C-6 PRELIMINARY SPECIFICATION

Philips Semiconductors Endian-ness
The Table C-5 shows the byte-swap implementation of
various pixel formats used in the ICP unit. Refer to Figure
C-2 and Figure C-10 for the byte-swap code used in Ta-
ble C-4 and Table C-5. Byte-swapping is performed only
in Big Endian mode. No swapping is done in the Little En-
dian mode.

The ICP has a byte sex bit (L) defined in its MMIO-based
configuration register. The setting of this bit and the BSX
bit in the PCSW register should be the same. The L bit
must be set by the software.

C.4.5 Video In (VI) and Video Out (VO) Units

The VI unit stores the YUV pixels in planar 4:2:2 or 4:2:0
image format as shown in Figure C-3 and stores the raw
8- and 10-bit data as shown in Figure C-12.

The VO unit uses YUV-4:2:2 planar, YUV-4:2:0 planar,
and YUV-4:2:2+α packed as input pixel formats. The pla-
nar memory image format of the YUV-4:2:2 and YUV-
4:2:0 are shown in Figure C-3. The YUV-4:2:2+α memo-
ry image format for overlay is pictured in Figure C-6.

The VI and VO units have a byte-sex bit (Little Endian
and LTL_END) defined in the control MMIO registers,
VI_CONTROL and VO_CONTROL. The definition of
these byte-sex bits and the BSX bit in the PCSW register
should be treated as same. Little Endian and LTL_END
bits must be set by software.

C.4.6 Audio In (AI), Audio-Out (AO), and
SPDIF Out (SDO) Units

The AI unit uses 8-bit mono, 8-bit stereo, 16-bit mono
and 16-bit stereo data. The AO unit uses 16-bit mono,
16-bit stereo, 32-bit mono and 32-bit stereo data. The
SPDO unit uses 32-bit word data. The memory image
format of these data is presented in Figure C-13.

Swapping takes place at the byte level and the bits within
a byte are never disturbed. Both the AI and AO units
have a byte sex bit (LITTLE_ENDIAN) defined in each
units MMIO-based configuration register. The definition
of the these bits and the BSX bit in the PCSW register
should be treated as same. This byte sex bit must be set
by the software.

C.4.7 Variable Length Encoder (VLD) Unit

The VLD inputs data from SDRAM in the form of a bit-
stream with a byte-aligned starting address and outputs
a header stream and a ‘run-level’ data stream. The VLD
unit has a byte sex bit (LITTLE_ENDIAN) defined in its
MMIO-based configuration register. The definition of this

Table C-5. ICP byte swapping type for input data

Endian-ness L bit Pixel Type
Swap Type

(see Figure C-2
& Figure C-10)

Big Endian 0 Y,U,V planar No swap

Big Endian 0 RGB 24+α BSW

Big Endian 0 YUV-4:2:2+α BSH

Big Endian 0 RGB 15+α BSH

Table C-6. ICP byte swapping type for output data

Endian-
ness L bit Pixel Type

Swap Type
(see Figure C-2 &

Figure C-10)

Big Endian 0 RGB 8A: 233 No swap

Big Endian 0 RGB 8R: 332 No swap

Big Endian 0 RGB 15+α BSH

Big Endian 0 RGB 16 BSH

Big Endian 0 RGB 24+α BSW

Big Endian 0 RGB24
packed

No support for Big
Endian

Big Endian 0 YUV- 4:2:2
packed

BSH

Figure C-12. Memory image format for raw 8-bit and 10-bit data

Dn+3 Dn+2 Dn+1 Dn

Big Endian Mode Little Endian Mode

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

raw 8-bit data
in memory

Dn+3 Dn+2 Dn+1 Dn

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

raw 10-bit data
in memory

Dn+1 Dnlsb msbmsblsb Dn+1 Dn lsbmsbmsb lsb

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy
and A+3 corresponds to byte-3 lane of SDRAM/Hwy

lsb is the Least Significant Byte
msb is the Most Significant Byte
PRELIMINARY SPECIFICATION C-7

PNX1300/01/02/11 Data Book Philips Semiconductors
bit and the BSX bit in the PCSW register should the
same. This byte sex bit must be set by the software.

Figure C-14 describes the VLD input and output data for-
mat as seen in the SDRAM and highway bus. The input
data is byte oriented and no swapping is required in the
VLD unit. However, the output data is read by the
DSPCPU in words, thus the VLD needs to swap the out-
put bytes within a word (shown in Figure C-14) to com-
pensate for the CPU swap.

C.4.8 Synchronous Serial Interface (SSI)

The SSI unit has I/O connections through the external
serial pins and also to the internal 32-bit data highway via
MMIO transactions. The minimum quantity of data to be
analyzed by the CPU is 16-bits (i.e. one half word). The
SSI uses a 16-bit or 1-bit endian-ness; it is detailed in
Section 17.8 on page17-7 . The 32-bit quantity contained
in the CPU register is written or read ‘as is’ into/from the
SSI MMIO register. The EMS bit in SSI_CTL determines
which half-word (16-bit) is sent first as pictured in Figure
C-15.

Figure C-13. Memory image format for audio data

Ln+3 Ln+2 Ln+1 Ln

Big Endian Mode Little Endian Mode

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

8-bit data (mono)
in memory

Ln+3 Ln+2 Ln+1 Ln

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

16-bit data (mono)
in memory

Ln+1 Lnlsb msbmsblsb Ln+1 Ln lsbmsbmsb lsb

Note: A+0 corresponds to byte-zero lane of SDRAM/Hwy
and A+3 corresponds to byte-three lane of SDRAM/Hwy

lsb is the least significant byte
msb is the most significant byte

Rn+1 Ln+1 Rn Ln

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

8-bit data (stereo)
in memory

Rn+1 Ln+1 Rn Ln

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

16-bit data (stereo)
in memory

Rn Lnlsb msbmsblsb Rn Ln lsbmsbmsb lsb

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

32-bit data
in memory msblsb lsbmsb

Figure C-15. SSI data format as seen in highway

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

16-bit half-word data
in CPU/MMIOs

Dn+1Dn Dn+1 Dn lsbmsbmsb lsb

Note: A+0 corresponds to byte-0 lane of CPU/Hwy
and A+3 corresponds to byte-3 lane of CPU/Hwy

lsb is the least significant byte
msb is the most significant byte

SSI_CTL.EMS = 0 SSI_CTL.EMS = 1

lsbmsbmsb lsb
C-8 PRELIMINARY SPECIFICATION

Philips Semiconductors Endian-ness
C.4.9 Compiler

The TCS compiler supports the loading of instruction in
memory differently for Big Endian and Little Endian
modes.

C.5 SUMMARY

PNX1300 is required to operate in the same endian-ness
as the host CPU. At reset, PNX1300 operates in Big En-
dian mode; no special steps are required to set the Endi-
an bits. When using PNX1300 in Little Endian systems,

the first transaction is to set the SE bit in the BIU_CTL
register as described in the second paragraph of Section
11.6.5 on page11-11 .

C.6 REFERENCES

1. PCI Multimedia Design Guide, revision 1.0 - dated
March 29,1994

2. Designing PCI Cards and Drivers for Power Macin-
tosh Computers, By Apple Computer, Inc.; Refer-
ence: R0650LL/A; Phone: 1-800-282-2732

Figure C-14. VLD input and output data format

Byten+3 Byten+2 Byten+1 Byten

Big Endian Mode Little Endian Mode

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

Input data Byten+3 Byten+2 Byten+1 Byten

12 34 56 78

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

Header output
Header = 0x12345678

Note: A+0 corresponds to byte-0 lane of SDRAM/Hwy
and A+3 corresponds to byte-1 lane of SDRAM/Hwy

12345678

12 34 56 78

A+3 A+3A+2 A+1 A+0 A+2 A+1 A+0

Run level output
Run value = 0x1234
Level value = 0x5678

12345678

At word Address A
PRELIMINARY SPECIFICATION C-9

PNX1300/01/02/11 Data Book Philips Semiconductors
C-10 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
Index

Numerics

12nc 1-10

A

A/D converter 8-1
Absolute maximum ratings 1-11
AC characteristics 1-11
address fields,instruction cache 5-8
address lines

driving capacity 12-7
address mapping

based on rank siz e12-5, 12-6
DRAM memory syste m12-5
instruction cache 5-8

picture 5-9
addressing modes 3-4
AI_BASE1

picture 8-5
AI_BASE2

picture 8-5
AI_CONTROL

field description tabl e8-6
AI_CTL

picture 8-5
AI_FRAMING

picture 8-5
AI_FREQ

picture 8-5
AI_OSCLK

description table 8-1
AI_SCK

description table 8-1
AI_SD

description table 8-1
AI_SERIAL

picture 8-5
AI_SIZE

picture 8-5
AI_STATUS

field description tabl e8-6
picture 8-5

AI_WS
description table 8-1

algorithms
image processing 14-6
of Enhanced Video Out Unit 7-10

algorithms, ICP 14-6

alignment 5-4
alloc A-4
allocate on write 5-4
allocd A-5
allocr A-6
allocx A-7
alpha

blending codes 14-5
byte for alpha blending 14-5
keying 14-9
registers 14-5

alpha blendin g7-13, 14-1, 14-9
alpha blending code s14-5

table 14-5
alpha value

for overlay pixel 14-9
AO_BASE1

picture 9-8
AO_BASE2

picture 9-8
AO_CC

picture 9-8
AO_CFC

picture 9-8
AO_CONTROL

field description table 9-9, 9-10
AO_CTL

picture 9-8
AO_FRAMING

picture 9-8
AO_FREQ

picture 9-8
AO_OSCLK

description table 9-2
AO_SCK

description table 9-2
AO_SERIAL

picture 9-8
AO_SIZE

picture 9-8
AO_STATUS

field description table 9-9
picture 9-8, 16-2

aperture
DRAM 5-2
memory 12-1
PCI 11-2

aperture,PCI 5-5
APERTURE_CONTROL field 5-5
asi A-8
PRELIMINARY SPECIFICATION Index-1

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
asli A-9
asr A-10
asri A-11
audio capture 8-5
audio codec 8-1, 8-3
audio in unit

diagnostic mode 8-7
memory data formats 8-4

audio input 8-1
audio memory format 8-4
audio out unit

memory data formats 9-7
audio sample rate 8-2
audio test 8-7

B

bandwidth
requirements of ICP 14-1

base address
PCI interface registers 11-7

BDATAAHIGH
picture 3-14

BDATAALOW
picture 3-14

BDATAMASK
picture 3-14

BDATAVAL
picture 3-14

BDCTL
picture 3-14

BICTL
picture 3-14

binary compatibility 3-4
BINSTHIGH

picture 3-14
BINSTLOW

picture 3-14
bit masking 14-28
bitand A-12
bitandinv A-13
bitinv A-14
bitmap

masking 14-1
bitor A-15
bitxor A-16
BIU_CTL

PCI interface MMIO register 11-11
picture 11-10

BIU_STATUS
PCI interface MMIO register 11-11
picture 11-10

blending

alpha 14-1
blending codes

alpha blendin g14-5
block timing

PCI output 14-16
boolean representation 3-3
borrow A-17
boundary scan 1-1
breakpoints 3-13
built-in self test

PCI interface register 11-7
byte ordering

DSPCPU 3-2
bytesex 3-2

C

cache
address mapping,instruction cache 5-8
alignment 5-3, 5-4
associativity 5-3
bandwidth requirements 5-1
block siz e5-3
blocksize 5-3
byte in word 5-3
coherency 5-3, 5-4, 5-11
copyback 5-4
copyback operation 5-6
CPU stall 5-8
data cache characteristics,table 5-3
data cache initialization 5-8
data cache,description 5-3
dcb opcod e5-6
dinvalid opcode 5-6
dirty bit 5-4
dirty bits 5-3
dual port 5-4
endian-ness 5-3, 5-4
hidden concurrency 5-7
iclr operation 5-9
initialization 5-8
instruction cache 5-8
instruction cache coherency 5-9
instruction cache initialization and boot 5-10
instruction cache parameters 5-8
instruction cache summary 5-8
instruction cache tag 5-8
invalidate operation 5-6
latency 5-8
locking 5-3, 5-4
locking registers 5-5
LRU replacement 5-11
memory hole 5-5
Index-2 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
miss processing order 5-4, 5-9
miss transfer order 5-3
MMIO registers summary 5-13
noncachable region 5-3
non-cacheable region 5-5
number of sets 5-3
operation ordering 5-7
overview 5-1
overview,memory syste m5-1
parameters 5-3
partial word transfers 5-4
partial words 5-3
performance evaluation suppor t5-12
performance events

table 5-13
ports 5-3
rdstatus result format 5-6
rdtag result forma t5-6
replacement policies 5-3, 5-4
replacement policy 5-9
scheduling constraint 5-4
set 5-3
size 5-3
special data cache operations 5-6
special opcodes 5-4
special operation ordering 5-7
status operations 5-6, 5-7
summary of characteristics 5-2
tag field of address 5-3
tag operations 5-6, 5-7
valid bits 5-3
word in set 5-3
write misses 5-4

cache line size
PCI interface register 11-7

carry A-18
CCCOUNT

definition 3-3
CCIR 656

line timing
description 7-4

pixel timing
description 7-4

video connector on Enhanced Video Out
Unit,picture 7-2

CCIR 656 frame timing
description 7-6
description table 7-6

CCIR 656 line timing
picture 7-5

CCIR 656 pixel timing
picture 7-5

CCIR656 serial D1 7-2

chroma
keying 14-1

Chroma keying 7-14
chroma keying 14-1, 14-9
circuit board design

guidelines 12-7
class code

PCI interface register 11-6
Clipping 7-14
codec 8-1
coherency 5-4
coherency,instruction cache 5-9
command ID

PCI interface register 11-3
compatibility

software 3-4
concurrency

PCI interface 11-3
concurrency,hidden 5-7
CONFIG_ADR

PCI interface MMIO register 11-12
picture 11-10

CONFIG_CTL
PCI interface MMIO register 11-13
picture 11-10

CONFIG_DATA
PCI interface MMIO register 11-13

configuration header 11-3
configuration operations

PCI interface 11-2
control word

ICP vertical filter 14-25
of ICP 14-23

conversion
interspersed to co-sited 7-11
to RGB 14-1
to YUV composite 14-1
YUV to RGB 14-3, 14-9

copyback 5-4
co-sited sampling 6-4
counter 3-12
CPU stall 5-8
curcycles A-19
cycles A-20

D

D1 serial 7-2
data address fields 5-3
data breakpoint 3-13
data cache

coherency 5-11
dcb operatio n5-6
PRELIMINARY SPECIFICATION Index-3

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
dinvalid operation 5-6
initialization 5-8
LRU replacement 5-11
performance evaluation suppor t5-12
rdstatus operation 5-6
rdtag operation 5-6

data cache locking registers 5-5
data format

planar 14-3
DC/AC Characteristic s1-11
DC_LOCK_ADDR

description table 5-13
register 5-5

DC_LOCK_CTL
description table 5-13
register 5-5

DC_LOCK_SIZE
description table 5-13
register 5-5

DC_PARAMS
description table 5-13
fields 5-3
picture 5-3

DC_PARAMS register 5-3
dcb 5-6, A-21
dcb operation 5-6
DDS 7-3, 8-2
debug frontend 18-3
debug support 3-13
DEST_ADR

PCI interface MMIO register 11-14
picture 11-10

device control 3-7
device ID

PCI interface register 11-3
device interrupts 3-11
diagnostic mode 8-7

audio in unit 8-7
dimensions 1-10
dinvalid 5-6, A-22
dinvalid operation 5-6
direct digital synthesizer 7-3, 8-2
dirty bit 5-4
dithering 14-10

algorithm 14-10
method 14-10

DMA operations
PCI interface 11-2

DMA_CTL
PCI interface MMIO register 11-14
picture 11-10

downscaling 14-1
DPC

definition 3-3
DRAM aperture 5-2
DRAM base 5-2
DRAM limit 5-2
DRAM memory system

address aperture 12-1
address mapping 12-5
circuit board desig n12-7
example block diagrams 12-9
example configurations table 12-3
features 12-1
granularity and sizes 12-2
initialization 12-6
mode register setting 12-6
on-chip interleaving 12-6
output driver capacity 12-7
power down mode 12-7
programming 12-3
refresh 12-6
signal pins 12-5
supported devices 12-2
supported rank configurations 12-2

DRAM_BASE
description table 5-13
PCI interface MMIO register 11-9
PCI interface register 11-7
picture 5-2, 11-10

DRAM_BASE updates 11-10
DRAM_CACHEABLE_LIMIT

description table 5-13
picture 5-5

DRAM_LIMIT
description table 5-13
picture 5-2

DSPCPU
addressing modes 3-4
byte ordering 3-2
register model 3-1
software compatibility 3-4

DSPCPU operations
listed alphabetically A-1
listed by function A-2

dspiabs A-23
dspiadd A-24
dspidualabs A-25
dspidualadd A-26
dspidualmul A-27
dspidualsub A-28
dspimul A-29
dspisub A-30
dspuadd A-31
dspumul A-32
dspuquadaddui A-33
Index-4 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
dspusub A-34
dual port 5-4

E

EAV and SAV codes
description 7-5

EAV format 6-5
edge sensitive interrupts 3-10
endian-ness 5-4
endianness 3-2
Enhanced Video Out 7-1
Enhanced Video Out Unit

active video definition
picture 7-7

algorithms,overview 7-10
alpha blending 7-13
block diagram 7-3
CCIR 656 frame timing

description 7-6
description table 7-6

CCIR 656 line timing
description 7-4
picture 7-5

CCIR 656 pixel timing
description 7-4
picture 7-5

clock syste m7-25
picture 7-3

connection to video encoder,pictur e7-2
connection to video in unit,pictur e7-3
connection,CCIR656,picture 7-2
data streaming 7-23
data transfer timing 7-9
dds 7-25
DDS and PLL setting,examples 7-25
error conditions 7-23
field definition

picture 7-7
frame definition

picture 7-7
frame timing signals 7-7
functions,summary 7-1
graphics overlay 7-22
graphics overlay formats 7-10
horizontal timing signals 7-7
image addressing 7-22
image definition

picture 7-7
image timing 7-4
interrupts 7-23
message passin g7-23
MMIO registers 7-14

NTSC 7-23
operating modes 7-13
operation,description 7-21
overlay definition

picture 7-7
PAL 7-23
pixel mirroring 7-11
PLL filter

block diagram 7-25
pll filter 7-25
progressive scan 7-6
summary of function s7-1
timing generation

description 7-6
timing register

recommended values 7-23
video image data format s7-9
YUV image format 7-9
YUV planar format 7-10
YUV upscaling 7-11

Enhanced Video Out unit
block diagram 7-3
clock system 7-3
interface pins 7-2

EVO
Enhanced Video Out Unit 7-1

EVO_CLIP
field description table 7-21
picture 7-20

EVO_CTL
field description table 7-20
picture 7-20

EVO_KEY
field description table 7-21
picture 7-20

EVO_MASK
field description table 7-21
picture 7-20

EVO_SLVDLY
field description table 7-21
picture 7-20

exceptions
definition 3-9

expansion ROM base address
PCI interface register 11-9

F

fabsval A-38
fabsvalflags A-39
fadd A-40
faddflags A-41
fdiv A-42
PRELIMINARY SPECIFICATION Index-5

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
fdivflags A-43
feql A-44
feqlflags A-45
fgeq A-46
fgeqflags A-47
fgtr A-48
fgtrflags A-49
filter

5-tap 14-1
algorithm,ICP horizontal 14-22
algorithm,ICP vertical 14-24
coefficient,loading 14-22
horizontal 14-22
horizontal,parameter table 14-23
ICP vertical 14-24
ICP vertical,parameter table 14-24
parameter table,vertical 14-24
polyphase 14-1
SDRAM to SDRAM 14-24
SDRAM to SDRAM,horizontal 14-22
vertical 14-24
with RGB/YUV conversion 14-25

filtering
horizontal 14-1, 14-12, 14-15
horizontal,ICP 14-6
horizontal,method 14-11
ICP 14-6
ICP,5-tap 14-6
method 14-11
multi-tap 14-6
two dimensional 14-1
vertical 14-1

fleq A-50
fleqflags A-51
fles A-52
flesflags A-53
floating point

exception flags 3-2
IEEE rounding mode 3-2
representation 3-4

fmul A-54
fmulflags A-55
fneq A-56
fneqflags A-57
four-way LRU 5-11
frame timing signals 7-7
fsign A-58
fsignflags A-59
fsqrt A-60
fsqrtflags A-61
fsub A-62
fsubflags A-63
fullres capture mode

video in unit 6-1
description 6-4

funshift1 A-64
funshift2 A-65
funshift3 A-66

G

general purpose registers 3-1
general purpose timer/counter 3-12
Genlock 7-7
Genlock mode 7-8
granularity

memory 12-2
graphics overlay 7-10, 7-22
graphics overlay formats 7-10
grid

input 14-7
output 14-7

guarding
definition 3-5

H

h_dspiabs A-67
h_dspidualabs A-68
h_iabs A-69
h_st16d A-70
h_st32d A-71
h_st8d A-72
halfres capture mode

video in unit 6-1
description 6-9

handshake mechanism
JTAG 18-5

HBE 8-7
header type

PCI interface register 11-7
hicycles A-73
hidden concurrency 5-7
hierarchical LRU 5-4
highway latency

audio 8-7
horizontal

filtering 14-12
scaling 14-11, 14-15

horizontal filter 14-22
parameter,table 14-23
timing 14-12

horizontal filter to RGB parameter table 14-26
horizontal filtering 14-1, 14-15
horizontal scaling 14-1, 14-15
Index-6 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
horizontal timing signals 7-7
huffman code 15-1

I

I/O buffer circuits 1-1
I/O operations

PCI interface 11-2
i2s 8-1
iabs A-74
iadd A-75
iaddi A-76
iavgonep A-77
ibytesel A-78
IC_LOCK_ADDR

description table 5-13
picture 5-10

IC_LOCK_CTL
description table 5-13
picture 5-10

IC_LOCK_SIZE
description table 5-13
picture 5-10

IC_PARAMS
description table 5-13
picture 5-8

IC_PARAMS fields 5-8
ICLEAR

picture 3-11
iclipi A-79
iclr 5-9, A-80
ICP

algorithms 14-6
alpha blending 14-9
bandwidth requirements 14-1
block diagram 14-1
chroma keying 14-9
coefficients,table 14-22
color keying 14-9
control word format 14-23
dithering 14-10
filter coefficient, loading 14-22
filter SDRAM to SDRAM 14-22
horizontal filter control word 14-27
horizontal filter parameter table 14-22
horizontal filter to RGB parameter table 14-26
horizontal filter with conversion 14-25
horizontal filter,algorithm 14-22, 14-25
horizontal filter,table 14-23
horizontal filtering 14-6, 14-15
horizontal scaling 14-15
image formats 14-3
image overlay formats 14-5

image overlay formats tabl e14-5
image resizing 14-6
image scaling 14-6
internal structure 14-1
lines mirroring 14-15
microprogram 14-16
missing pixels,filtering 14-6
move image 14-1
operation 14-16
output formats 14-5
output scaling,calculation method 14-8
overlay 14-9
parameter tables 14-22
PCI block timing 14-16
pixel mirroring 14-6
priority delay 14-20
programming 14-16
registers 14-17
scaling output resolutio n14-7
SDRAM timing 14-15
status register,PD field 14-20
upscaling example 14-7
vertical filter 14-24
vertical filter algorithm 14-24
vertical filter control word 14-25
vertical filter parameter table 14-24
vertical filtering 14-6
YUV formats 14-3
YUV sequence counter 14-15
YUV to RGB conversion 14-9

ICP (image co-processor) 14-1
ICP_DP, MMIO register 14-17
ICP_DR, MMIO register 14-17
ICP_MIR, MMIO register 14-17
ICP_MPC, MMIO register 14-17
ICP_SR, MMIO register 14-17
ident A-81
IEEE 1149.1 1-1
IEEE rounding mode 3-2
ieql A-82
ieqli A-83
ifir16 A-84
ifir8ii A-85
ifir8ui A-86
ifixieee A-87
ifixieeeflags A-88
ifixrz A-89
ifixrzflags A-90
iflip A-91
ifloat A-92
ifloatflags A-93
ifloatrz A-94
ifloatrzflags A-95
PRELIMINARY SPECIFICATION Index-7

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
igeq A-96
igeqi A-97
igtr A-98
igtri A-99
iimm A-100
iis 8-1
ijmpf A-101
ijmpi A-102
ijmpt A-103
ild16 A-104
ild16d A-105
ild16r A-106
ild16x A-107
ild8 A-108
ild8d A-109
ild8r A-110
ileq A-111
ileqi A-112
iles A-113
ilesi A-114
image

ICP input format 14-3
processing algorithm s14-6
resizing 14-6
scaling 14-6
scaling factor rang e14-3
size range 14-3

Image co-processor
block diagram 14-1

image co-processor 14-1
block diagram 14-2
image formats 14-3

image overlay 14-1, 14-5, 14-9
image overlay formats

of ICP,table 14-5
image processing

bandwidth 14-1
IMASK

picture 3-11
imax A-115
imin A-116
imul A-117
imulm A-118
ineg A-119
ineq A-120
ineqi A-121
initialization

DRAM memory syste m12-6
instruction cache 5-10

initialization,cache 5-8
inonzero A-122
input format

ICP 14-3

input grid
relating to output grid 14-7

instruction breakpoint 3-13
instruction cache 5-8

address mapping 5-8
picture 5-9

coherency 5-11
initialization and boot 5-10
LRU replacement 5-11
performance evaluation support 5-12

instruction cache parameters 5-8
instruction cache set 5-8
instruction cache tag 5-8
instruction cache,summary 5-8
INT_CTL

PCI interface MMIO register 11-15
picture 3-12, 11-10

integer representatio n3-4
interleaving

of SDRAM 12-6
interrupt line

PCI interface register 11-9
interrupt mask 3-10
interrupt mode 3-10
interrupt pin

PCI interface register 11-9
interrupt priority 3-10
interrupt vectors 3-9
interrupts 3-9

definition 3-9
DSPCPU enable bit 3-2

interspersed sampling 6-5
intervals

refresh 12-6
INTVEC[31:0]

picture 3-9
IO_ADR

PCI interface MMIO register 11-13
picture 11-10

IO_CTL
PCI interface MMIO register 11-13
picture 11-10

IO_DATA
PCI interface MMIO register 11-13
picture 11-10

IPENDING
picture 3-11

IS 11172-2 references 15-3
IS 13818-2 references

table 15-3
ISETTING0

picture 3-10
ISETTING1
Index-8 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
picture 3-10
ISETTING2

picture 3-10
ISETTING3

picture 3-10
isub A-123
isubi A-124
izero A-125

J

jmpf A-126
jmpi A-127
jmpt A-128
JTAG

additional registers
picture 18-4

BYPASS instruction 18-2
communication protoco l18-5
example datat transfer 18-5
EXTEST instruction 18-2
instruction encodings

table 18-2
instructions

SEL_DATA_IN 18-5
SEL_DATA_OUT 18-5
SEL_IFULL_IN 18-5
SEL_JTAG_CTRL 18-5
SEL_OFULL_OUT 18-5

MACRO instruction 18-3
MMIO registers

table 18-4
overview 18-1
race condition,avoid 18-5
RESET instruction 18-2
SAMPLE/PRELOAD instruction 18-2
SEL_DATA_IN instruction 18-2
SEL_DATA_OUT instruction 18-3
SEL_IFULL_IN instruction 18-3
SEL_JTAG_CTRL instruction 18-3
SEL_OFULL_OUT instruction 18-3
system components 18-3
TAP controller description 18-1
TAP controller state diagram,picture 18-2
test access port 18-1
test clock 18-1, 18-3
test data in 18-1
test data out 18-1
test mode select 18-1
virtual registers 18-4

JTAG_CTRL
register 18-4

JTAG_DATA_IN

register 18-4
JTAG_DATA_OUT

register 18-4
JTAG_IFULL_IN 18-4
JTAG_OFULL_OUT 18-4

K

keying
chroma 14-9
color 14-9

L

latency timer
PCI interface register 11-7

latency,memory operation 5-8
ld32 A-129
ld32d A-130
ld32r A-131
ld32x A-132
level sensitive interrupts 3-10
lines

mirroring 14-15
load coefficients parameter table 14-22
load store ordering 3-3, 3-5, 3-7, 5-5, 17-4, 17-6
locking conditions 5-4
locking range 5-4
LRU bit definition 5-12
LRU bit definitions,picture 5-12
LRU bit update ordering 5-12
LRU initialization 5-12
LRU replacement,cache 5-11
LRU, hierarchical 5-4
LRU,four-way 5-11
LRU,two-way 5-11
lsl A-133
lsli A-134
lsr A-135
lsri A-136

M

macro block heade r15-1
macroblock header, standard references 15-3
main image 14-9
max_lat

PCI interface register 11-9
Maximum Ratings 1-11
MEM_EVENTS

description table 5-13
picture 5-12
PRELIMINARY SPECIFICATION Index-9

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
memory
operation ordering 5-7

memory data formats
audio in unit 8-4
audio out unit 9-7

memory format
audio 8-4

memory hole 5-5
memory map 3-7

picture 3-7
memory mapped devices 3-7
mergelsb A-138
mergemsb A-139
message passing mode

video in unit
description 6-11

message-passing mode
video in unit 6-1

description 6-11
min_gnt

PCI interface register 11-9
mirroring

lines 14-15
pixels 14-12

misaligned
store 3-3

miss processing,order 5-9
MM_A[11:0]

description table 12-5
MM_CAS#

description table 12-5
MM_CKE[3:0]

description table 12-5
MM_CLK[1:0]

description table 12-5
MM_CS#[3:0]

description table 12-5
MM_DQ[31:0]

description table 12-5
MM_DQM

description table 12-5
MM_RAS#

description table 12-5
MM_WE#

description table 12-5
mmio 3-7
MMIO aperture

picture 3-8
MMIO references,non-cached 5-8
MMIO registers

AI_BASE1
picture 8-5

AI_BASE2

picture 8-5
AI_CONTROL

field description table 8-6
AI_CTL

picture 8-5
AI_FRAMING

picture 8-5
AI_FREQ

picture 8-5
AI_SERIAL

picture 8-5
AI_SIZE

picture 8-5
AI_STATUS

field description table 8-6
picture 8-5

AO_BASE1
picture 9-8

AO_BASE2
picture 9-8

AO_CC
picture 9-8

AO_CFC
picture 9-8

AO_CONTROL
field description table 9-9, 9-10

AO_CTL
picture 9-8

AO_FRAMING
picture 9-8

AO_FREQ
picture 9-8

AO_SERIAL
picture 9-8

AO_SIZE
picture 9-8

AO_STATUS
field description table 9-9
picture 9-8, 16-2

BDATAAHIGH
picture 3-14

BDATAALOW
picture 3-14

BDATAMASK
picture 3-14

BDATAVAL
picture 3-14

BDCTL
picture 3-14

BICTL
picture 3-14

BINSTHIGH
picture 3-14
Index-10 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
BINSTLOW
picture 3-14

BIU_CTL 11-11
picture 11-10

BIU_STATUS 11-11
picture 11-10

cache registers summar y5-13
CONFIG_ADR 11-12

picture 11-10
CONFIG_CTL 11-13

picture 11-10
CONFIG_DATA 11-13
DC_LOCK_ADDR

description table 5-13
picture 5-5

DC_LOCK_CTL
description table 5-13
picture 5-5

DC_LOCK_SIZE
description table 5-13
picture 5-5

DC_PARAMS 5-3
description table 5-13
fields 5-3
picture 5-3

DEST_ADR 11-14
picture 11-10

DMA_CTL 11-14
picture 11-10

DRAM_BASE 11-9
description table 5-13
picture 5-2, 11-10

DRAM_CACHEABLE_LIMIT
description table 5-13
picture 5-5

DRAM_LIMIT
description table 5-13
picture 5-2

EVO_CLIP
picture 7-20

EVO_CTL
picture 7-20

EVO_KEY
picture 7-20

EVO_MASKK
picture 7-20

EVO_SLVDLY
picture 7-20

for VLD 15-4
IC_LOCK_ADDR

description table 5-13
picture 5-10

IC_LOCK_CTL

description table 5-13
picture 5-10

IC_LOCK_SIZE
description table 5-13
picture 5-10

IC_PARAMS
description table 5-13
fields 5-8
picture 5-8

ICLEAR
picture 3-11

ICP_DP 14-17
ICP_DR 14-17
ICP_MIR 14-17
ICP_MPC 14-17
ICP_SR 14-17
IMASK

picture 3-11
INT_CTL 11-15

picture 3-12, 11-10
INTVEC[31:0]

picture 3-9
IO_ADR 11-13

picture 11-10
IO_CTL 11-13

picture 11-10
IO_DATA 11-13

picture 11-10
IPENDING

picture 3-11
ISETTING0

picture 3-10
ISETTING1

picture 3-10
ISETTING2

picture 3-10
ISETTING3

picture 3-10
JTAG registers 18-4
JTAG_CTRL 18-4
JTAG_DATA_IN 18-4
JTAG_DATA_OUT 18-4
MEM_EVENTS

description table 5-13
picture 5-12

MM_CONFIG
picture 12-4

MMIO_BASE 11-9
description table 5-13
picture 11-10

of Enhanced Video Out Unit 7-14
of ICP 14-17
PCI interface
PRELIMINARY SPECIFICATION Index-11

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
accessibility 11-11
PCI_ADR 11-12

picture 11-10
PCI_DATA 11-12

picture 11-10
PLL_RATIOS

picture 12-4
SCR_ADR

picture 11-10
setup of SSI_CTL 17-6
SPDO_BASE1

picture 10-5
SPDO_BASE2

picture 10-5
SPDO_CTL

picture 10-5
SPDO_FREQ

picture 10-5
SPDO_SIZE

picture 10-5
SPDO_STATUS

picture 10-5
SPDO_TSTAMP

picture 10-5
SRC_ADR 11-14
SSI_CSR

fields description 17-11
SSI_CTL

fields description 17-9
summary table B-1
TCTL

picture 3-13
TMODULUS

picture 3-13
TVALUE

picture 3-13
VI_BASE1

alignment 6-11
picture 6-10

VI_BASE2
alignment 6-11
picture 6-10

VI_CAP_SIZE
picture 6-8

VI_CAP_START
picture 6-8

VI_CLOCK
picture 6-8, 6-10

VI_CTL
picture 6-8, 6-10

VI_SIZE
picture 6-10

VI_STATUS

picture 6-8, 6-10
VI_U_BASE_ADR

picture 6-8
VI_UV_DELTA

picture 6-8
VI_V_BASE_ADR

picture 6-8
VI_Y_BASE_ADR

picture 6-8
VI_Y_DELTA

picture 6-8
video in, view in raw and message passing mode

picture 6-10
video in,YUV capture 6-8
VLD unit,picture 15-6
VO_CLOCK

common values 7-23
picture 7-15

VO_CTL
fields description table 7-17
picture 7-15

VO_FIELD
default values 7-23
picture 7-15

VO_FRAME
default values 7-23
picture 7-15

VO_IMAGE
default values 7-23
picture 7-15

VO_LINE
default values 7-23
picture 7-15

VO_OLADD
field description table 7-19
picture 7-15

VO_OLHW
picture 7-15

VO_OLSTART
picture 7-15

VO_STATUS
picture 7-15

VO_UADD
field description table 7-19
picture 7-15

VO_VADD
field description table 7-19
picture 7-15

VO_VUF
picture 7-15

VO_YADD
picture 7-15

VO_YOLF
Index-12 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
field description tabl e7-19
picture 7-15

VO_YTHR
picture 7-15

VO_YUF
field description tabl e7-19

MMIO_BASE
description table 5-13
PCI interface MMIO register 11-9
PCI interface register 11-7
picture 11-10

MMIO_BASE updates 11-10
MPEG bitstream 15-1
MPEG-1 macroblock header 15-3
MPEG-1 macroblock header,output format 15-4
MPEG-1 standard references 15-3
MPEG-2 macroblock header 15-3
MPEG-2 macroblock header,output format 15-2
MPEG-2 standard

references
table 15-3

multi-tap FIR filtering 14-6

N

New features 1-1
non cacheable region 5-5
noncachable region 5-3
non-interlaced scan 7-6
non-maskable interrupt 3-10
nop A-140
NTSC 7-23

O

offset byte in set 5-8
operation ordering,special 5-7
operations

DSPCPU A-1, A-2
order,miss processing 5-9
ordering

memory operations 5-7
Ordering Information 1-10
ordering,special operation 5-7
output formats

ICP 14-5
output grid

relating to input grid 14-7
output scaling

calculation 14-8
overlap configuration of window s14-1
overlay

blending 14-9
of image 14-1

overlay formats
of ICP 14-5

overlay image 14-9
overlay, image 14-5, 14-9
overlays

computer generated 14-9
oversampling A/D converter 8-2

P

pack16lsb A-141
pack16msb A-142
package outline 1-10
package,BGA package 1-10
packbytes A-143
PAL 7-23
parameter table

ICP horizontal filter 14-23
parameter tables

horizontal filter to RGB 14-26
ICP 14-22
vertical filter 14-24

Part Number 1-10
partial words 5-4
PCI

aperture 11-2
output block timing 14-16
space 11-2

PCI aperture 5-5
PCI configuration space 11-3
PCI header 11-3
PCI interface

characteristics overview 11-1
concurrency 11-3
configuration header 11-3
configuration operations 11-2
configuration registers 11-3
DMA operations 11-2
I/O operations 11-2
initiator 11-2
limitations 11-17
ordering 11-3
priorities 11-3
registers

base addresses 11-7
built-in self test 11-7
cache line size 11-7
class code 11-6
command

fields 11-5
PRELIMINARY SPECIFICATION Index-13

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
command ID 11-3
device ID 11-3
DRAM_BASE 11-7
expansion ROM base address 11-9
header type 11-7
interrupt line 11-9
interrupt pin 11-9
latency timer 11-7
max_lat 11-9
min_gnt 11-9
MMIO_BASE 11-7
revision ID 11-6
status 11-5

fields 11-6
vendor ID 11-3

single word load/store 11-2
target of operations 11-3

PCI references,non-cached 5-8
PCI_ADR

PCI interface MMIO register 11-12
picture 11-10

PCI_DATA
PCI interface MMIO register 11-12
picture 11-10

PCSW
definition 3-2

performance events,cach e5-13
Philips Part Number 1-10
pins

AI_OSCLK
description table 8-1

AI_SCK
description table 8-1

AI_SD
description table 8-1

AI_WS
description table 8-1

AO_OSCLK
description table 9-2

AO_SCK
description table 9-2

complete list 1-2
DC/AC Characteristic s1-11
I/O circuit summary 1-1
MM_CAS#

description table 12-5
MM_CLK[1:0]

description table 12-5
MM_CS#[3:0]

description table 12-5
MM_DQ[31:0]

description table 12-5

MM_DQM
description table 12-5

MM_RAS#
description table 12-5

MM_WE#
description table 12-5

package 1-10
SPDO

description table 10-1
timing 1-18, 1-19, 1-20
VI_CLK

description table 6-2
VI_DATA[7:0]

description table 6-2
VI_DATA[8] 6-11
VI_DATA[9:8]

description table 6-2
VI_DATA[9] 6-11
VI_DVALID

description table 6-2
VO_CLK

description table 7-3
VO_DATA[7:0]

description table 7-3
VO_IO1

description table 7-3
VO_IO2

description table 7-3
pixel

mirroring 14-6
missing 14-6
shift bypassing for downscaling 14-8
transformation,scaling 14-7

pixel mirroring 7-11
pixels

mirroring 14-12
planar

data format 14-3
PLL filter

of video ou t7-25
polyphase filter 14-1
power down mode

DRAM memory syste m12-7
of SDRAM 12-7

pref A-144
pref16x A-145
pref32x A-146
prefd A-147
prefr A-148
priority delay 14-20
Progressive scan 7-6
Index-14 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
Q

quadavg A-149, A-150
quadumulmsb A-151, A-152
quasi-dual 5-4

R

rank size
vs. address mapping 12-5, 12-6

raw capture modes
video in unit

description 6-10
raw10s capture mode

video in unit 6-1
raw10u capture mode

video in unit 6-1
raw8 capture mode

video in unit 6-1
rdstatus A-153

result format 5-6
rdstatus operation 5-6

result format picture 5-6
rdtag A-154

result format 5-6
rdtag operation 5-6

result format picture 5-6
readdpc A-155
readpcsw A-156
readspc A-157
refresh

DRAM memory syste m12-6
intervals 12-6

region
noncachable 5-3

region,non-cacheable 5-5
register model 3-1, 4-1
replacement 5-4
representation

boolean 3-3
floating point 3-4
integer 3-4

rescaling of images 14-1
resizing

horizontal 14-1
in ICP 14-6
vertical 14-1

revision ID
PCI register 11-6

RGB conversion 14-1
rol A-158
roli A-159
run-level output data 15-1

S

sample rate 8-1, 8-2
SAV and EAV codes

description 7-5
description table 7-6
format

picture 7-5
SAV format 6-5
scaling 14-6

algorithm 14-8
horizontal 14-1, 14-11, 14-15
horizontal,method 14-11
method 14-11
range 14-3
shift bypassing 14-8
two dimensional 14-1
vertical 14-1, 14-13

SDRAM 12-2
supported devices 12-2, 13-7

SDRAM memory system
timing budget 12-8

sequence counter
YUV 14-15

serial CCIR656 7-2
serial frame 8-1, 8-3
Serial Interface 17-1
sex16 A-160
sex8 A-161
SGRAM 12-2

supported devices 12-2, 13-7
size

of image,range 14-3
software compatibility 3-4
software interrupt 3-11
SPC

definition 3-3
SPDO

description table 10-1
SPDO_BASE1

picture 10-5
SPDO_BASE2

picture 10-5
SPDO_CTL

picture 10-5
SPDO_FREQ

picture 10-5
SPDO_SIZE

picture 10-5
SPDO_STATUS

picture 10-5
SPDO_TSTAMP

picture 10-5
PRELIMINARY SPECIFICATION Index-15

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
speculative loads 3-3, 3-5, 3-7, 5-5, 17-4, 17-6
SRC_ADR

PCI interface MMIO register 11-14
picture 11-10

SSI_CTL
field descriptio n17-9

st16 A-162
st16d A-163
st32 A-164
st32d A-165
st8 A-166
st8d A-167
stall,CPU 5-8
status

PCI interface register 11-5
status operations,cache 5-6, 5-7
stereo 8-1
stereo A/D converter 8-1
store

misaligned 3-3
subsampling

horizontal 14-1
vertical 14-1

Synchronous Serial Interface 17-1
synthesizer 8-2
synthesizer,digital 7-3

T

tag operations 5-6, 5-7
TAP controller 18-1

description 18-1
TAP,test access port 18-1
TCTL

picture 3-13
termination

guidelines 12-7
test access port 18-1
TFE

definition 3-3
timer 3-12
timing 1-18

SDRAM block 14-15
vertical filter 14-15

timing reference codes 6-5
TMODULUS

picture 3-13
translucent

background 14-9
foreground 14-9

TVALUE
picture 3-13

two-way LRU 5-11

U

ubytesel A-168
uclipi A-169
uclipu A-170
ueql A-171
ueqli A-172
ufir16 A-173
ufir8uu A-174
ufixieee A-175
ufixieeeflags A-176
ufixrz A-177
ufixrzflags A-178
ufloat A-179
ufloatflags A-180
ufloatrz A-181
ufloatrzflags A-182
ugeq A-183
ugeqi A-184, A-186
ugtr A-185
uimm A-187
uld16 A-188
uld16d A-189
uld16r A-190
uld16x A-191
uld8 A-192
uld8d A-193
uld8r A-194
uleq A-195
uleqi A-196
ules A-197
ulesi A-198
ume8ii A-199
ume8uu A-200
umul A-202
umulm A-203
uneq A-204
uneqi A-205
upsampling

horizontal 14-1
vertical 14-1

upscaling 7-11, 14-1

V

V.34 interface
block diagram 17-2, 17-3, 17-4
external pins,table 17-1
programming model 17-8
setup of SSI_CTL registe r17-5
test modes 17-8
transmitter logic model 17-5
used as general purpose I/O
Index-16 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
17-1, 17-2, 17-3
V.34 modem 17-1
vectored interrupts 3-9
vendor ID

PCI interface register 11-3
vertical filter

ICP 14-24
vertical filter parameter table 14-24
vertical filtering 14-1
vertical scaling 14-1, 14-13
VI_BASE1

alignment 6-11
picture 6-10

VI_BASE2
alignment 6-11
picture 6-10

VI_CAP_SIZE
picture 6-8

VI_CAP_START
picture 6-8

VI_CLK
description table 6-2

VI_CLOCK
picture 6-8, 6-10

VI_CTL
picture 6-8, 6-10

VI_DATA
VI_DATA[8] 6-11
VI_DATA[9] 6-11

VI_DATA[7:0]
description table 6-2

VI_DATA[9:8]
description table 6-2

VI_DVALID
description table 6-2

VI_SIZE
picture 6-10

VI_STATUS
picture 6-8, 6-10

VI_U_BASE_ADR
picture 6-8

VI_UV_DELTA
picture 6-8

VI_V_BASE_ADR
picture 6-8

VI_Y_BASE_ADR
picture 6-8

VI_Y_DELTA
picture 6-8

victim of replacement 5-4
video image data formats 7-9
video in unit

capture parameters

explanation 6-6
picture 6-5

clock generator 6-4
clocking modes 6-4
common source parameters 6-6
connected to 10bit A/D converter

picture 6-4
connected to 8bit CCIR656 camera

picture 6-3
connected to video out

picture 6-3
connected to video recorder

picture 6-3
co-sited sampling 6-4
diagnostic mode 6-2
format of SAV and EAV codes 6-5
fullres capture mod e6-1

description 6-4
halfres capture mode 6-1

description 6-9
halfres co-sited sample capture

picture 6-9
halfres interspersed sample capture

picture 6-9
halfres planar memory format

picture 6-9
highway latency requirements 6-13
highway latency,HBE description 6-13
interface pins

description table 6-2
interspersed sampling 6-5
message passing

major states diagram 6-12
message passing mode

description 6-11
example signal diagram 6-12

message-passing mode 6-1
description 6-11

power down 6-2
raw and message passing modes

MMIO register view, picture 6-10
raw capture modes

description 6-10
raw mode,major states,diagram 6-11
raw10s capture mod e6-1
raw10u capture mode 6-1
raw8 capture mode 6-1
reset 6-2
YUV 4:2:2 planar memory format

picture 6-7
YUV capture view of MMIO registers 6-8

virtual registers 18-4
VLD
PRELIMINARY SPECIFICATION Index-17

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
command register 15-1
command register,description 15-7
commands 15-1
CPU interaction 15-2
error handling,description 15-8
flush output command 15-1
input,description 15-2
interrupt description 15-8
introduction 15-1
MMIO registers 15-4

picture 15-6
operational registers,description 15-7
output,description 15-3
parse command 15-1
parsing actio n15-2
picture info register,description 15-8
quantizer scale register,description 15-7
reset command 15-1
reset description 15-8
search command 15-1
shift command 15-1
shift register,description 15-7
software reset procedure 15-8
stop reasons 15-1

VO
Video Out Unit 7-1

VO_CLK
description table 7-3

VO_CLOCK
common values 7-23
field description tabl e7-18
picture 7-15

VO_CTL
fields 7-17
picture 7-15

VO_DATA[7:0]
description table 7-3

VO_FIELD
default values 7-23
field description tabl e7-18
picture 7-15

VO_FRAME
default values 7-23
field description tabl e7-18
picture 7-15

VO_IMAGE
default values 7-23
field description tabl e7-19
picture 7-15

VO_IO1
description table 7-3

VO_IO2
description table 7-3

VO_LINE
default values 7-23
field description table 7-18
picture 7-15

VO_OLADD
field description table 7-19
picture 7-15

VO_OLHW
field description table 7-19
picture 7-15

VO_OLSTART
field description table 7-19
picture 7-15

VO_STATUS
field description table 7-16
picture 7-15

VO_UADD
field description table 7-19
picture 7-15

VO_VADD
field description table 7-19
picture 7-15

VO_VUF
picture 7-15

VO_YADD
field description table 7-19
picture 7-15

VO_YOLF
field description table 7-19
picture 7-15

VO_YTHR
field description table 7-7, 7-19
picture 7-15

VO_YUF
field description table 7-19

W

write misses 5-4
writedpc A-206
writepcsw A-207
writespc A-208

Y

YUV
formats of IC P14-3
sequence counter 14-15

YUV capture
view of video in MMIO registers 6-8

YUV conversion 14-1
YUV image format 7-9
Index-18 PRELIMINARY SPECIFICATION

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
YUV planar format 7-10
YUV to RGB conversion 14-9
YUV to RGB converter 14-1
YUV upscaling 7-11

Z

zex16 A-209
zex8 A-210
PRELIMINARY SPECIFICATION Index-19

A B C HED F G I J K L M N O P Q R S T U V W X Y Z
Index-20 PRELIMINARY SPECIFICATION

Philips Semiconductors – a worldwide company
Internet: http://www.semiconductors.philips.com
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139

Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld.3, r.1211, VolodarskiStr.6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands

Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15thfloor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America

Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905

Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße69, D-20097HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPACElectronics, 7KehilatSalonikiSt, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-
8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No.76JalanUniversiti, 46200PETALINGJAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-
5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain

Romania: see Italy

Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria

Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398

South America: Al. Vicente Pinzon, 173, 6th floor, 04547-
130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382

Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-
Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 8126 0Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America

Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
S
© Philips Electronics N.V. 2001

5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
All rights are reserved. R in whole or in part is prohibited without the prior written c

The information presented in this document does not form part of any quotation or contract, is
without notice. No liability will be accepted by the publisher for any consequence of its use. P
under patent- or other industrial or intellectual property rights.

Printed in the United States of America Date of release: 2001 Oct 12
onsent of the copyright owner.
eproduction
 believed to be accurate and reliable and may be cha
ublication thereof does not convey nor imply any lice

Document order number: xxxx xx
CA 69
nged
nse

x xxxxx

2001 Oct 12

Philips Semiconductors Product Specification

Media Processor PNX1300/01/02/11

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

http://www.datasheetcatalog.com
http://www.datasheetcatalog.com
http://www.datasheetcatalog.com

	Terms and Conditions
	Foreword
	Foreword
	1 Pin List
	1.1 PNX1300 Series versus TM-1300 1-1
	1.2 Boundary Scan Notice 1-1
	1.3 I/O Circuit Summary 1-1
	1.4 Signal Pin List 1-2
	1.5 Power Pin List 1-8
	1.6 Pin Reference Voltage 1-9
	1.7 Package 1-10
	1.8 Ordering Information 1-10
	1.9 Parametric Characteristics 1-11
	1.9.1 PNX1300/01/02/11 Absolute Maximum Ratings 1-11
	1.9.2 PNX1300/01/02 Operating Range and Thermal Characteristics 1-11
	1.9.3 PNX1311 Operating Range and Thermal Characteristics 1-11
	1.9.4 PNX1300/01/02/11 Power Supply Sequencing 1-11
	1.9.5 PNX1300/01/02 DC/AC Characteristics 1-12
	1.9.6 PNX1311 DC/AC Characteristics 1-12
	1.9.7 PNX1300 Series Power Consumption 1-13
	1.9.7.1 Power Consumption for Applications on PNX1300 Series 1-13
	1.9.7.2 PNX1300/01/02 DSPCPU Core Current and Power Consumption 1-14
	1.9.7.3 PNX1311 DSPCPU Core Current and Power Consumption Details 1-14
	1.9.7.4 PNX1300/01/02 Current Consumption For On-Chip Peripherals 1-15
	1.9.7.5 PNX1311 Current Consumption For On-Chip Peripherals 1-16
	1.9.7.6 STRG3, STRG5 type I/O circuit 1-17
	1.9.7.7 NORM3 type I/O circuit 1-17
	1.9.7.8 WEAK5 type I/O circuit 1-17
	1.9.7.9 IICOD (I2c) type I/O circuit 1-17
	1.9.7.10 SDRAM interface timing for PNX1300/01/02/11 speed grades. 1-18
	1.9.7.11 PCI Bus timing 1-18
	1.9.7.12 JTAG I/O timing 1-19
	1.9.7.13 I2C I/O timing 1-19
	1.9.7.14 Video In I/O Timing 1-19
	1.9.7.15 Video Out I/O Timing 1-19
	1.9.7.16 AudioIn I/O timing 1-20
	1.9.7.17 Audio Out I/O timing 1-20
	1.9.7.18 SSI I/O timing 1-20

	2 Overview
	2.1 Introduction 2-1
	2.2 PNX1300 Fundamentals 2-1
	2.3 PNX1300 Chip Overview 2-1
	2.4 Brief Examples of Operation 2-3
	2.4.1 Video Decompression in a PC 2-3
	2.4.2 Video Compression 2-3

	2.5 Introduction to PNX1300 Blocks 2-3
	2.5.1 Internal ‘Data Highway’ Bus 2-3
	2.5.2 VLIW Processor Core 2-4
	2.5.3 Video In Unit 2-4
	2.5.4 Enhanced Video Out Unit 2-4
	2.5.5 Image Coprocessor 2-4
	2.5.6 Variable-Length Decoder (VLD) 2-5
	2.5.7 Audio In and Audio Out Units 2-6
	2.5.8 S/PDIF Out Unit 2-6
	2.5.9 Synchronous Serial Interface 2-6
	2.5.10 I2C Interface 2-6

	2.6 New In PNX1300 (Versus TM-1300) 2-6
	2.7 New In PNX1300 (Versus TM-1100) 2-6
	2.8 New In PNX1300 (Versus TM-1000) 2-6

	3 DSPCPU Architecture
	3.1 Basic Architecture Concepts 3-1
	3.1.1 Register Model 3-1
	3.1.2 Basic DSPCPU Execution Model 3-2
	3.1.3 PCSW Overview 3-2
	3.1.4 SPC and DPC—Source and Destination Program Counter 3-3
	3.1.5 CCCOUNT—Clock Cycle Counter 3-3
	3.1.6 Boolean Representation 3-3
	3.1.7 Integer Representation 3-4
	3.1.8 Floating Point Representation 3-4
	3.1.9 Addressing Modes 3-4
	3.1.10 Software Compatibility 3-4

	3.2 Instruction Set Overview 3-5
	3.2.1 Guarding (Conditional Execution) 3-5
	3.2.2 Load and Store Operations 3-5
	3.2.3 Compute Operations 3-6
	3.2.4 Special-Register Operations 3-6
	3.2.5 Control-Flow Operations 3-6

	3.3 PNX1300 Instruction Issue Rules 3-6
	3.4 Memory and MMIO 3-7
	3.4.1 Memory Map 3-7
	3.4.2 The Memory Hole 3-7
	3.4.3 MMIO Memory Map 3-7

	3.5 Special Event Handling 3-8
	3.5.1 RESET 3-9
	3.5.2 EXC (Exceptions) 3-9
	3.5.3 INT and NMI (Maskable and Non-Maskable Interrupts) 3-9
	3.5.3.1 Interrupt vectors 3-9
	3.5.3.2 Interrupt modes 3-10
	3.5.3.3 Device interrupt acknowledge 3-10
	3.5.3.4 Interrupt priorities 3-10
	3.5.3.5 Interrupt masking 3-10
	3.5.3.6 Software interrupts and acknowledgment 3-11
	3.5.3.7 NMI sequentialization 3-11
	3.5.3.8 Interrupt source assignment 3-11

	3.6 PNX1300 to Host Interrupts 3-11
	3.7 Host to PNX1300 Interrupts 3-12
	3.8 Timers 3-12
	3.9 Debug Support 3-13
	3.9.1 Instruction Breakpoints 3-13
	3.9.2 Data Breakpoints 3-14

	4 Custom Operations for Multimedia
	4.1 Custom OperationS Overview 4-1
	4.1.1 Custom Operation Motivation 4-1
	4.1.2 Introduction to Custom Operations 4-1
	4.1.3 Example Uses of Custom Ops 4-3

	4.2 Example 1: Byte-Matrix Transposition 4-3
	4.3 Example 2: MPEG Image Reconstruction 4-4
	4.4 Example 3: Motion-Estimation Kernel 4-7
	4.4.1 A Simple Transformation 4-8
	4.4.2 More Unrolling 4-10

	5 Cache Architecture
	5.1 Memory System Overview 5-1
	5.2 DRAM Aperture 5-2
	5.3 Data Cache 5-3
	5.3.1 General Cache Parameters 5-3
	5.3.2 Address Mapping 5-3
	5.3.3 Miss Processing Order 5-4
	5.3.4 Replacement Policies, Coherency 5-4
	5.3.5 Alignment, Partial-Word Transfers, Endian-ness 5-4
	5.3.6 Dual Ports 5-4
	5.3.7 Cache Locking 5-4
	5.3.8 Memory Hole and PCI Aperture Disable 5-5
	5.3.9 Non-cacheable Region 5-5
	5.3.10 Special Data Cache Operations 5-6
	5.3.10.1 Copyback and invalidate operations 5-6
	5.3.10.2 Data cache tag and status operations 5-6
	5.3.10.3 Data cache allocation operation 5-7
	5.3.10.4 Data cache prefetch operation 5-7

	5.3.11 Memory Operation Ordering 5-7
	5.3.12 Operation Latency 5-8
	5.3.13 MMIO Register References 5-8
	5.3.14 PCI Bus References 5-8
	5.3.15 CPU Stall Conditions 5-8
	5.3.16 Data Cache Initialization 5-8

	5.4 Instruction Cache 5-8
	5.4.1 General Cache Parameters 5-8
	5.4.2 Address Mapping 5-8
	5.4.3 Miss Processing Order 5-9
	5.4.4 Replacement Policy 5-9
	5.4.5 Location of Program Code 5-9
	5.4.6 Branch Units 5-9
	5.4.7 Coherency: Special iclr Operation 5-9
	5.4.8 Reading Tags and Cache Status 5-9
	5.4.9 Cache Locking 5-10
	5.4.10 Instruction Cache Initialization and Boot Sequence 5-10

	5.5 LRU Algorithm 5-11
	5.5.1 Two-Way Algorithm 5-11

	5.6 Cache Coherency 5-11
	5.6.1 Example 1: Data-Cache/Input-Unit Coherency 5-11
	5.6.2 Example 2: Data-Cache/Output-Unit Coherency 5-11
	5.6.3 Example 3: Instruction-Cache/Data-Cache Coherency 5-11
	5.6.4 Example 4: Instruction-Cache/Input-Unit Coherency 5-11
	5.6.5 Four-Way Algorithm 5-11
	5.6.6 LRU Initialization 5-12
	5.6.7 LRU Bit Definitions 5-12
	5.6.8 LRU for the Dual-Ported Cache 5-12

	5.7 Performance Evaluation Support 5-12
	5.8 MMIO Register Summary 5-13

	6 Video In
	6.1 video in overview 6-1
	6.1.1 Interface 6-1
	6.1.2 Diagnostic Mode 6-2
	6.1.3 Power Down and Sleepless 6-2
	6.1.4 Hardware and Software Reset 6-2

	6.2 Clock Generator 6-4
	6.3 Fullres Capture Mode 6-4
	6.4 Halfres Capture Mode 6-9
	6.5 Raw Capture Modes 6-10
	6.6 Message-Passing Mode 6-11
	6.6.1 VI_DVALID in Message Passing Mode 6-12

	6.7 Highway Latency and HBE 6-13

	7 Enhanced Video Out
	7.1 Enhanced Video Out Summary 7-1
	7.2 About This Document 7-1
	7.3 Backward Compatibility 7-1
	7.4 Function summary 7-1
	7.4.1 Detailed Feature Descriptions 7-2
	7.4.2 Summary of Operation 7-2

	7.5 Interface 7-2
	7.6 Block Diagram 7-3
	7.7 Clock System 7-3
	7.8 Image Timing 7-4
	7.8.1 CCIR 656 Pixel Timing 7-4
	7.8.2 CCIR 656 Line Timing 7-4
	7.8.3 SAV and EAV Codes 7-5
	7.8.4 Video Clipping 7-6
	7.8.5 CCIR 656 Frame Timing 7-6

	7.9 Enhanced Video Out Timing Generation 7-6
	7.9.1 Active Video Area 7-6
	7.9.2 SAV and EAV Overlap Period 7-7
	7.9.3 Control of Frame and Image Counters 7-7
	7.9.4 Horizontal and Frame Timing Signals 7-7

	7.10 Genlock Mode 7-8
	7.11 Data Transfer Timing 7-9
	7.12 Image Data Memory Formats 7-9
	7.12.1 Video Image Formats 7-9
	7.12.2 Planar Storage of Video Image Data in Memory 7-10
	7.12.3 Graphics Overlay Image Format 7-10

	7.13 Video Image Conversion Algorithms 7-10
	7.13.1 YUV 4:2:2 Interspersed to YUV 4:2:2 Co-sited Conversion 7-11
	7.13.2 YUV 4:2:0 to YUV 4:2:2 Co-sited Conversion 7-11
	7.13.3 YUV-2x Upscaling 7-11
	7.13.4 Pixel Mirroring for Four-tap Filters 7-11

	7.14 EVO Operating Modes 7-13
	7.15 Video Processing 7-13
	7.15.1 Alpha Blending 7-13
	7.15.2 Chroma Keying 7-14
	7.15.3 Programmable Clipping 7-14

	7.16 MMIO Registers 7-14
	7.16.1 VO Status Register (VO_STATUS) 7-16
	7.16.2 VO Control Register (VO_CTL) 7-17
	7.16.3 VO-Related Registers 7-18
	7.16.4 EVO Control Register (EVO_CTL) 7-20
	7.16.5 EVO-Related Registers 7-21

	7.17 Enhanced Video Out Operation 7-21
	7.17.1 Video Refresh Modes 7-21

	7.18 Frame and field timing control 7-23
	7.18.1 Recommended values for timing registers 7-23
	7.18.2 Data-transfer Modes 7-23
	7.18.3 Interrupts and Error Conditions 7-23
	7.18.4 Latency and Bandwidth Requirements 7-24
	7.18.5 Power Down and Sleepless 7-24

	7.19 DDS and PLL Filter Details 7-25

	8 Audio In
	8.1 Audio In Overview 8-1
	8.2 External Interface 8-1
	8.3 Clock System 8-2
	8.3.1 PNX1300 Improved Mode 8-2
	8.3.2 TM-1000 Compatibility Mode 8-2

	8.4 Clock System Operation 8-2
	8.5 Serial Data Framing 8-3
	8.6 Memory Data Formats 8-4
	8.7 Audio In Operation 8-6
	8.8 Power Down and Sleepless 8-7
	8.9 Highway Latency and HBE 8-7
	8.10 Error Behavior 8-7
	8.11 Diagnostic Mode 8-7

	9 Audio Out
	9.1 Audio Out Overview 9-1
	9.2 External Interface 9-1
	9.3 Summary of Operation 9-2
	9.4 Internal Clock Source 9-2
	9.4.1 PNX1300 Standard Improved Mode 9-3
	9.4.2 TM-1000 Compatibility Mode 9-4

	9.5 Clock System Operation 9-4
	9.6 Serial Data Framing 9-4
	9.6.1 Serial Frame Limitations 9-5
	9.6.2 I2S Serial Framing Example 9-6

	9.7 Codec Control 9-6
	9.8 Memory Data Formats 9-7
	9.9 Audio Out Operation 9-8
	9.10 Interrupts 9-9
	9.11 Timestamp 9-10
	9.12 powerdown and Sleepless 9-10
	9.13 Highway Latency and HBE 9-10
	9.14 Error Behavior 9-11

	10 SPDIF Out
	10.1 SPDIF Out Overview 10-1
	10.2 External Interface 10-1
	10.3 Summary of Operation 10-1
	10.3.1 SPDIF Mode 10-1
	10.3.2 Transparent DMA Mode 10-1

	10.4 IEC-958 Serial Format 10-2
	10.5 IEC-958 Bit Cell and Pre-amble 10-2
	10.6 IEC-958 Parity 10-3
	10.7 IEC-958 Memory Data Format 10-3
	10.8 Sample Rate Programming 10-3
	10.9 Transparent Mode 10-4
	10.10 DMA Operation 10-4
	10.11 DMA Error Conditions 10-4
	10.12 Interrupts 10-4
	10.13 Timestamps 10-4
	10.14 MMIO Register Description 10-5
	10.15 RESET 10-6
	10.16 Power Down and Sleepless 10-6
	10.17 HBE and Highway Latency 10-6
	10.18 Literature References 10-7

	11 PCI Interface
	11.1 PCI Overview 11-1
	11.2 PCI Interface as an Initiator 11-2
	11.2.1 DSPCPU Single-Word Loads/Stores 11-2
	11.2.2 I/O Operations 11-2
	11.2.3 Configuration Operations 11-2
	11.2.4 DMA Operations 11-2

	11.3 PCI Interface as a Target 11-3
	11.4 Transaction Concurrency, Priorities, and Ordering 11-3
	11.5 Registers Addressed in PCI Configuration Space 11-3
	11.5.1 Vendor ID Register 11-3
	11.5.2 Device ID Register 11-3
	11.5.3 Command Register 11-3
	11.5.4 Status Register 11-5
	11.5.5 Revision ID Register 11-6
	11.5.6 Class Code Register 11-6
	11.5.7 Cache Line Size Register 11-7
	11.5.8 Latency Timer Register 11-7
	11.5.9 Header Type Register 11-7
	11.5.10 Built-In Self Test Register 11-7
	11.5.11 Base Address Registers 11-7
	11.5.12 Subsystem ID, Subsystem Vendor ID Register 11-9
	11.5.13 Expansion ROM Base Address Register 11-9
	11.5.14 Interrupt Line Register 11-9
	11.5.15 Interrupt Pin Register 11-9
	11.5.16 Max_Lat, Min_Gnt Registers 11-9

	11.6 Registers in MMIO Space 11-9
	11.6.1 DRAM_BASE Register 11-9
	11.6.2 MMIO_BASE Register 11-9
	11.6.3 MMIO/DRAM_BASE updates 11-10
	11.6.4 BIU_STATUS Register 11-11
	11.6.5 BIU_CTL Register 11-11
	11.6.6 PCI_ADR Register 11-12
	11.6.7 PCI_DATA Register 11-12
	11.6.8 CONFIG_ADR Register 11-12
	11.6.9 CONFIG_DATA Register 11-13
	11.6.10 CONFIG_CTL Register 11-13
	11.6.11 IO_ADR Register 11-13
	11.6.12 IO_DATA Register 11-13
	11.6.13 IO_CTL Register 11-13
	11.6.14 SRC_ADR Register 11-14
	11.6.15 DEST_ADR Register 11-14
	11.6.16 DMA_CTL Register 11-14
	11.6.17 INT_CTL Register 11-15

	11.7 PCI Bus Protocol Overview 11-15
	11.7.1 Single-Data-Phase Operations 11-16
	11.7.2 Multi-Data-Phase Operations 11-16

	11.8 Limitations 11-17
	11.8.1 Bus Locking 11-17
	11.8.2 No Expansion ROM 11-17
	11.8.3 No Cacheline Wrap Address Sequence 11-17
	11.8.4 No Burst for I/O or Configuration Space 11-17
	11.8.5 Word-Only MMIO Register Access 11-17

	12 SDRAM Memory System
	12.1 New in PNX1300/01/02/11 12-1
	12.2 PNX1300 Main Memory Overview 12-1
	12.3 Main-Memory Address Aperture 12-1
	12.4 Memory Devices Supported 12-2
	12.4.1 SDRAM 12-2
	12.4.2 SGRAM 12-2

	12.5 Memory Granularity and Sizes 12-2
	12.6 Memory System Programming 12-3
	12.6.1 MM_CONFIG Register 12-3
	12.6.2 PLL_RATIOS Register 12-4

	12.7 Memory Interface Pin List 12-5
	12.8 Address Mapping 12-5
	12.8.1 Address Mapping in 32-bit mode 12-5
	12.8.2 Address Mapping in 16-bit mode 12-6

	12.9 Memory Interface and SDRAM Initialization 12-6
	12.10 On-Chip SDRAM Interleaving 12-6
	12.11 Refresh 12-6
	12.12 Power-Down Mode 12-7
	12.13 Output Driver Capacity 12-7
	12.14 Signal Propagation Delay Compensation 12-7
	12.15 Circuit Board Design 12-7
	12.15.1 General Guidelines 12-7
	12.15.2 Specific Guidelines 12-8
	12.15.3 Termination 12-8

	12.16 Timing Budget 12-8
	12.16.1 Main AC Parameter requirements 12-9

	12.17 Example Block Diagrams 12-9
	12.17.1 Block Diagrams for a 32-bit interface 12-9
	12.17.1.1 16-Mbit Devices or Less 12-9
	12.17.1.2 64-Mbit Devices 12-10
	12.17.1.3 128-Mbit Devices 12-13
	12.17.1.4 256-Mbit Devices 12-16

	12.17.2 Block Diagrams for a 16-bit interface 12-17

	13 System Boot
	13.1 Boot Sequence Overview 13-1
	13.2 Boot Hardware Operation 13-2
	13.2.1 Boot Procedure Common to Both Autonomous and Host-Assisted Bootstrap 13-2
	13.2.2 Initial DSPCPU Program Load for Autonomous Bootstrap 13-5

	13.3 Host-Assisted Boot Description 13-6
	13.3.1 Stage 1: PNX1300 System Boot Hardware 13-6
	13.3.2 Stage 2: Host-System PCI Configuration 13-6
	13.3.3 Stage 3: PNX1300 Driver Executing on the Host 13-6

	13.4 Detailed EEPROM Contents 13-7
	13.5 EEPROM Access Protocols 13-9

	14 Image Coprocessor
	14.1 Image Coprocessor Overview 14-1
	14.2 Requirements 14-1
	14.2.1 Functions 14-1
	14.2.2 Bandwidth 14-1
	14.2.3 Image Size and Scaling 14-3

	14.3 Interface 14-3
	14.4 Data Formats 14-3
	14.4.1 Image Input Formats 14-3
	14.4.1.1 YUV 4:2:2 Co-Sited 14-3
	14.4.1.2 YUV 4:2:2 Interspersed 14-3
	14.4.1.3 YUV 4:2:0 XY Interspersed 14-3
	14.4.1.4 YUV 4:1:1 Co-Sited 14-3

	14.4.2 Image Overlay Formats 14-5
	14.4.3 Alpha Blending Codes 14-5
	14.4.4 Output Formats 14-5

	14.5 Algorithms 14-6
	14.5.1 Introduction 14-6
	14.5.2 Filtering 14-6
	14.5.3 Scaling 14-6
	14.5.4 YUV to RGB Conversion 14-9
	14.5.5 Overlay and Alpha Blending 14-9
	14.5.6 Dithering 14-10
	14.5.7 Implementation Overview: Horizontal Scaling and Filtering 14-11
	14.5.7.1 Loading the extra pixels in the filter 14-12
	14.5.7.2 Mirroring pixels at the ends of a line 14-12
	14.5.7.3 Horizontal filter SDRAM timing 14-12

	14.5.8 Implementation Overview: Vertical Scaling and Filtering 14-13
	14.5.8.1 Mirroring lines at the ends of an image 14-15
	14.5.8.2 Vertical filter SDRAM block timing 14-15

	14.5.9 Horizontal Scaling and Filtering for RGB Output 14-15
	14.5.9.1 YUV sequence counter in YUV 4:2:2 output Mode 14-15
	14.5.9.2 PCI output block timing 14-16

	14.6 Operation and Programming 14-16
	14.6.1 ICP Register Model 14-17
	14.6.2 Power Down 14-17
	14.6.3 ICP Operation 14-18
	14.6.4 ICP Microprogram Set 14-18
	14.6.5 ICP Processing Time 14-18
	14.6.6 Priority Delay and ICP Minimum Bus Bandwidth 14-21
	14.6.7 ICP Parameter Tables 14-22
	14.6.8 Load Coefficients 14-22
	14.6.9 Horizontal Filter - SDRAM to SDRAM 14-22
	14.6.9.1 Algorithms 14-22
	14.6.9.2 Parameter table 14-22
	14.6.9.3 Control word format 14-23

	14.6.10 Vertical Filter - SDRAM to SDRAM 14-24
	14.6.10.1 Algorithms 14-24
	14.6.10.2 Parameter table 14-24
	14.6.10.3 Control word format 14-25

	14.6.11 Horizontal Filter with RGB/YUV Conversion to PCI or SDRAM 14-25
	14.6.11.1 Algorithms 14-25
	14.6.11.2 Parameter table 14-26
	14.6.11.3 Control word format 14-27

	15 Variable Length Decoder
	15.1 VLD Overview 15-1
	15.2 VLD Operation 15-1
	15.3 Decoding up to A slice 15-2
	15.4 VLD Input 15-2
	15.5 VLD Output 15-3
	15.5.1 Macroblock Header Output Data 15-3
	15.5.2 Run-Level Output Data 15-4

	15.6 VLD Time Sharing 15-4
	15.7 MMIO Registers 15-4
	15.7.1 VLD Status (VLD_STATUS) 15-4
	15.7.2 VLD Interrupt Enable (VLD_IMASK) 15-4
	15.7.3 VLD Control (VLD_CTL) 15-5

	15.8 VLD DMA Registers 15-5
	15.8.1 DMA Input 15-5
	15.8.2 Macroblock Header Output DMA 15-5
	15.8.3 Run-Level Output DMA 15-5

	15.9 VLD Operational Registers 15-7
	15.9.1 VLD Command (VLD_COMMAND) 15-7
	15.9.2 VLD Shift Register (VLD_SR) 15-7
	15.9.3 VLD Quantizer Scale (VLD_QS) 15-7
	15.9.4 VLD Picture Info (VLD_PI) 15-8

	15.10 Error Handling 15-8
	15.11 Interrupt 15-8
	15.12 RESET 15-8
	15.13 Endian-ness 15-8
	15.14 Power Down 15-8
	15.15 References 15-8

	16 I2C Interface
	16.1 I2C Overview 16-1
	16.2 Compared TO TM-1000 16-1
	16.3 External Interface 16-1
	16.4 I2C Register Set 16-1
	16.4.1 IIC_AR Register 16-1
	16.4.2 IIC_DR Register 16-2
	16.4.3 IIC_SR Register 16-3
	16.4.4 IIC_CR Register 16-4

	16.5 I2C Software Operation Mode 16-5
	16.6 I2C Hardware Operation Mode 16-5
	16.6.1 Slave NAK 16-6

	16.7 I2C Clock Rate Generation 16-7

	17 Synchronous Serial Interface
	17.1 Synchronous Serial Interface Overview 17-1
	17.2 Interface 17-1
	17.3 Block Diagram 17-1
	17.3.1 General Purpose I/O 17-2
	17.3.2 Frame Synchronization 17-3
	17.3.3 SSI Transmit 17-3
	17.3.4 SSI Receive 17-3

	17.4 SSI Transmit operation 17-5
	17.4.1 Setup SSI_CTL 17-5
	17.4.2 Operation Details 17-5
	17.4.3 Interrupt and Status 17-5

	17.5 SSI Receive Operation 17-6
	17.5.1 Setup SSI_CTL 17-6
	17.5.2 Operation Details 17-6
	17.5.3 Interrupt and Status 17-6

	17.6 Frame Timing 17-6
	17.7 Interrupt Generation 17-7
	17.8 16-bit Endian-ness and Shift Direction 17-7
	17.9 SSI Test Modes 17-8
	17.9.1 Remote Loopback 17-8
	17.9.2 Local Loopback 17-8

	17.10 MMIO Registers 17-8
	17.10.1 SSI Control Register (SSI_CTL) 17-9
	17.10.2 SSI Control/Status Register (SSI_CSR) 17-11

	17.11 Timing Diagrams 17-12
	17.12 Power Down 17-12

	18 JTAG Functional Specification
	18.1 Overview 18-1
	18.2 Test Access Port (TAP) 18-1
	18.2.1 TAP Controller 18-1
	18.2.2 PNX1300 JTAG Instruction Set 18-2

	18.3 Using JTAG for PNX1300 Debug 18-3
	18.3.1 JTAG Instruction and Data Registers. 18-4
	18.3.2 JTAG Communication Protocol 18-5
	18.3.3 Example Data Transfer Via JTAG 18-5
	18.3.3.1 Transferring data to TriMedia via JTAG 18-5
	18.3.3.2 Transferring data from TriMedia via JTAG 18-6

	18.3.4 JTAG Interface Module 18-6

	19 On-Chip Semaphore Assist Device
	19.1 OVERVIEW 19-1
	19.2 SEM Device Specification 19-1
	19.3 Constructing a 12-Bit ID 19-1
	19.4 Which SEM to Use 19-1
	19.5 Usage Notes 19-1

	20 Arbiter
	20.1 Arbiter Features 20-1
	20.2 Dual Priorities with Priority Raising Mechanism 20-1
	20.3 Round Robin Arbitration 20-2
	20.3.1 Weighted Round Robin Arbitration 20-2
	20.3.2 Arbitration Levels 20-3

	20.4 Arbiter Architecture 20-4
	20.5 Arbiter programming 20-5
	20.5.1 Latency Analysis 20-5
	20.5.2 Bandwidth Analysis 20-6

	20.6 Extended Behavior Analysis 20-7
	20.6.1 Extended Bandwidth Analysis 20-7
	20.6.2 Extended Latency Analysis 20-7
	20.6.3 Raising Priority 20-8
	20.6.4 Conclusion 20-8

	21 Power Management
	21.1 Overview 21-1
	21.2 Entering and Exiting Global Power Down Mode 21-1
	21.3 Effect Of Global Power Down On Peripherals 21-1
	21.4 Detailed Sequence of Events For Global Power Down 21-2
	21.5 MMIO Register POWER_DOWN 21-2
	21.6 Block Power Down 21-2

	22 PCI-XIO External I/O Bus
	22.1 Summary Functionality 22-1
	22.1.1 Description 22-1

	22.2 Block Diagram 22-3
	22.3 Data Formats 22-5
	22.4 Interface 22-5
	22.4.1 PCI-XIO Bus Interface Design 22-5
	22.4.1.1 Flash EEPROM 22-6
	22.4.1.2 68K Bus I/O device 22-6
	22.4.1.3 x86/ISA Bus I/O device 22-6
	22.4.1.4 Multiple Flash EEPROM 22-6

	22.5 XIO_CTL MMIO Register 22-7
	22.5.1 PCI_CLK Bus Clock Frequency 22-7
	22.5.2 Wait State Generator 22-8

	22.6 PCI-XIO Bus Timing 22-8
	22.7 PCI-XIO Bus Controller Operation and Programming 22-12

	A PNX1300/01/02/11 DSPCPU Operations
	A.1 Alphabetic Operation List A-1
	A.2 Operation List By Function A-2
	alloc A-4
	allocd A-5
	allocr A-6
	allocx A-7
	asl A-8
	asli A-9
	asr A-10
	asri A-11
	bitand A-12
	bitandinv A-13
	bitinv A-14
	bitor A-15
	bitxor A-16
	borrow A-17
	carry A-18
	curcycles A-19
	cycles A-20
	dcb A-21
	dinvalid A-22
	dspiabs A-23
	dspiadd A-24
	dspidualabs A-25
	dspidualadd A-26
	dspidualmul A-27
	dspidualsub A-28
	dspimul A-29
	dspisub A-30
	dspuadd A-31
	dspumul A-32
	dspuquadaddui A-33
	dspusub A-34
	dualasr A-35
	dualiclipi A-36
	dualuclipi A-37
	fabsval A-38
	fabsvalflags A-39
	fadd A-40
	faddflags A-41
	fdiv A-42
	fdivflags A-43
	feql A-44
	feqlflags A-45
	fgeq A-46
	fgeqflags A-47
	fgtr A-48
	fgtrflags A-49
	fleq A-50
	fleqflags A-51
	fles A-52
	flesflags A-53
	fmul A-54
	fmulflags A-55
	fneq A-56
	fneqflags A-57
	fsign A-58
	fsignflags A-59
	fsqrt A-60
	fsqrtflags A-61
	fsub A-62
	fsubflags A-63
	funshift1 A-64
	funshift2 A-65
	funshift3 A-66
	h_dspiabs A-67
	h_dspidualabs A-68
	h_iabs A-69
	h_st16d A-70
	h_st32d A-71
	h_st8d A-72
	hicycles A-73
	iabs A-74
	iadd A-75
	iaddi A-76
	iavgonep A-77
	ibytesel A-78
	iclipi A-79
	iclr A-80
	ident A-81
	ieql A-82
	ieqli A-83
	ifir16 A-84
	ifir8ii A-85
	ifir8ui A-86
	ifixieee A-87
	ifixieeeflags A-88
	ifixrz A-89
	ifixrzflags A-90
	iflip A-91
	ifloat A-92
	ifloatflags A-93
	ifloatrz A-94
	ifloatrzflags A-95
	igeq A-96
	igeqi A-97
	igtr A-98
	igtri A-99
	iimm A-100
	ijmpf A-101
	ijmpi A-102
	ijmpt A-103
	ild16 A-104
	ild16d A-105
	ild16r A-106
	ild16x A-107
	ild8 A-108
	ild8d A-109
	ild8r A-110
	ileq A-111
	ileqi A-112
	iles A-113
	ilesi A-114
	imax A-115
	imin A-116
	imul A-117
	imulm A-118
	ineg A-119
	ineq A-120
	ineqi A-121
	inonzero A-122
	isub A-123
	isubi A-124
	izero A-125
	jmpf A-126
	jmpi A-127
	jmpt A-128
	ld32 A-129
	ld32d A-130
	ld32r A-131
	ld32x A-132
	lsl A-133
	lsli A-134
	lsr A-135
	lsri A-136
	mergedual16lsb A-137
	mergelsb A-138
	mergemsb A-139
	nop A-140
	pack16lsb A-141
	pack16msb A-142
	packbytes A-143
	pref A-144
	pref16x A-145
	pref32x A-146
	prefd A-147
	prefr A-148
	quadavg A-149
	quadumax A-150
	quadumin A-151
	quadumulmsb A-152
	rdstatus A-153
	rdtag A-154
	readdpc A-155
	readpcsw A-156
	readspc A-157
	rol A-158
	roli A-159
	sex16 A-160
	sex8 A-161
	st16 A-162
	st16d A-163
	st32 A-164
	st32d A-165
	st8 A-166
	st8d A-167
	ubytesel A-168
	uclipi A-169
	uclipu A-170
	ueql A-171
	ueqli A-172
	ufir16 A-173
	ufir8uu A-174
	ufixieee A-175
	ufixieeeflags A-176
	ufixrz A-177
	ufixrzflags A-178
	ufloat A-179
	ufloatflags A-180
	ufloatrz A-181
	ufloatrzflags A-182
	ugeq A-183
	ugeqi A-184
	ugtr A-185
	ugtri A-186
	uimm A-187
	uld16 A-188
	uld16d A-189
	uld16r A-190
	uld16x A-191
	uld8 A-192
	uld8d A-193
	uld8r A-194
	uleq A-195
	uleqi A-196
	ules A-197
	ulesi A-198
	ume8ii A-199
	ume8uu A-200
	umin A-201
	umul A-202
	umulm A-203
	uneq A-204
	uneqi A-205
	writedpc A-206
	writepcsw A-207
	writespc A-208
	zex16 A-209
	zex8 A-210
	A-212

	B MMIO Register Summary
	B.1 MMIO Registers B-1

	C Endian-ness
	C.1 Purpose C-1
	C.2 Little and Big Endian Addressing Conventions C-1
	C.3 Test to Verify the Correct Operation of PNX1300 in Big and Little Endian Systems C-2
	C.4 Requirement for the PNX1300 to Operate in Either Little Endian or Big Endian Mode C-2
	C.4.1 Data Cache C-2
	C.4.2 Instruction Cache C-3
	C.4.3 PNX1300 PCI Interface Unit C-3
	C.4.4 Image Coprocessor (ICP) C-3
	C.4.5 Video In (VI) and Video Out (VO) Units C-7
	C.4.6 Audio In (AI), Audio-Out (AO), and SPDIF Out (SDO) Units C-7
	C.4.7 Variable Length Encoder (VLD) Unit C-7
	C.4.8 Synchronous Serial Interface (SSI) C-8
	C.4.9 Compiler C-9

	C.5 Summary C-9
	C.6 References C-9

	Index

	Pin List Chapter 1
	1.1 PNX1300 Series versus TM-1300
	1.2 Boundary Scan Notice
	1.3 I/O Circuit Summary
	1.4 Signal Pin List
	1.5 Power Pin List
	1.6 Pin Reference Voltage
	1.7 Package
	1.8 Ordering Information
	1.9 Parametric Characteristics
	1.9.1 PNX1300/01/02/11 Absolute Maximum Ratings
	1.9.2 PNX1300/01/02 Operating Range and Thermal Characteristics
	1.9.3 PNX1311 Operating Range and Thermal Characteristics
	1.9.4 PNX1300/01/02/11 Power Supply Sequencing
	1.9.5 PNX1300/01/02 DC/AC Characteristics
	1.9.6 PNX1311 DC/AC Characteristics
	1.9.7 PNX1300 Series Power Consumption
	1.9.7.1 Power Consumption for Applications on PNX1300 Series
	1.9.7.2 PNX1300/01/02 DSPCPU Core Current and Power Consumption
	1.9.7.3 PNX1311 DSPCPU Core Current and Power Consumption Details
	1.9.7.4 PNX1300/01/02 Current Consumption For On-Chip Peripherals
	1.9.7.5 PNX1311 Current Consumption For On-Chip Peripherals
	1.9.7.6 STRG3, STRG5 type I/O circuit
	1.9.7.7 NORM3 type I/O circuit
	1.9.7.8 WEAK5 type I/O circuit
	1.9.7.9 IICOD (I2c) type I/O circuit
	1.9.7.10 SDRAM interface timing for PNX1300/01/02/11 speed grades.
	1.9.7.11 PCI Bus timing
	1.9.7.12 JTAG I/O timing
	1.9.7.13 I2C I/O timing
	1.9.7.14 Video In I/O Timing
	1.9.7.15 Video Out I/O Timing
	1.9.7.16 AudioIn I/O timing
	1.9.7.17 Audio Out I/O timing
	1.9.7.18 SSI I/O timing

	Overview Chapter 2
	2.1 Introduction
	2.2 PNX1300 Fundamentals
	2.3 PNX1300 Chip Overview
	2.4 Brief Examples of Operation
	2.4.1 Video Decompression in a PC
	2.4.2 Video Compression

	2.5 Introduction to PNX1300 Blocks
	2.5.1 Internal ‘Data Highway’ Bus
	2.5.2 VLIW Processor Core
	2.5.3 Video In Unit
	2.5.4 Enhanced Video Out Unit
	2.5.5 Image Coprocessor
	2.5.6 Variable-Length Decoder (VLD)
	2.5.7 Audio In and Audio Out Units
	2.5.8 S/PDIF Out Unit
	2.5.9 Synchronous Serial Interface
	2.5.10 I2C Interface

	2.6 New In PNX1300 (Versus TM-1300)
	2.7 New In PNX1300 (Versus TM-1100)
	2.8 New In PNX1300 (Versus TM-1000)

	DSPCPU Architecture Chapter 3
	3.1 Basic Architecture Concepts
	3.1.1 Register Model
	3.1.2 Basic DSPCPU Execution Model
	3.1.3 PCSW Overview
	3.1.4 SPC and DPC—Source and Destination Program Counter
	3.1.5 CCCOUNT—Clock Cycle Counter
	3.1.6 Boolean Representation
	3.1.7 Integer Representation
	3.1.8 Floating Point Representation
	3.1.9 Addressing Modes
	3.1.10 Software Compatibility

	3.2 Instruction Set Overview
	3.2.1 Guarding (Conditional Execution)
	3.2.2 Load and Store Operations
	3.2.3 Compute Operations
	3.2.4 Special-Register Operations
	3.2.5 Control-Flow Operations

	3.3 PNX1300 Instruction Issue Rules
	3.4 Memory and MMIO
	3.4.1 Memory Map
	3.4.2 The Memory Hole
	3.4.3 MMIO Memory Map

	3.5 Special Event Handling
	3.5.1 RESET
	3.5.2 EXC (Exceptions)
	3.5.3 INT and NMI (Maskable and Non- Maskable Interrupts)
	3.5.3.1 Interrupt vectors
	3.5.3.2 Interrupt modes
	3.5.3.3 Device interrupt acknowledge
	3.5.3.4 Interrupt priorities
	3.5.3.5 Interrupt masking
	3.5.3.6 Software interrupts and acknowledgment
	3.5.3.7 NMI sequentialization
	3.5.3.8 Interrupt source assignment

	3.6 PNX1300 to Host Interrupts
	3.7 Host to PNX1300 Interrupts
	3.8 Timers
	3.9 Debug Support
	3.9.1 Instruction Breakpoints
	3.9.2 Data Breakpoints

	Custom Operations for Multimedia Chapter 4
	4.1 Custom OperationS Overview
	4.1.1 Custom Operation Motivation
	4.1.2 Introduction to Custom Operations
	4.1.3 Example Uses of Custom Ops

	4.2 Example 1: Byte-Matrix Transposition
	4.3 Example 2: MPEG Image Reconstruction
	4.4 Example 3: Motion-Estimation Kernel
	4.4.1 A Simple Transformation
	4.4.2 More Unrolling

	Cache Architecture Chapter 5
	5.1 Memory System Overview
	5.2 DRAM Aperture
	5.3 Data Cache
	5.3.1 General Cache Parameters
	5.3.2 Address Mapping
	5.3.3 Miss Processing Order
	5.3.4 Replacement Policies, Coherency
	5.3.5 Alignment, Partial-Word Transfers, Endian-ness
	5.3.6 Dual Ports
	5.3.7 Cache Locking
	5.3.8 Memory Hole and PCI Aperture Disable
	5.3.9 Non-cacheable Region
	5.3.10 Special Data Cache Operations
	5.3.10.1 Copyback and invalidate operations
	5.3.10.2 Data cache tag and status operations
	5.3.10.3 Data cache allocation operation
	5.3.10.4 Data cache prefetch operation

	5.3.11 Memory Operation Ordering
	5.3.12 Operation Latency
	5.3.13 MMIO Register References
	5.3.14 PCI Bus References
	5.3.15 CPU Stall Conditions
	5.3.16 Data Cache Initialization

	5.4 Instruction Cache
	5.4.1 General Cache Parameters
	5.4.2 Address Mapping
	5.4.3 Miss Processing Order
	5.4.4 Replacement Policy
	5.4.5 Location of Program Code
	5.4.6 Branch Units
	5.4.7 Coherency: Special iclr Operation
	5.4.8 Reading Tags and Cache Status
	5.4.9 Cache Locking
	5.4.10 Instruction Cache Initialization and Boot Sequence

	5.5 LRU Algorithm
	5.5.1 Two-Way Algorithm

	5.6 Cache Coherency
	5.6.1 Example 1: Data-Cache/Input-Unit Coherency
	5.6.2 Example 2: Data-Cache/Output-Unit Coherency
	5.6.3 Example 3: Instruction-Cache/Data- Cache Coherency
	5.6.4 Example 4: Instruction-Cache/Input- Unit Coherency
	5.6.5 Four-Way Algorithm
	5.6.6 LRU Initialization
	5.6.7 LRU Bit Definitions
	5.6.8 LRU for the Dual-Ported Cache

	5.7 Performance Evaluation Support
	5.8 MMIO Register Summary

	Video In Chapter 6
	6.1 video in overview
	6.1.1 Interface
	6.1.2 Diagnostic Mode
	6.1.3 Power Down and Sleepless
	6.1.4 Hardware and Software Reset

	6.2 Clock Generator
	6.3 Fullres Capture Mode
	6.4 Halfres Capture Mode
	6.5 Raw Capture Modes
	6.6 Message-Passing Mode
	6.6.1 VI_DVALID in Message Passing Mode

	6.7 Highway Latency and HBE

	Enhanced Video Out Chapter 7
	7.1 Enhanced Video Out Summary
	7.2 About This Document
	7.3 Backward Compatibility
	7.4 Function summary
	7.4.1 Detailed Feature Descriptions
	7.4.2 Summary of Operation

	7.5 Interface
	7.6 Block Diagram
	7.7 Clock System
	7.8 Image Timing
	7.8.1 CCIR 656 Pixel Timing
	7.8.2 CCIR 656 Line Timing
	7.8.3 SAV and EAV Codes
	7.8.4 Video Clipping
	7.8.5 CCIR 656 Frame Timing

	7.9 Enhanced Video Out Timing Generation
	7.9.1 Active Video Area
	7.9.2 SAV and EAV Overlap Period
	7.9.3 Control of Frame and Image Counters
	7.9.4 Horizontal and Frame Timing Signals

	7.10 Genlock Mode
	7.11 Data Transfer Timing
	7.12 Image Data Memory Formats
	7.12.1 Video Image Formats
	7.12.2 Planar Storage of Video Image Data in Memory
	7.12.3 Graphics Overlay Image Format

	7.13 Video Image Conversion Algorithms
	7.13.1 YUV 4:2:2 Interspersed to YUV 4:2:2 Co-sited Conversion
	7.13.2 YUV 4:2:0 to YUV 4:2:2 Co-sited Conversion
	7.13.3 YUV-2x Upscaling
	7.13.4 Pixel Mirroring for Four-tap Filters

	7.14 EVO Operating Modes
	7.15 Video Processing
	7.15.1 Alpha Blending
	7.15.2 Chroma Keying
	7.15.3 Programmable Clipping

	7.16 MMIO Registers
	7.16.1 VO Status Register (VO_STATUS)
	7.16.2 VO Control Register (VO_CTL)
	7.16.3 VO-Related Registers
	7.16.4 EVO Control Register (EVO_CTL)
	7.16.5 EVO-Related Registers

	7.17 Enhanced Video Out Operation
	7.17.1 Video Refresh Modes

	7.18 Frame and field timing control
	7.18.1 Recommended values for timing registers
	7.18.2 Data-transfer Modes
	7.18.3 Interrupts and Error Conditions
	7.18.4 Latency and Bandwidth Requirements
	7.18.5 Power Down and Sleepless

	7.19 DDS and PLL Filter Details

	Audio In Chapter 8
	8.1 Audio In Overview
	8.2 External Interface
	8.3 Clock System
	8.3.1 PNX1300 Improved Mode
	8.3.2 TM-1000 Compatibility Mode

	8.4 Clock System Operation
	8.5 Serial Data Framing
	8.6 Memory Data Formats
	8.7 Audio In Operation
	8.8 Power Down and Sleepless
	8.9 Highway Latency and HBE
	8.10 Error Behavior
	8.11 Diagnostic Mode

	Audio Out Chapter 9
	9.1 Audio Out Overview
	9.2 External Interface
	9.3 Summary of Operation
	9.4 Internal Clock Source
	9.4.1 PNX1300 Standard Improved Mode
	9.4.2 TM-1000 Compatibility Mode

	9.5 Clock System Operation
	9.6 Serial Data Framing
	9.6.1 Serial Frame Limitations
	9.6.2 I2S Serial Framing Example

	9.7 Codec Control
	9.8 Memory Data Formats
	9.9 Audio Out Operation
	9.10 Interrupts
	9.11 Timestamp
	9.12 powerdown and Sleepless
	9.13 Highway Latency and HBE
	9.14 Error Behavior

	SPDIF Out Chapter 10
	10.1 SPDIF Out Overview
	10.2 External Interface
	10.3 Summary of Operation
	10.3.1 SPDIF Mode
	10.3.2 Transparent DMA Mode

	10.4 IEC-958 Serial Format
	10.5 IEC-958 Bit Cell and Pre-amble
	10.6 IEC-958 Parity
	10.7 IEC-958 Memory Data Format
	10.8 Sample Rate Programming
	10.9 Transparent Mode
	10.10 DMA Operation
	10.11 DMA Error Conditions
	10.12 Interrupts
	10.13 Timestamps
	10.14 MMIO Register Description
	10.15 RESET
	10.16 Power Down and Sleepless
	10.17 HBE and Highway Latency
	10.18 Literature References

	PCI Interface Chapter 11
	11.1 PCI Overview
	11.2 PCI Interface as an Initiator
	11.2.1 DSPCPU Single-Word Loads/Stores
	11.2.2 I/O Operations
	11.2.3 Configuration Operations
	11.2.4 DMA Operations

	11.3 PCI Interface as a Target
	11.4 Transaction Concurrency, Priorities, and Ordering
	11.5 Registers Addressed in PCI Configuration Space
	11.5.1 Vendor ID Register
	11.5.2 Device ID Register
	11.5.3 Command Register
	11.5.4 Status Register
	11.5.5 Revision ID Register
	11.5.6 Class Code Register
	11.5.7 Cache Line Size Register
	11.5.8 Latency Timer Register
	11.5.9 Header Type Register
	11.5.10 Built-In Self Test Register
	11.5.11 Base Address Registers
	11.5.12 Subsystem ID, Subsystem Vendor ID Register
	11.5.13 Expansion ROM Base Address Register
	11.5.14 Interrupt Line Register
	11.5.15 Interrupt Pin Register
	11.5.16 Max_Lat, Min_Gnt Registers

	11.6 Registers in MMIO Space
	11.6.1 DRAM_BASE Register
	11.6.2 MMIO_BASE Register
	11.6.3 MMIO/DRAM_BASE updates
	11.6.4 BIU_STATUS Register
	11.6.5 BIU_CTL Register
	11.6.6 PCI_ADR Register
	11.6.7 PCI_DATA Register
	11.6.8 CONFIG_ADR Register
	11.6.9 CONFIG_DATA Register
	11.6.10 CONFIG_CTL Register
	11.6.11 IO_ADR Register
	11.6.12 IO_DATA Register
	11.6.13 IO_CTL Register
	11.6.14 SRC_ADR Register
	11.6.15 DEST_ADR Register
	11.6.16 DMA_CTL Register
	11.6.17 INT_CTL Register

	11.7 PCI Bus Protocol Overview
	11.7.1 Single-Data-Phase Operations
	11.7.2 Multi-Data-Phase Operations

	11.8 Limitations
	11.8.1 Bus Locking
	11.8.2 No Expansion ROM
	11.8.3 No Cacheline Wrap Address Sequence
	11.8.4 No Burst for I/O or Configuration Space
	11.8.5 Word-Only MMIO Register Access

	SDRAM Memory System Chapter 12
	12.1 New in PNX1300/01/02/11
	12.2 PNX1300 Main Memory Overview
	12.3 Main-Memory Address Aperture
	12.4 Memory Devices Supported
	12.4.1 SDRAM
	12.4.2 SGRAM

	12.5 Memory Granularity and Sizes
	12.6 Memory System Programming
	12.6.1 MM_CONFIG Register
	12.6.2 PLL_RATIOS Register

	12.7 Memory Interface Pin List
	12.8 Address Mapping
	12.8.1 Address Mapping in 32-bit mode
	12.8.2 Address Mapping in 16-bit mode

	12.9 Memory Interface and SDRAM Initialization
	12.10 On-Chip SDRAM Interleaving
	12.11 Refresh
	12.12 Power-Down Mode
	12.13 Output Driver Capacity
	12.14 Signal Propagation Delay Compensation
	12.15 Circuit Board Design
	12.15.1 General Guidelines
	12.15.2 Specific Guidelines
	12.15.3 Termination

	12.16 Timing Budget
	12.16.1 Main AC Parameter requirements

	12.17 Example Block Diagrams
	12.17.1 Block Diagrams for a 32-bit interface
	12.17.1.1 16-Mbit Devices or Less
	12.17.1.2 64-Mbit Devices
	12.17.1.3 128-Mbit Devices
	12.17.1.4 256-Mbit Devices

	12.17.2 Block Diagrams for a 16-bit interface

	System Boot Chapter 13
	13.1 Boot Sequence Overview
	13.2 Boot Hardware Operation
	13.2.1 Boot Procedure Common to Both Autonomous and Host-Assisted Bootstrap
	13.2.2 Initial DSPCPU Program Load for Autonomous Bootstrap

	13.3 Host-Assisted Boot Description
	13.3.1 Stage 1: PNX1300 System Boot Hardware
	13.3.2 Stage 2: Host-System PCI Configuration
	13.3.3 Stage 3: PNX1300 Driver Executing on the Host

	13.4 Detailed EEPROM Contents
	13.5 EEPROM Access Protocols

	Image Coprocessor Chapter 14
	14.1 Image Coprocessor Overview
	14.2 Requirements
	14.2.1 Functions
	14.2.2 Bandwidth
	14.2.3 Image Size and Scaling

	14.3 Interface
	14.4 Data Formats
	14.4.1 Image Input Formats
	14.4.1.1 YUV 4:2:2 Co-Sited
	14.4.1.2 YUV 4:2:2 Interspersed
	14.4.1.3 YUV 4:2:0 XY Interspersed
	14.4.1.4 YUV 4:1:1 Co-Sited

	14.4.2 Image Overlay Formats
	14.4.3 Alpha Blending Codes
	14.4.4 Output Formats

	14.5 Algorithms
	14.5.1 Introduction
	14.5.2 Filtering
	14.5.3 Scaling
	14.5.4 YUV to RGB Conversion
	14.5.5 Overlay and Alpha Blending
	14.5.6 Dithering
	14.5.7 Implementation Overview: Horizontal Scaling and Filtering
	14.5.7.1 Loading the extra pixels in the filter
	14.5.7.2 Mirroring pixels at the ends of a line
	14.5.7.3 Horizontal filter SDRAM timing

	14.5.8 Implementation Overview: Vertical Scaling and Filtering
	14.5.8.1 Mirroring lines at the ends of an image
	14.5.8.2 Vertical filter SDRAM block timing

	14.5.9 Horizontal Scaling and Filtering for RGB Output
	14.5.9.1 YUV sequence counter in YUV 4:2:2 output Mode
	14.5.9.2 PCI output block timing

	14.6 Operation and Programming
	14.6.1 ICP Register Model
	14.6.2 Power Down
	14.6.3 ICP Operation
	14.6.4 ICP Microprogram Set
	14.6.5 ICP Processing Time
	14.6.6 Priority Delay and ICP Minimum Bus Bandwidth
	14.6.7 ICP Parameter Tables
	14.6.8 Load Coefficients
	14.6.9 Horizontal Filter - SDRAM to SDRAM
	14.6.9.1 Algorithms
	14.6.9.2 Parameter table
	14.6.9.3 Control word format

	14.6.10 Vertical Filter - SDRAM to SDRAM
	14.6.10.1 Algorithms
	14.6.10.2 Parameter table
	14.6.10.3 Control word format

	14.6.11 Horizontal Filter with RGB/YUV Conversion to PCI or SDRAM
	14.6.11.1 Algorithms
	14.6.11.2 Parameter table
	14.6.11.3 Control word format

	Variable Length Decoder Chapter 15
	15.1 VLD Overview
	15.2 VLD Operation
	15.3 Decoding up to A slice
	15.4 VLD Input
	15.5 VLD Output
	15.5.1 Macroblock Header Output Data
	15.5.2 Run-Level Output Data

	15.6 VLD Time Sharing
	15.7 MMIO Registers
	15.7.1 VLD Status (VLD_STATUS)
	15.7.2 VLD Interrupt Enable (VLD_IMASK)
	15.7.3 VLD Control (VLD_CTL)

	15.8 VLD DMA Registers
	15.8.1 DMA Input
	15.8.2 Macroblock Header Output DMA
	15.8.3 Run-Level Output DMA

	15.9 VLD Operational Registers
	15.9.1 VLD Command (VLD_COMMAND)
	15.9.2 VLD Shift Register (VLD_SR)
	15.9.3 VLD Quantizer Scale (VLD_QS)
	15.9.4 VLD Picture Info (VLD_PI)

	15.10 Error Handling
	15.11 Interrupt
	15.12 RESET
	15.13 Endian-ness
	15.14 Power Down
	15.15 References

	I2C Interface Chapter 16
	16.1 I2C Overview
	16.2 Compared TO TM-1000
	16.3 External Interface
	16.4 I2C Register Set
	16.4.1 IIC_AR Register
	16.4.2 IIC_DR Register
	16.4.3 IIC_SR Register
	16.4.4 IIC_CR Register

	16.5 I2C Software Operation Mode
	16.6 I2C Hardware Operation Mode
	16.6.1 Slave NAK

	16.7 I2C Clock Rate Generation

	Synchronous Serial Interface Chapter 17
	17.1 Synchronous Serial Interface Overview
	17.2 Interface
	17.3 Block Diagram
	17.3.1 General Purpose I/O
	17.3.2 Frame Synchronization
	17.3.3 SSI Transmit
	17.3.4 SSI Receive

	17.4 SSI Transmit operation
	17.4.1 Setup SSI_CTL
	17.4.2 Operation Details
	17.4.3 Interrupt and Status

	17.5 SSI Receive Operation
	17.5.1 Setup SSI_CTL
	17.5.2 Operation Details
	17.5.3 Interrupt and Status

	17.6 Frame Timing
	17.7 Interrupt Generation
	17.8 16-bit Endian-ness and Shift Direction
	17.9 SSI Test Modes
	17.9.1 Remote Loopback
	17.9.2 Local Loopback

	17.10 MMIO Registers
	17.10.1 SSI Control Register (SSI_CTL)
	17.10.2 SSI Control/Status Register (SSI_CSR)

	17.11 Timing Diagrams
	17.12 Power Down

	JTAG Functional Specification Chapter 18
	18.1 Overview
	18.2 Test Access Port (TAP)
	18.2.1 TAP Controller
	18.2.2 PNX1300 JTAG Instruction Set

	18.3 Using JTAG for PNX1300 Debug
	18.3.1 JTAG Instruction and Data Registers.
	18.3.2 JTAG Communication Protocol
	18.3.3 Example Data Transfer Via JTAG
	18.3.3.1 Transferring data to TriMedia via JTAG
	18.3.3.2 Transferring data from TriMedia via JTAG

	18.3.4 JTAG Interface Module

	On-Chip Semaphore Assist Device Chapter 19
	19.1 OVERVIEW
	19.2 SEM Device Specification
	19.3 Constructing a 12-Bit ID
	19.4 Which SEM to Use
	19.5 Usage Notes

	Arbiter Chapter 20
	20.1 Arbiter Features
	20.2 Dual Priorities with Priority Raising Mechanism
	20.3 Round Robin Arbitration
	20.3.1 Weighted Round Robin Arbitration
	20.3.2 Arbitration Levels

	20.4 Arbiter Architecture
	20.5 Arbiter programming
	20.5.1 Latency Analysis
	20.5.2 Bandwidth Analysis

	20.6 Extended Behavior Analysis
	20.6.1 Extended Bandwidth Analysis
	20.6.2 Extended Latency Analysis
	20.6.3 Raising Priority
	20.6.4 Conclusion

	Power Management Chapter 21
	21.1 Overview
	21.2 Entering and Exiting Global Power Down Mode
	21.3 Effect Of Global Power Down On Peripherals
	21.4 Detailed Sequence of Events For Global Power Down
	21.5 MMIO Register POWER_DOWN
	21.6 Block Power Down

	PCI-XIO External I/O Bus Chapter 22
	22.1 Summary Functionality
	22.1.1 Description

	22.2 Block Diagram
	22.3 Data Formats
	22.4 Interface
	22.4.1 PCI-XIO Bus Interface Design
	22.4.1.1 Flash EEPROM
	22.4.1.2 68K Bus I/O device
	22.4.1.3 x86/ISA Bus I/O device
	22.4.1.4 Multiple Flash EEPROM

	22.5 XIO_CTL MMIO Register
	22.5.1 PCI_CLK Bus Clock Frequency
	22.5.2 Wait State Generator

	22.6 PCI-XIO Bus Timing
	22.7 PCI-XIO Bus Controller Operation and Programming

	PNX1300/01/02/11 DSPCPU Operations Appendix A
	A.1 Alphabetic Operation List
	A.2 Operation List By Function

	MMIO Register Summary Chapter B
	B.1 MMIO Registers

	Endian-ness Appendix C
	C.1 Purpose
	C.2 Little and Big Endian Addressing Conventions
	C.3 Test to Verify the Correct Operation of PNX1300 in Big and Little Endian Systems
	C.4 Requirement for the PNX1300 to Operate in Either Little Endian or Big Endian Mode
	C.4.1 Data Cache
	C.4.2 Instruction Cache
	C.4.3 PNX1300 PCI Interface Unit
	C.4.4 Image Coprocessor (ICP)
	C.4.5 Video In (VI) and Video Out (VO) Units
	C.4.6 Audio In (AI), Audio-Out (AO), and SPDIF Out (SDO) Units
	C.4.7 Variable Length Encoder (VLD) Unit
	C.4.8 Synchronous Serial Interface (SSI)
	C.4.9 Compiler

	C.5 Summary
	C.6 References

	Index

		2008-12-13T17:11:33-0800
	ch

